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ON THE EXISTENCE OF EXTREMAL METRICS

XlNGWANG XU

We study the well known variational problem proposed by
Calabi: Minimize the functional JM s2

gdυg among all metrics in
a given Kahler class. We are able to establish the existence
of the extremal when the closed Riemann surface has genus
different from zero. We have also given a different proof of the
result originally proved by Calabi that: On a closed Riemann
surface, the extremal metric has constant scalar curvature on
a closed Riemann surface, the extremal metric has constant
scalar curvature, which originally is proved by Calabi.

1. Introduction.

In the early 80's, E. Calabi [Cl, C2] proposed the following variational
problem. Let M be a compact, connected, complex n—dimensional manifold
without boundary and assume that M admits a Kahler metric g locally ex-
pressible in the form ds2 = 2gaβdzadz^. Let us fix the deRham cohomology
class Ω of the real valued, closed exterior (1,1) form ω = \f^ΛgOiβdzOίAdz&
associated to the metric g, and denote by CQ the function space of all dif-
ferentiable Kahler metrics g with the Kahler form ω G Ω. On this function
space, Calabi introduces the (non negative) real valued functional Φ which
assigns to each g the integral

Φ(g) — \ s2dvq
JM

where dvg = (\/^T)ndet(gaβ)A™=ι(dzaAdza) denotes the volume element in

M associated with the e Kahler metric g: and

the scalar curvature.
The variational problem proposed by Calabi is that of minimizing the

functional Φ(g) over all g G CQ. The motivation for considering this is the
fact that, as g varies in CQ, both the volume

dvg
M
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and the total scalar curvature

JM

remain constants. Thus by the virtue of the Schwartz inequality, the func-
tional Φ(g) has a nonnegative lower bound SgV, we wish that the latter
can be achieved if and only if there exists a g G Cςi with constant scalar
curvature.

As M. Levine [L] points out, if we call the critical metric of Φ the extremal
metric, the extremal metric does not necessarily have constant scalar curva-
ture if the dimension n > 1. For n = 1, E. Calabi is able to show that the
extremal metric always has constant scalar curvature if the extremal metric
exists (see [Cl] and also §5 of this paper).

The problem of finding extremal metrics is quite nature but quite difficult.
There are severval results about the non-existence ([C1],[C2],[L],[BB]).
However, in the past decade, there has almost been no progress on the
existence of extremal metrics.

The propose of this paper is to show:

Main Theorem.// n — 1 with χ(M) < 0, then the extremal metric exists.

Remember that this is not so surprising at all since there are several
methods to reach this conclusion: Poincare's classical uniformization theo-
rem [P]; M. Berger's minimization method [A],[B]; R. Hamilton's Ricci flow
[CH], [H1],[H2]; B. Osgood, R. Phillips and P. Sarnack's minimizing the
log determinent of the Laplace operator [OPS].

What it is new in this paper is that, we exactly follow the Calabi's original
idea, by using the direct method, to show that the minimizer of the Calabi
functional can be achieved. Since the Kahler class and the conformal class
for n = 1 are equivalent, our setting is in the conformal class. The main
difficulty is to get H\ norm bound of the conformal factors in terms of the
volume bound and the bound on the Calabi functional.

The organization of this paper is as follows: after some preliminaries(§2),
we will give the proof of our main theorem for the case χ(M) < 0(§3). §4
will simply indicate the case χ(M) = 0. Since our setting is in the conformal
class, we will show, in this setting, that the extremal metrics have constant
scalar curvatures (§5). Clearly this is an alternative proof of one of Calabi's
theorems [Cl].

The author would like to thank Professor Paul Yang for letting him know
this very interesting problem and Professor William Abikoίf for an encour-
agement on him to write out this proof.



ON TίlE EXISTENCE OF EXTREMAL METRICS 557

2. Prel iminaries .

Consider a compact connected complex n—dimensional manifold M without
boundary. Assume that M admits a Kahler metric g locally expressible in
the form

ds2 = 2ga-βdz(Xdz~β

where and thereafter the Einstein convention is used. It is well known that
there is a real valued, closed exterior (1,1) form ω — y/^Λgaβdzadzβ associ-
ated to the metric g. This (1,1) form usually is called Kahler form. By the
deRham theory, ω determines a deRham cohomology class Ω. Now let us
consider the change of the Kahler metric,

(2 i) g'λβ = g\β + dλβφ

where φ £ C°° is such that g' is positive definite. Obviously, g' is a Kahler
metric. Also it is clear that the Kahler form ω' associated to the metric g'
determines the same deRham cohomology class as ω does. Note that under
this change of the metric, new metric g' is also a Riemannian metric since it
is Kahler. We will denote all such functions ψ by CQ.

For a given Kahler metric g, we have the volume element defined in the
local coordinate by dυg = (y/^)*1 det(gaβ)A2=1(dz°cAdzδί). And the scalar
curvature associated to the metric g is defined by

(2-2) sg = - g ° t ^

For a φ £ CQ, the Calabi functional can be written as

(2.3) Φ(φ) = ί
J \

s2

g,dvg,
M

where g' and φ are related by (2.1).
From now on, we only consider M a Riemann surface without boundary,

that is, a compact complex 1—dimensional manifold without boundary. It is
known that on a complex 1—dimensional manifold, any Riemannian metric
is conformally flat [Be, Theorem 1.169]. Thus any two Riemannian metrics
on M are conformally equivalent. If metrics g and g' are related by (2.1),
there exists a C°° function u such that g1 = e2ug. In this form, we know that
dυgf = e2udvg and the scalar curvatures satisfy the relation

(2.4) Au + kg,e
2u = k9

where kg> and kg are the Gaussian curvatures of the metrics g' and g respec-
tively, and Δ is the Laplace operator associated to the metric g. The relation
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between the Gaussian curvature and the scalar curvature is that sg = 2kg.
Thus, up to a constant multiple, the Calabi functional Φ(φ) is equivalent to

(2.5) J{u) = f (kg- Au)2e~2udvg

JM

with the constrain

(2.6) / e2udvg =
JMM J M

Our main propose of this section is going to show that the functional J has
the following properties.

Proposi t ion 2.1.

(a) J is continuously differentiate on Hi where Hi denotes the Hubert
space as usual.

(b) The first variation of J at a point u in a direction φ is given by

(2.7) J'{u){ψ) = - 2 / [e2u{kg - Au)2 + A{e2u{kg - Au)))φdvg.
JM

(c) The Euler equation associated to J under the constrain (1.6) is given

by

(2.8) Δ[e-2u{kg - Au)] + e~2u{kg - Au)2 = λ2e2u

for some constant λ > 0.

Proof, (c) can easily follow from (b), Lagrange multiplier and the fact that
if we set G(u) = fM e2udvgi G'(u)\φ) = fM e2uφdvg. (b) will follow from the
proof of (a). Before we are going to prove the part (a), let us recall two
simple facts.

Fact 1. If the real dimension of a manifold is two, there exists a constant

C > 0 such that

(2.9)

for all u G H2.

It can be proved as follows. Suppose G is a Green function for Δ. Then
it is known that fMG2dvg is finite and for any u G H%,u(p) — fMudvg —
JM GAudvg. Thus the Holder inequality implies that (2.9) holds with C =

Fact 2. We can choose εQ > 0 such that if 0 < t < ε0, then |e~ 2 ί-l-f 2ί| < 4ί2

and \e~2t — 1| < lOOt where numbers 4 and 100 are not so important.
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In order to simplify the notation, from now on, we will denote the norm

IHUi by |M|.
Now we are in position to give the proof of the part (a).
Let us now assume that u E Jϊf such that J(u) < oo. Let φ be any

function in JT| such that max \ψ\ < e0. Then we have

IMI- 1 J{u + φ)- J(u) + 2 / [e~2u{kg - Au)2 + Δ(e"2w(A;, - Au))]φdυ9
JMM

= IMI" 1 I / (*• - Δ « ) 2 e - 2 " [ e ^ + 2φ- l}dvg
\JM

/ -2^φ)dvg - 2 / Aφ[e-2u(kg - Au)](e~2φ - l)dυg

M JM

iu) + CΊ exp[2C(|H| + |M|)] |M| 2

+ 200C2exp[C|H|]J(n)i |M|2]

= [AC2J{u) + CΊexp[2C(||ιι|| + |M|)] + 200C2exp[C||u||]J(«)i]

where C is given in (2.9) and CΊ and C2 are constants. This proves (b) and
the half of (a). For the rest of the part (a), we can argue as follows: for a
fixed function u € i ϊ | , if υ € iϊf is such that max \u — υ\ < ε0, then we have

\Jf(u)(w)-f(v)(w)\

= 2 I / [e-2u{k9 - Au)2 + Δ(e-2ω(fc, - Au))]wdvt
\JM

- I [e~2υ(K - Av)2 + A(e-2υ(kg - Aυ))]wdvg
JM

= 2 I / (e" 2 u - e-2υ)(λ;, - Au)2wdvg
\JM

[(kg - Au)2 - {kg - Aυ)2]wdvg

(e~2u - e~2v)k9Awdvg - ί (e'2uAu - e~2vAv)Awdvi
IM JM

0max \u - v\ J{u) max |^ | -f 2e 2 m a x | u | / \A(u - v)\\Aw\dvg

JM

2 e 2 m a x | v | m a x M / \A{u - v)\\2kg - A{u + v)\dvg
JM

400emaxH ί j ^ - i llΔti ld^maxl^l
JM

2e 2 m a x H max| i/- 'y | |M| ||ϊi;||

/
M
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where C > 0 depends on ||ι/||, ||τ;||, J(u) and max|A;5|. This proves the re-
sult. D

Also we note that if we define H = {u E Hl\ fMe2udvg = fMdvg}, we
have

Proposition 2.2. ΐf is a weakly closed subset in H\.

Proof. Weakly convergent subsequences in H\ is strongly convergent se-
quences in H2. JMe2udυg is a weakly continuous functional on H2 by
Moser's inequality. Thus it is a weakly continuous functional on iϊf. We are
done. D

3. Proof of Main Theorem for χ(M) < 0.

The proof of the main theorem in this case will consist of several lemmas.

Lemma 3.1. Let (M, g) be a closed Riemann surface with χ{M) < 0.

If the Gaussian curvature kg is positive somewhere, there exists a function

u G H\ so that the metric g — e2ug has nonpositive Gaussian curvature kg

and JMk2

gdvg <fMk2

gdvg.

Proof. Choose

S ~ ( A kg<0.

Then it is clear that s < 0. Let us consider

^O.IJ IΛU ~τ" «56 =:= fhg.

Clearly, if φ = 0, then

Aφ + se2φ - kQ = < g g ~
ψ 9 \0 kg<0

I kgdVg

which is always nonpositive. Let φ be a solution of Δ<̂> — kg — J y — .

By standard elliptic theory, up to add a constant to φ, φ is unique. We fix
a solution by requiring JM φdvg = 0. Choose N > 0 large enough so that

se2Φ-N _ JM g ^9

 > o and 0 - N/2 < 0. It is clear that such an N exists.

Then set υ = 0 - iV/2, we can get

Λf, 4- , P 2 υ - h - ςp20-ΛΓ _ / M k9dv9 . n
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and v < 0. Therefore φ = 0 is a supper solution and υ is a sub-solution
of the equation (3.1). By standard elliptic theory, equation (3.1) has a ίf |
solution w since s and kg are in L 2 (M), [S, Theorem 2.4; Chapter 1].

Now choose a constant a such that fM e2^w+a^dvg = fM dvg, and set k =

se~~2α < 0. Since w < 0 and —2a — log ^ -, by the convexity of the ex-

ponential function, a > 0. Also $M(k)2e2i<w+a">dυg = / M 52e-4

JM s2e2^w~a^dυg < fMs2dvg = JMk2dvg. Thus if we set n = w + α, then

g = e 2 u ^ will satisfy the requirement. This completes the proof of Lemma

3.1. D

Lemma 3.2. If u e E\, J(u) < Co, kg - Au < 0 αnc? / M e 2 ucί^ = JM dvg7

there exist constants C\, C2 defending only Co and fcp and fM dvg such that
the following inequality holds: C\ < u < C2

Proof. Let φ be a solution of the equation Aφ = kg — ̂ H 9—- with fM φdυg =
JM 9

0. Since kg is continuous and φ is in C 2 , φ is in H\, There exist constants

a and β such that a < φ < β where a and /? only depend on kg.

Now from J(u) < Co, we have
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ί
JMJMdvg

f e - 2 ^ > (Δ(« - ψ)Ϋ dvg] .
JM J

The above inequality and the fact that fM kgdυg — χ(M) fM dυg < 0 imply
that

(3.2)

(3.3)
IM {-4jMκgavg)

(3.4) /
M

Simply (3.2) gives us

- ί e-'
JM

e ί , I
J 9~JM

or equivalent ly,

(3.5)

J , <

By using the convexity of the exponential function, we can get that

-JM2udυg < logC3 from (3.5). Since JMe2udvg = JMdυg, 2fMudvg <
ι°gJM

dυ9 ~C4-
From now on we will assume that the volume fM dvg — 1.
Thus C4 = 0. Anyway, we get | JMudυg\ < l £ ^ . Now

(3.6) u(p) - I udυ9 = - / GAudvg

JM JM

where G is Green's function associated to Laplace operator Δ. We can
choose G such that it is positive everywhere [A, Theorem 4.14]. These give
us the estimate on u as follows

u(p) — / udυg — \ G(kg — Au)dυg — / kgGdv
JM JM JM

1/2 ( ί G2dvg

M J \J M

9

1/2

: = C f i .
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This implies that

u(p) <
1/2

As p is arbitrary on M, u <C2>
Apply (3.6) with u replaced by e~u to get

1/2

: = C2.

u - ί e'udvg = - ί GAe-udv9
JM JM

(3.7) - / e~uG{Au - \Vu\2)dvg
J
/
M

uGAudvg< ί e~u

JM

α \ 1/2 • r
e-2u(Au)2dv9) U G2dv9

1/2

where we have used the fact that A(e~u) = e~u(|Vw|2 - Δtt). But from

(3.3), we obtain

C0e
2β> / e-2^-^{A{u-φ))2dv9

JM

-2{u-φ\
— I e

lM

(Aφ)2]dυg

> /" e-(«-<p)(Δu)2dvg-l/2 ί (Au)2e-2iuφ)dυg
JM JM

- 2 / (Aφ)2e-2iu-φ)dvg + ί {Aφ)2e-2{u-φ)dvg
JM JM

= 1/2 ί e-2(u-φ\Aufdυg- f {Aφfe-2(u-φ)dυg.
JM JM

This simply implies that

(3.8)

1 I e-2u(Au)2dυg
2 JM

2a

2
[
M

< ( e-2(u-φ\A{u-ψ))2dυg+ ί
JM JM

< Coe
20 + 1 ( 1 kgdv3 - kg V

JM \JM /

Co + 2 ( ί kgdυg) ί e~2udυg + 2 ί k2e~2udυg
\JM / JM JM

e-2udυg • e2β

oW
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[\JM J \ )

: = C β

by using (3.5) and (3.7). Thus this implies that

(3.9) e-uM<Cl/2+Π G2Ϋ

: = e " C l .

Hence, by taking log on both sides of (3.9), we have u(p) > Cγ. As before,
p is a general point on M, we have what we need to show. D

Lemma 3.3. If u G H\, J{u) < C0:kg - Au <0 and fM e2udvg = JM dvg,
there exists a constant C7 depending on C0,kg and JMdvg only such that

INI < c7.
Proof. It is clear from (3.8) and Lemma 3.2 that

1 -2C2 . e2α . /" (Δu)2dυg < l e 2α j e^(AU)2dvg < Cβ.
£ J M " J M

If we define C7 to be 2{2CQe2^~a) 4- (C? + C2

2)}, combining with Lemma
3.2, the result follows. D

Lemma 3.4. The weak solution of the equation (2.8) exists.

Proof. Let α 0 = infw€# J(u). Suppose that {UJ} is a minimizing sequence in
H2 for the functional J with / M e2U}dvg — JM dvg. Without loss of generality
by applying Lemma 3.1, we can choose a minimizing sequence {UJ} such
that kg — AUJ < 0. Then Lemma 3.3 implies that {UJ} is bounded in
H\. Thus there exists a subsequence of {UJ} still denoted by {UJ} and a
function u0 G Hi such that t^ is weakly convergent to u0 in Hi and i/j is
pointwise almost everywhere convergent to î o because Hi is reflexive and
the Proposition 3.43 of [A]. Now we have to show that J(uQ) — a0 in order
to show that u0 weakly satisfies the equation (2.8). On the one hand, since
the subset H of Hi is weakly closed by Proposition 2.2, u0 is in the subset
H. By definition of α 0 , we can easily see that a0 < J(u0). On the other
hand, we have

(3.10)
J(un) - J(UQ)

= ί e~2u"(kg - Aun)
2dυg - ί e-2uo{kg - Auo)

2dυg
JM JM
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/ 2u» -e-2uo)k2dvg -2 / kg(e-2u" - e~2u°)Aundv9

M JM

JM JN

+ ί \e-2u"(Au ) 2 -
JM

•L
- 2 / k9e-2u°A(un-uQ)dv9+ ί e-2u"(A(un-u0))2dv9

JM JM

+ 2 ί e-2UnAuoA{un-uo)dvg+ ί {e~2Un - e-
2uo)(Auo)

2dvg

JM JM

> ί (e~2Un - e-2u°)k2dvg -2 ί kg(e~2u" - e-
2u°)Aundvg

JM JM

- 2 ί kge-2uoA(un - uo)dv9 + 2 ί (e~2u" - e-
2uo)AuoA(un - uo)dvg

JM JM

+ 2 ί e-2u°Au0A{un-u0)dvg+ f [e~2u- - e-
2UQ){Au0)

2dv9

JM JM

:= I + II + III + IV + V + VI.

As n goes to oo, I and VI go to zero because e~2Un goes to e~2u° pointwise

almost everywhere and the Dominated convergence theorem (Theorem 3.32

of [A]) can be applied; III and V go to zero by the definition of the weakly

convergence in ϋΓf. For II,

I ί
/ h (p~2Un — P~2U°}AII ήi)\ l K 9 \ e e )LXUnaVg

\JM

Γ r i i / 2 f r 11/2

< max|fcp|

by the Holder inequality and the Dominated convergence theorem again since

| | ^ n | | is uniformly bounded. Similarly we can estimate the term IV, we will

leave it to reader.

By letting n —> oo in (3.10), we have that α 0 — J(u0) > 0, i.e., J(u0) < a0.

The Lemma is proved. D

Remark. In fact, we can show that J(u) is weakly lower semicontinuous
on iff. Since we do not need this, we will not give a proof here.

L e m m a 3.5. The weak solution of the equation (2.8) is smooth if kg is

smooth.

Proof. Suppose u0 satisfies (2.8). Set s = e~2uQ{kg - Au0) and λ2 - s2 = /.

Then it is clear that equation (2.8) can be written as

As = e2uof.
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Since u0 G iϊf, s must be square integrable. If we set υ = s — fM sdvgi above
equation looks like:equation looks like:

e2uof= e2f.

By applying Theorem 3.67 of [A] on p. 91, we can get that JM \Vυ\2dvg

is finite. Then υ is in Lp for all p by applying same theorem. Now the above
equation tells us that Av is square integrable. Thus v , so s, is continuous.
By using the definition of s, we can see that u0 is in C2. Then s is in C2

which will imply that u0 is in C 4 . Repeating this argument, we can easily
see that n 0 is smooth. This finishes the proof. In fact, we will see later that
s is a constant. D

4. χ(M) = 0 case.

In this case, for a given metric g on a Riemmann surface with fM kgdvg — 0,

we can choose a function φ such that Aφ = k and JM e2φdvg — fM dvgby

standard elliptic theory. Now J(φ) = fM e~2φ(kg — Aφ)2dυg — JM e~~2φ(kg —

kg)2dvg — 0. Thus φ is a minimizer for J . Of course, φ is smooth.

5. The scalar curvatures of the extremal metrics.

In this section, we will prove the following theroem due to Calabi:

Theorem. For a Riemann surface, the extremal metrics have constant

scalar curvatures.

The proof will follow easily from the following

Lemma 5.1. Let (M,g) be a compact Riemann surface. If the Gaussian

curvature k of the metric g satisfies

(5.1) Ak + k2 = λ2

for some constant λ7 then Vk is a conformal vector field.

Proof. The Vk is a conformal vector field if and only if its components satisfy

in local coordinates for some function /. That is to say that we only need
to show that the hessian of the Gaussian curvature is proportional to the
metric g. The standard Ricci identity shows that
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But for a Riemann surface, iϊ^ = kg^. Thus

^Δ|VA:|2 = I Hess(fc)|2 + (VΔΛ, S/k) + k\Vk\2.

By using (5.1), we get

(5.2) = I Hess(A;)|2 - ^ψ- + ^ψ- - k\Vk\2.

Also by using integration by parts and (5.1) we obtain

/ k\Vk\2dυg = [ k Vk Vkdvg
JM JM

= -\l k2Akdυg

= \ f (λ2 - k2)Akdυ9* JM

— - I (Ak)2dvg.2 JM

Now, we integrate both sides of (5.2) to get

0 = / \Hessk\2dυg- /
JM JM

-L Hess (A;) - —-g dυo.
IM

The last equality holds because of a well known identity. The Lemma can
be seen easily from this. D

Proof of Theorem. Set g' = e2uog. Then we have Ag* = e~2u°Ag and
kgl = e~2u°(kg — Au0). Thus the equation (2.8) can be written as

(5.3) Ag,kgl+k2

g, = λ 2 .

Thus Lemma 5.1 can be applied to show that Vkg, is a conformal vector
field with respect to metric g1. But a conformal vector field X on a manifold
M satisfies the identity

/ X Sgdvg = 0
JM

where s9 is the scalar curvature of the metric g ([BE],[X]). In our case,
sg = Ίkgi. Thus we have

2 / \Vkg,\
2dυg, = 0

JM
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Therefore, 4|VAy|2 = 0. That is, kg> is a constant. The theorem is proved.

D
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