COMPLETE INTERSECTION SUBVARIETIES OF GENERAL HYPERSURFACES

Endre Szabó

Abstract

In this paper we classify the nontrivial complete intersection curves on a general hypersurface of large enough degree. We prove, that in principle, one can classify nontrivial complete intersection curves on hypersurfaces with relatively small degree as well, and give a recipe for doing so. We also estimate the codimension of the components of the NoetherLefschetz locus corresponding to complete intersection curves. Similar theorems hold for higher dimensional complete intersection subvarieties.

Introduction.

Let $X \subset \mathbb{P}^{3}$ be a very general hypersurface of degree at least four. The classical theorem of Noether-Lefschetz asserts that any curve on X is the complete intersection of X with some other surface. For hypersurfaces in higher dimensional projective spaces similar questions are poorly understood. Griffiths-Harris [3] posed a series of conjectures about curves on hypersurfaces. The strongest one turned out to be false (Voisin in [1]), the weaker ones have been proved in some cases ([2], [7], and Kollár-s example in Trento Examples in [6]). There is another generalization in [5].

The aim of this note is to look at a special case of the above problem: to try to understand those curves $C \subset X \subset \mathbb{P}^{n+1}$ which are complete intersections in \mathbb{P}^{n+1} but not in X. Even in this special case the problem turns out to be surprisingly subtle. We give a complete answer in case $\operatorname{deg} X>\operatorname{dim} X+$ 2 (Corollary A). We prove that if $\operatorname{deg} X>\epsilon \cdot \operatorname{dim} X$ for a fixed $\epsilon>0$, then a complete description is possible in principle (Corollary B). This is somewhat surprising since other existence theorems about special curves on hypersurfaces seem to predict that there are lots of nontrivial curves if $\operatorname{deg} X<\operatorname{dim} X$.

Actually, we prove more in Corollary B. We prove that if $\operatorname{deg} X>\epsilon \cdot \operatorname{dim} X$ for a fixed $\epsilon>0$, then (in principle) one can classify all complete intersection curves $C \subset \mathbb{P}^{n+1}$ such that the corresponding component of the NoetherLefschetz locus has small codimension, say smaller than $C \operatorname{deg}(X)$ for some
constant C. Moreover, this classification depends only on C and ϵ, but independent of $\operatorname{deg}(X)$ and $\operatorname{dim}(X)$.

We prove also that essentially the same results hold for r dimensional complete intersection subvarieties, just one has to replace $\operatorname{deg}(X)$ with $\operatorname{deg}(X)^{r}$ everywhere (Corollary B).

I want to thank professor János Kollár for his continuous help during the preparation of this paper. He simplified many of my proofs and corrected my mistakes. I also want to thank the referee for his careful reading and for his suggestions.

Throughout this paper we shall work with projective varieties over a fixed algebraically closed field (of any characteristic). That a statement is true for a general point means that it is true in a dense open subset.

Let $f=0$ be the equation of $X \subset \mathbb{P}^{N}$, and $g_{1}=0, \ldots g_{n}=0$ be the equations of a complete intersection variety $V \subset \mathbb{P}^{N}$ for some N. One way to ensure that $V \subset X$ is to take $g_{i}=f$ for some i. We are not interested in these kind of subvarieties.

Definition. A complete intersection subvariety V of a hypersurface X is called nontrivial if we cannot write V as the complete intersection of X and other hypersurfaces.

If we find a $V \subset X$ then we can find polynomials $h_{1}, \ldots h_{n}$ such that $f=\sum_{i=1}^{n} g_{i} h_{i}$. For generic choice of g_{i} and h_{i} we can interchange some g_{i} with the corresponding h_{i} and get another complete intersection $\bar{V} \subset X$. The following definition reformulates this symmetry in terms of the multidegree of V. Also it is convenient to talk about lines, plane cubics, etc. without specifying the dimension of the ambient space.

Definition. We say that two sequences $l=\left(l_{1}, l_{2}, \ldots l_{m}\right)$ and $L=\left(L_{1}, L_{2}, \ldots L_{n}\right)$ are equivalent if one can get the first from the second by adding or deleting some 1 to or from it, and permuting the entries. We denote it by $l \sim L$. Fix a degree d. The above two sequences are related (with respect to d) if one can get the first from the second by replacing some of the L_{i} with $d-L_{i}$, adding or deleting some 1 or $d-1$ to or from it, and permuting the entries.

Let us see what we should expect. Let $X \subset \mathbb{P}^{n+1}$ be a general hypersurface of degree d. Let V be a complete intersection curve of multidegree $l \rightleftharpoons$ $\left(l_{1}, \ldots l_{m}\right)$ where $l_{i}>1$. We shall fix m and l_{i}, and vary n and d. An easy dimension counting gives that the dimension of the family of complete intersection curves of multidegree l contained in X is at most $\alpha n-\beta d+$ γ with coefficients independent of n and d. This dimension estimation is
done in Lemma Γ in a more general setup. In this formula one can easily calculate α and β, but it seems hard to give useful estimates for γ. From the calculation one sees that α / β decreases rapidly if we increase m or any of the l_{i}; hence if $d \geq \epsilon n$ for some $\epsilon>0$ then one can try to list the possible multidegrees for V contained in a general X (and the list should not depend on d or n). In particular, for large enough ϵ, a general X should not contain any nontrivial complete intersection subvariety. Fortunately this picture is essentially correct, as we shall see in Corollary A, but the proof is long, because of the presence of the above γ. Main Theorem A reduces the problem to a finite number of multidegrees, and then the above estimate of α / β can be used to get the actual list of exceptions. The basic estimates for Main Theorem A are proved in the second half of the paper, namely in Theorem 3.

If we consider r-dimensional complete intersection subvarieties, we can get very similar estimates. The only change is that we have to replace the term βd with a degree r polynomial (coming from the Hilbert polynomial of $V)$, and we can calculate the leading coefficient. We shall see also that when a general X does not contain subvarieties of multidegree l, then the same formula gives an estimate for the codimension of the loci of those X that contains one. One can hope for the same kind of picture as in dimension one, and indeed, one gets finite, easily calculable exceptional lists. This more general (but less explicit) result is contained in Main Theorem B and Corollary B, and this proof is based on the estimates given in Theorem 2.

Proposition C contains some result in the other direction. It gives some example when a general X contains curves of multidegree l. The proof is based on a construction given in Lemma C. I learned this construction from János Kollár. The result is far from being complete, but at least proves that Corollary A is sharp, and classifies the complete intersection subvarieties of a general quintic threefold.

Proposition D is an easy calculation for the next simplest case, for projectively normal curves.

Now we state the main results precisely.
Main Theorem A. Let $d>n \geq 1$ be integers and assume that a general hypersurface $X \subset \mathbb{P}^{n+1}$ of degree d contains a nontrivial complete intersection curve C of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$.

If $d \geq 11$ then l is related to (1), (2), (2,2) or (3).
If $d=8,9,10$ then l is related to (1), (2), (2,2), (3) or (4).
If $d=7$ then l is related to (1), (2), (2,2), (3) or $(2,3)$.
If $d=6$ then l is related to (1), (2), (2, 2), $(2,2,2),(3),(2,3),(2,2,3)$ or $(3,3)$.
Moreover, if $d \geq 6$ then a general X does not contain any complete inter-
section surface.
Corollary A. Let $X \subset \mathbb{P}^{n+1}$ be a general hypersurface of degree d.

- If $d>2 n-1$ then there are no nontrivial complete intersection curves on X.
- If $d>\frac{3}{2} n+\frac{1}{2}$ then the nontrivial complete intersection curves on X have multidegree related to (1). (line).
- If $d>n+2$ then the nontrivial complete intersection curves on X have multidegree related to (1), or (2). (line, or plane conic).
Corollary B. For any dimension r and any multidegree $\hat{l}=\left(\hat{l}_{1}, \ldots \hat{l}_{m}\right)$ with all $\hat{l}_{i} \geq 2$ there is a constant γ with the following property:

A general hypersurface $X \subset \mathbb{P}^{n+r}$ of degree d does not contain any nontrivial r-dimensional complete intersection subvariety of multidegree $l \sim \hat{l}$, whenever

$$
d \geq \beta n^{1 / r}+\gamma \quad \text { where } \quad \beta=\left(\frac{(m+r+1) r!}{\prod_{i=1}^{m} \hat{l}_{i}}\right)^{1 / r}
$$

For any real number $\epsilon>0$ and any dimension r there are only finitely many values of m and finitely many multidegrees \hat{l} such that $\beta \geq \epsilon$. Moreover, there is a constant \tilde{D} such that for arbitrary $n \geq 1$ and any degree $d \geq \max \left(\tilde{D}, \epsilon n^{1 / r}\right)$ a general hypersurface $X \subset \mathbb{P}^{r+n}$ of degree d can have nontrivial r-dimensional complete intersection subvarieties only with multidegrees related to an \hat{l} with $\beta \geq \epsilon$. For $\epsilon=1 / 3$ and $r=1$ we give the list of these \hat{l}. Each entry has the form $\left(l_{1}, \ldots l_{m}\right) \beta$ where β is the coefficient defined above.
(1) $2 \quad(2) \frac{3}{2}$
(3) $1 \quad(2,2) 1$
$(4) \frac{3}{4} \quad(2,3) \frac{2}{3} \quad(2,2,2) \frac{5}{8}$
(5) $\frac{3}{5}$
(6) $\frac{1}{2} \quad(2,4) \frac{1}{2}$
$(3,3) \frac{4}{9} \quad(7) \frac{3}{7}$
$(2,2,3) \frac{5}{12}$
$(2,5) \frac{2}{5}$
(8) $\frac{3}{8}$
$(2,2,2,2) \frac{3}{8}$
(9) $\frac{1}{3}$
$(2,6) \frac{1}{3} \quad(3,4) \frac{1}{3}$.

Part One.

The proof of the above theorems can be divided into two parts. The first part is a geometric argument, reducing the problem to an inequality about the Hilbert function of a complete intersection variety. The second part is a rather long inductive proof of this inequality. We shall try to separate the two parts as much as possible. Although the first part uses the results of the second, for aesthetical reasons we prefer to keep this order.

In the second part, in order to make the induction work, we use only the (higher order) convexity properties of the Hilbert functions. For convenience we include the statements with all the necessary definitions, but we postpone the proofs for that part.

Definition 1. For $n \geq 0$ we define the functions G_{n} from the integers to the reals. Let $G_{n}(x)=0$ for $x<0$ and $G_{n}(x)=\binom{n+x}{n}$ for $x \geq 0$. Let define for $n \geq 0$ the family of functions

$$
\mathcal{F}_{n}=\left\{f: \mathbb{Z} \longrightarrow \mathbb{R} \mid f(x)=\sum_{i=0}^{\infty} a_{i} G_{n}(x-i), \quad 0 \leq a_{i} \in \mathbb{R}, \quad a_{0} \geq 1\right\}
$$

Remark 1. For all $m \geq 0$ the functions $f \in \mathcal{F}_{m}$ are nondecreasing and for $m>0$ they are convex functions. $f(x)=0$ for $x<0$ and $f(y) \geq 1$ for $y \geq 0$. For any x we have $f(x) \geq G_{m}(x)$.

Definition 2. For an integer $l>0$ and any function $f: \mathbb{Z} \longrightarrow \mathbb{R}$ let $\Delta_{l} f: \mathbb{Z} \longrightarrow \mathbb{R}$ be the difference $\Delta_{l} f(x)=f(x)-f(x-l)$. For any sequence $l_{1}, l_{2}, \ldots l_{k}>0$ of integers let $\Delta_{l_{1} \ldots l_{k}} f=\Delta_{l_{1}} \Delta_{l_{2}} \ldots \Delta_{l_{k}} f$.

Remark 2. $\Delta_{l_{1} \ldots l_{k}} f$ does not depend on the order of the l_{i}. For $m>0$ and $t>0$ we get $\Delta_{t} G_{m}(x)=\sum_{i=0}^{t-1} G_{m-1}(x-i)$. This implies that:

- If $k \leq m$ and $l_{1}, \ldots l_{k}$ are integers and $f \in \mathcal{F}_{m}$ then $\Delta_{l_{1} \ldots l_{k}} f \in \mathcal{F}_{m-k}$.
- If $k \leq m$ and $f \in \mathcal{F}_{m}$ then $\Delta_{l_{1} \ldots l_{k}} f$ is a nondecreasing function in l_{i} for all i.
- For $a<b$ we have $\mathcal{F}_{b} \subset \mathcal{F}_{a}$.
- For $k \leq m$, any $f \in \mathcal{F}_{m}$, any number x and any sequence $l_{1}, \ldots l_{k}$ we have $\Delta_{l_{1} \ldots l_{k}} f(x) \geq \Delta_{l_{1} \ldots l_{k}} G_{m}(x)$.

Theorem 2. For any real numbers $C \geq 0, \alpha>0$ and any integer $r \geq 1$ there are integers $D, L, T>0$ such that whenever we choose integers $n \geq 1$, $d \geq \max \left(D, \alpha n^{1 / r}\right)$, a sequence $1 \leq l_{1} \leq l_{2} \cdots \leq l_{n} \leq d / 2$ and a function $f \in \mathcal{F}_{n+r}$, we find either that $l_{1}=l_{2}=\cdots=l_{n-T}=1$ and $l_{i}<L$ for all i, or

$$
\begin{equation*}
C d^{r}+\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)<\Delta_{l_{1} \ldots l_{n}} f(d) \tag{**}
\end{equation*}
$$

Theorem 3. Choose arbitrary integers $n \geq 1,1 \leq l_{1} \leq \cdots \leq l_{n}, d \geq$ $\max \left\{2 l_{n}, n+1\right\}$, and any function $f \in \mathcal{F}_{n+1}$.

- If $d \geq 11$ and the sequence $l=\left(l_{1}, l_{2} \ldots l_{n}\right)$ is not equivalent to any of the following sequences: (1), (2), $(2,2)$, or (3), then the following inequality holds:

$$
\begin{equation*}
\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)<\Delta_{l_{1} \ldots l_{n}} f(d) \tag{}
\end{equation*}
$$

- If $d=8,9,10$ and l is not equivalent to (1), (2), (2,2), (3), (4), then again (***) holds.
- If $d=7$ and l is not equivalent to (1), (2), (2,2), (3), (2,3), then again (***) holds.
- For $d=6$ and l is not equivalent to (1), (2), (2,2), (2,2,2), (3), (2,3), $(2,2,3),(3,3)$, then again $\left({ }^{* * *}\right)$ holds.

Now we are ready for the geometric part of the proof. We start with a definition.

Definition Γ. Let $V \subseteq \mathbb{P}^{n+r}$ be a subvariety of dimension r such that only one component of the Hilbert scheme of \mathbb{P}^{n+r} passes through the point [V]. Let \mathcal{V} be that component. Let \mathcal{P} be the projective space parametrizing the hypersurfaces $X \subset \mathbb{P}^{n+r}$ of degree d. Let \mathcal{P}_{V} be the locus of those hypersurfaces that contain any subvariety from \mathcal{V}. Then $\Gamma(n, d, V)$ denotes the codimension of \mathcal{P}_{V} in \mathcal{P}.

For a hypersurface $X \subseteq \mathbb{P}^{n+r}$ of degree d let \mathcal{H}_{X} denote the subscheme of the Hilbert scheme of X that parametrize schemes from \mathcal{V}. Let $\tilde{\Gamma}(n, d, V)=$ $\Gamma(n, d, V)$ if it is positive, otherwise let $\tilde{\Gamma}(n, d, V)=-\operatorname{dim}\left(\mathcal{H}_{X}\right)$ for a general hypersurface X.

If V is a complete intersection variety of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$ (and dimension r) then we use also the notations $\Gamma(n, d, r, l)=\Gamma(n, d, V)$ and $\tilde{\Gamma}(n, d, r, l)=\tilde{\Gamma}(n, d, V)$

By an easy general position argument one can prove the following:
Observations. If we get the multidegree $\hat{l}=\left(\hat{l}_{1}, \ldots \hat{l}_{\hat{n}}\right)$ from the multidegree $l=\left(l_{1}, \ldots l_{n}\right)$ by omitting some of the degrees l_{i}, and $\hat{r}=r+(n-\hat{n})$, then $\Gamma(n, d, r, l) \leq \Gamma(n, d, \hat{r}, \hat{l})$ and they are equal if we drop only degrees $l_{i} \geq d$. If $l^{\prime}=\left(l_{1}^{\prime}, \ldots l_{n}^{\prime}\right)$ is another multidegree related to l with respect to d, then again we have $\Gamma(n, d, r, l)=\Gamma\left(n, d, r, l^{\prime}\right)$.

Lemma Γ. Let $V \subset \mathbb{P}^{n+r}$ be an r-dimensional locally complete intersection variety. Assume that the natural map $H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right) \longrightarrow$ $H^{0}\left(V, \mathcal{O}_{V}(d)\right)$ is surjective and the Hilbert scheme of \mathbb{P}^{n+r} is regular at $[V]$. Let \mathcal{N}_{V} denote the normal bundle of V in \mathbb{P}^{n+r}. Then the following inequality holds:

$$
\Gamma(n, d, V) \geq \tilde{\Gamma}(n, d, V) \geq \operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right)-\operatorname{dim} H^{0}\left(V, \mathcal{N}_{V}\right)
$$

The second inequality becomes equality if the middle term is nonpositive.
Let I_{V} be the ideal sheaf of V on \mathbb{P}^{n+r} and assume now that the natural map $H^{0}\left(\mathbb{P}^{n+r}, I_{V}\right) \longrightarrow H^{0}\left(V, I_{V} / I_{V}^{2}\right)$ is surjective. Assume moreover that we can find a homomorphism $g: \mathcal{N}_{V} \longrightarrow \mathcal{O}_{V}(d)$ such that

$$
H^{0}(g): H^{0}\left(V, \mathcal{N}_{V}\right) \longrightarrow H^{0}\left(V, \mathcal{O}_{V}(d)\right)
$$

is either injective or surjective. Then the second inequality in (Γ) becomes again an equality. Moreover in this case the Hilbert scheme of X is regular at $[V]$ for a general X containing V.

The conditions on V in the first part are satisfied, for example, if V is projectively normal, locally a complete intersection and $H^{1}\left(V, \mathcal{N}_{V}\right)=0$. They are also satisfied when V is a complete intersection variety of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$. Moreover, in this latter case the map $H^{0}\left(\mathbb{P}^{n+r}, I_{V}(d)\right) \longrightarrow$ $H^{0}\left(V, I_{V} / I_{V}^{2}(d)\right)$ is surjective and the inequality (Γ) becomes the following:

$$
\Gamma(n, d, r, l) \geq \tilde{\Gamma}(n, d, r, l) \geq \operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right)-\sum_{i=1}^{n} \operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}\left(l_{i}\right)\right)
$$

Remark. (Theorem 3.1, p. 172, [4]) is another result about the regularity of the Hilbert Scheme.

Proof of Lemma Γ. It is clear that $\Gamma(n, d, V) \geq \tilde{\Gamma}(n, d, V)$. Also, if V is a complete intersection variety of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$ then $\mathcal{N}_{V}=$ $\bigoplus_{i=1}^{n} \mathcal{O}\left(l_{i}\right)$. This explains the last statement. We prove the rest. We note that the assumption that V is locally a complete intersection is needed only to be able to talk about the normal bundle. In general one can replace $H^{0}\left(V, \mathcal{N}_{V}\right)$ with $\operatorname{Hom}\left(I_{V}, \mathcal{O}_{V}\right)$.

Let V be a locally complete intersection variety such that the natural $\operatorname{map} H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right) \longrightarrow H^{0}\left(V, \mathcal{O}_{V}(d)\right)$ is surjective and the Hilbert scheme of \mathbb{P}^{n+r} is regular at $[V]$. We shall use the notations introduced in the Definition Γ. The dimension of \mathcal{V} is

$$
A=\operatorname{dim} H^{0}\left(V, \mathcal{N}_{V}\right)
$$

where \mathcal{N}_{V} is the normal bundle of V in \mathbb{P}^{n+r}. Let [W] be a general element of \mathcal{V}. Then semicontinuity gives us that

$$
\begin{gathered}
\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right) \geq \operatorname{dim} H^{0}\left(W, \mathcal{O}_{W}(d)\right) \geq \operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right)- \\
-\operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, I_{W}(d)\right) \geq \operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right)-\operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, I_{V}(d)\right)
\end{gathered}
$$

where I_{V} and I_{W} denote the ideal sheaves of V and W on \mathbb{P}^{n+r}. By assumption, the first and the last terms are equal, hence all four terms are equal. So the dimension of the family of those hypersurfaces of degree d that are going through W is

$$
\begin{aligned}
B & =\operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, I_{W}(d)\right)-1 \\
& =\operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right)-1-\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right) .
\end{aligned}
$$

The dimension of \mathcal{P} (the projective space parametrizing all hypersurfaces of degree d) is

$$
F=\operatorname{dim} H^{0}\left(\mathbb{P}^{n+r}, \mathcal{O}_{\mathbb{P}^{n+r}}(d)\right)-1
$$

Let \mathcal{I} denote the scheme parametrizing the pairs $(W \subset X)$ where $X \subset \mathbb{P}^{n+r}$ is a hypersurface of degree d, and $W \subset \mathbb{P}^{n+r}$ is a scheme with $[W] \in \mathcal{V}$. From the above calculation we see that $\operatorname{dim} \mathcal{I}=A+B$.

There is a projection $\Phi: \mathcal{I} \longrightarrow P$, and the fiber of Φ at a hypersurface X is exactly \mathcal{H}_{X} (the intersection of \mathcal{V} with the Hilbert scheme of X). Hence if Φ is not surjective then $\tilde{\Gamma}(n, d, V)$ is the codimension of the image. On the other hand, if Φ is surjective then $-\tilde{\Gamma}(n, d, V)$ is just the dimension of a general fiber of Φ. The codimension of the image is at least $F-A-B$, and if every fiber is nonempty then a general fiber has dimension exactly $A+B-F$. This proves the inequality (Γ). It is clear that if the middle term of (Γ) is nonpositive then Φ is surjective, and the second half of (Γ) becomes an equality.

Now we turn to the second part of the lemma. Let \mathcal{N}_{P} and \mathcal{N}_{X} denote the normal bundle of V relative to \mathbb{P}^{n+r} and X. There is an exact sequence on X :

$$
0 \longrightarrow \mathcal{N}_{X} \longrightarrow \mathcal{N}_{P} \xrightarrow{g} \mathcal{O}_{V}(d) .
$$

From the cohomology long exact sequence of the above sequence we get

$$
0 \longrightarrow H^{0}\left(\mathcal{N}_{X}\right) \longrightarrow H^{0}\left(\mathcal{N}_{P}\right) \xrightarrow{H^{0}(g)} H^{0}\left(\mathcal{O}_{V}(d)\right) .
$$

\mathcal{H}_{X} is the fiber at $[X]$ of the above map Φ and in the first part of the proof we actually got a lower estimate for the dimension of any nonempty fiber. On the other hand deformation theory gives an upper estimate for the dimension of the Hilbert scheme. Comparing the upper and the lower estimates we get

$$
h^{0}\left(\mathcal{N}_{X}\right) \geq \operatorname{dim} \mathcal{H}_{X} \geq h^{0}\left(\mathcal{N}_{P}\right)-h^{0}\left(\mathcal{O}_{V}(d)\right)
$$

So if we find an example of V and X were $H^{0}(g)$ is surjective or injective, then at least one (nonempty) fiber has dimension $h^{0}\left(\mathcal{N}_{X}\right)$, and therefore the second half of (Γ) becomes an equality. In this case $h^{0}\left(\mathcal{N}_{X}\right)=\operatorname{dim}_{[V]} \mathcal{H}_{X}$, hence \mathcal{H}_{X} is regular at $[V]$. The map g is constructed in the following way. The homogeneous equation of X is a global section of $I_{V}(d)$, and g is just its image in $I_{V}(d) / I_{V}{ }^{2}(d) \simeq \operatorname{Hom}_{V}\left(\mathcal{N}_{P}, \mathcal{O}_{V}(d)\right)$. Since the map

$$
H^{0}\left(\mathbb{P}^{n+r}, I_{V}(d)\right) \longrightarrow H^{0}\left(V, I_{V}(d) / I_{V}^{2}(d)\right)
$$

is surjective, for different choices of X we can get every possible homomorphism
$g: \mathcal{N}_{\mathbb{P}^{p+1}} \longrightarrow \mathcal{O}_{V}$. So in order to get equality in (Γ) we need only to construct a g with surjective or injective $H^{0}(g)$.

Together with Main Theorem A we shall prove the following higher dimensional version:

Main Theorem B. For any real numbers $C \geq 0, \alpha>0$ and any integer $r \geq 1$ there are integers $D, L, T>0$ such that whenever we choose integers $n \geq 1, d \geq \max \left(D, \alpha n^{1 / r}\right)$, and a multidegree $l=\left(l_{1}, \ldots l_{n}\right)$, then one of the following holds:
either $\Gamma(n, d, r, l)>C d^{r}$
or l is related (with respect to d) to some $\left(\hat{l}_{1}, \ldots \hat{l}_{T}\right)$ with $1 \leq \hat{l}_{i} \leq L$.
Proof of the Main Theorems. We shall prove the last part of Main Theorem A at the end of this section. Now we concentrate only on Main Theorem B and the curve case of Main Theorem A. Let $V \subset \mathbb{P}^{n+r}$ be a complete intersection variety of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$.

First we prove the theorems under the extra assumption that $l_{1} \leq l_{2} \leq$ $\ldots l_{n} \leq d / 2$. Main Theorem B follows immediately from Theorem 2 below once we realize that

$$
H^{0}\left(V, \mathcal{O}_{V}(x)\right)=\Delta_{l_{1}, l_{2} \ldots l_{n}} G_{n+r}(x)
$$

for all x. Similarly, Main Theorem A follows at once from Theorem 3.
Next, the second Observation above proves these theorems with the weaker extra hypothesis that all $l_{i}<d$.

Fix C, α as in Main Theorem B, and r (set $\mathrm{r}=1$ for Main Theorem A). The above special case of Main Theorem B gives us constants L, D, T. Increasing D if necessary, we can assume $D>2 L+1$. I claim, that both theorems are true without the extra hypothesis, and we can take these modified D, L, T in Main Theorem B. Moreover, I prove the last part of Main Theorem A.

Choose n, d as in the theorems, and let $l=\left(l_{1}, \ldots l_{m}\right)$ be a multidegree which is a counterexample ($m=n$ except for the last part of Main Theorem A, where $m=n-1)$. Let $\hat{l}=\left(\hat{l}_{1}, \ldots \hat{l}_{\hat{n}}\right)$ be the multidegree obtained from l by omitting all $l_{i} \geq d$, and let $\hat{r}=r+n-\hat{n}$.

Let $l^{*}=\left(l_{1}^{*}, \ldots l_{n^{*}}^{*}\right)$ be any sequence that we get from \hat{l} by adding arbitrarily $n^{*}-\hat{n}$ new degrees such that $l_{i}^{*}<d$ for all $i\left(\hat{n} \leq n^{*} \leq m\right)$. The above Observation said that

$$
\Gamma(m, d, r, l)=\Gamma(\hat{n}, d, \hat{r}, \hat{l}) \geq \Gamma\left(n^{*}, d, r, l^{*}\right)
$$

for all such l^{*}. However l^{*} satisfies the extra hypothesis, so both Main Theorem B and the first part of Main Theorem A apply to l^{*}.

If l was a counterexample to Main Theorem B then at least one $l_{i} \geq d$. Choose $n^{*}=n$. We get for all i that either $l_{i}^{*} \leq L$ or $d-l_{i}^{*} \leq L$. However we can choose at least one l_{i}^{*} arbitrarily, we can set $l_{i}^{*}=L+1>L$. This is a contradiction, because $d-l_{i}^{*} \geq D-(L+1)>L$.

If l was a counterexample to the last part of Main Theorem A then $m=$ $n-1$, choose $n^{*}=n-1$. Then we get a new complete intersection surface on a general X, so we can assume at the beginning that each $l_{i}<d$. We repeat the previous construction with $n^{*}=n$, so we get $l^{*}=\left(l_{1}, l_{2}, \ldots l_{n-1}, l_{n}^{*}\right)$ with l_{n}^{*} chosen arbitrarily. All these l^{*} have to be on the lists of Main Theorem A. So either $l_{n}^{*}<5$ or $d-l_{n}^{*}<5$. Therefore $d \leq 9$, and there are very few choices for l. One can check Lemma Γ for all of them (by computer), and one gets no counterexample.

If l was a counterexample to the rest of Main Theorem A then at least one $l_{i} \geq d$, so we can choose $n^{*}=n-1$. This gives a counterexample to the last part of Main Theorem A, and we proved that it is impossible. This proves the theorem.

Proof of the Corollaries. We shall fix a dimension r and a multidegree $\hat{l}=\left(\hat{l}_{1}, \ldots \hat{l}_{m}\right)$ with $\hat{l}_{i} \geq 2$ for all i. We shall vary n, d. If $V \subset \mathbb{P}^{n+r}$ is a complete intersection variety of dimension r and multidegree $l \sim \hat{l}$, then clearly $\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right)$ depends only on d and \hat{l}, but not on n. Let $P(d)$ denote the Hilbert polynomial of $V, \operatorname{deg}(P)=r$ and the leading coefficient is just $\operatorname{deg}(V) / r!=\left(\prod_{i=1}^{m} \hat{l}_{i}\right) / r$!. There is a d_{0} depending on m, r and \hat{l} such that $\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right) \geq P(d)$ for all $d \geq d_{0}$. In fact for odd r we can take $d_{0}=0$, for even r we can choose $d_{0}=\sum_{i=1}^{m} \hat{l}_{i}-(m+r+2)$. It is clear also that $\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(1)\right)=m+r+1$. Hence for $d>d_{0}$ the inequality (Γ) becomes

$$
\begin{aligned}
\Gamma(n, d, r, l) & \geq P(d)-(n-m)(m+r+1)-\sum_{i=0}^{m} H^{0}\left(V, \mathcal{O}_{V}\left(\hat{l}_{i}\right)\right) \\
& =P(d)-(m+r+1) n+W
\end{aligned}
$$

where W is a constant depending only on m, r and \hat{l}. Solving this inequality, for any constant $C<(1 / r!) \prod_{i=1}^{m} \hat{l}_{i}$ one can find an integer γ such that for $d \geq d_{0}$ one gets

$$
\Gamma(n, d, r, l)>C d^{r} \quad \text { whenever } \quad d \geq n^{1 / r}\left(\frac{(m+r+1) r!}{\prod_{i=1}^{m} \hat{l}_{i}-C r!}\right)^{1 / r}+\gamma
$$

We shall use this inequality for $C=0$. First we prove Corollary B. Increasing γ we can drop the condition $d \geq d_{0}$. This proves the first statement.

Main Theorem B gives us a constant D and a finite list of \hat{l}-s such that the multidegree of every r-dimensional nontrivial complete intersection subvariety of a general X of degree $d \geq \max \left(D, \epsilon n^{1 / r}\right)$ is related to one \hat{l} on the list. For some \hat{l} on this list, the above computation might give $\beta<\epsilon$. Choosing a $\tilde{D} \geq D$ we can achieve $\beta n^{1 / r}+\gamma<\epsilon n^{1 / r}$ for all such \hat{l}, whenever $\beta n^{1 / r}+\gamma \geq \tilde{D}$, so we can exclude them from the list. So we have to find only those \hat{l} that has $\beta \geq \epsilon$. We observe that $\left(\prod_{i=1}^{m} \hat{l}_{i}\right) /(m+2) \geq 2^{m} /(m+2)>1 / \epsilon$ for large enough m so there is only finitely many choice of \hat{l} and β. Now set $r=1$ and $\epsilon=1 / 3$. It is enough to calculate the β for all \hat{l} with $m<5$, and it can be done easily. This proves Corollary B.

Now we prove that Main Theorem A implies Corollary A. We prove the last statement, then inequality (Γ) gives us immediately the first two. The Observations tell us that it is enough to exclude the counterexamples of the following kind. Let $l=\left(l_{1}, \ldots l_{m}\right)$ be a sequence different from (2), with $2 \leq l_{1} \leq \cdots \leq l_{m} \leq d / 2$, such that for some $m \leq n<d-2$ a general $X \subset \mathbb{P}^{n+1}$ of degree d contains a curve with multidegree related to l. If $d \geq 6$ then Main Theorem A implies that l has to be on one of the lists in Main Theorem A. If $d \leq 5$ then $l_{i}=2$, and $n \leq 3$, so again l is on the lists. If l is one of the sequences
$(3),(2,2),(4),(2,3),(2,2,2),(3,3)$ or $(2,2,3)$,
then the inequality (Γ) gives us these upper bounds for d :
$(n+2),(n+2),\left(\frac{3}{4} n+\frac{13}{4}\right),\left(\frac{2}{3} n+\frac{19}{6}\right),\left(\frac{5}{8} n+\frac{25}{8}\right),\left(\frac{4}{9} n+\frac{37}{9}\right),\left(\frac{5}{12} n+\frac{47}{12}\right)$.
Since $n \geq m$ and $d \geq 2 l_{i}$, it is easy to deduce, that in all cases $d<n+3$. This is a contradiction, so this proves Corollary A.

Now we turn to the question of existence. The following lemma will be very useful during the proof of Proposition C and Proposition D.

Lemma C. Let C be a smooth curve of genus ρ and let $L_{1}, \ldots L_{n}, E$ be line bundles on C. Let define $t_{i}=\min \left\{\operatorname{deg} L_{i}-\rho, \operatorname{deg} L_{i+1}-\rho-1\right\}$, $T_{i}=\min \left\{t_{i}, \rho-1\right\}$, and $\delta=\left(\operatorname{deg} E-\sum_{i=1}^{n} \operatorname{deg} L_{i}+(n-1)(\rho-1)\right)$. In this lemma g will denote a homomorphism $g: \bigoplus_{i=1}^{n} L_{i} \longrightarrow E$. Assume that $\delta \leq 0$ and the following conditions hold:
(a) $n \geq 3$, $\operatorname{deg} L_{1} \geq 2 \rho-1$ and $\operatorname{deg} L_{i} \geq 2 \rho$ for $2 \leq i \leq n$,
(b) $\operatorname{deg} E \geq \sum_{i=1}^{n} \operatorname{deg} L_{i}-\sum_{j=1}^{n-1} t_{j}$.

Then there is a homomorphism g such that $H^{0}(g): \bigoplus_{i=1}^{n} H^{0}\left(L_{i}\right) \longrightarrow H^{0}(E)$ is surjective. We can find g with injective $H^{0}(g)$ if $n \geq 3$ and the following condition holds:
(c) $\quad \operatorname{deg} E \geq \sum_{i=1}^{n} \operatorname{deg} L_{i}-\sum_{j=1}^{n-1} T_{j}$.

Condition (a) and $\delta \geq 0$ together imply condition (c), hence the existence of
a g with injective $H^{0}(g)$. If condition (a) holds and $\delta=0$ then there exists a g such that $H^{0}(g)$ is an isomorphism. Assume now that $\rho=0$ and the following condition holds:
(d) $\quad-1 \leq \operatorname{deg} L_{i} \leq \operatorname{deg} E$ for $1 \leq i \leq n$.

If $\delta>0, \delta=0$ or $\delta<0$ then there exists a g such that $H^{0}(g)$ is injective, isomorphic or surjective.
Proof. We shall construct a subbundle $\bigoplus_{i=1}^{n-1} G_{i} \leq \bigoplus_{i=1}^{n} L_{i}$ such that the quotient bundle is just $E . g$ will be the natural homomorphism. If we can find this with $H^{1}\left(G_{i}\right)=0$ for all i then our $H^{0}(g)$ must be surjective, and if all $H^{0}\left(G_{i}\right)=0$ then we find an injective $H^{0}(g)$.

We shall construct $G_{i}=L_{i}\left(-D_{i}\right)$ with some effective divisor D_{i}, and the inclusion homomorphism will map G_{i} into $L_{i} \bigoplus L_{i+1} \leq \bigoplus_{i=1}^{n} L_{i}$. The first component of this homomorphism will be the natural inclusion $L_{i}\left(-D_{i}\right) \leq$ L_{i}, and we shall construct the other component $h_{i}: G_{i} \longrightarrow L_{i+1}$ later. This construction gives an exact sequence

$$
0 \longrightarrow \bigoplus_{i=1}^{n-1} G_{i} \longrightarrow \bigoplus_{i=1}^{n} L_{i} \longrightarrow Q \longrightarrow 0
$$

where Q is the quotient. We shall choose h_{i} such that Q is locally free. Then it is easy to see that

$$
Q=\bigotimes_{i=1}^{n} L_{i} \otimes \bigotimes_{j=1}^{n-1} G_{j}^{-1}=\mathcal{O}\left(\bigoplus_{i=1}^{n-1} D_{i}\right)
$$

We shall choose D_{i} such that we get $Q \simeq E$.
We note that for a general line bundle M if $\operatorname{deg} M \geq \rho-1$ then $H^{1}(M)=0$, and if $\operatorname{deg} M \leq \rho-1$ then $H^{0}(M)=0$. If $\operatorname{deg} M \geq \rho+1$ and M is general, then the linear system $|M|$ is nonempty and it has no fixed points.

First we do the construction of a surjective $H^{0}(g)$. We want to find divisors D_{i} such that G_{i} is general, $H^{1}\left(G_{i}\right)=0$, and $\mathcal{O}\left(\bigoplus_{i=1}^{n-1} D_{i}\right) \simeq E$. We can easily find them if $n-1 \geq 2$ and we can choose a sequence $\operatorname{deg} G_{i}$, $i=1 \ldots n-1$, such that $\operatorname{deg} L_{i}-\operatorname{deg} G_{i} \geq \rho$ (so we can choose general G_{i}), $\operatorname{deg} G_{i} \geq \rho-1$ (so we shall get $H^{1}\left(G_{i}\right)=0$), and $\operatorname{deg} E=\sum_{i=1}^{n} \operatorname{deg} L_{i}-$ $\sum_{j=1}^{n-1} \operatorname{deg} G_{j}$ (so we get $Q \simeq E$ at the end).
h_{i} is a global section of $L_{i+1} \otimes G_{i}^{-1}$. So to choose h_{i} we have to find a divisor $H_{i} \in\left|L_{i+1} \otimes G_{i}^{-1}\right|$. If we have also $\operatorname{deg} H_{i}=\operatorname{deg} L_{i+1}-\operatorname{deg} G_{i} \geq \rho+1$ then we can choose H_{i} such that their support is disjoint from all D_{j} and alt other H_{j}. Then it is easy to show that the cokernel of the homomorphism

$$
\bigoplus_{j=1}^{n-1} G_{j} \longrightarrow \bigoplus_{i=1}^{n} L_{i}
$$

is locally free. Putting together the inequalities for $\operatorname{deg} G_{i}$ we get

$$
\rho-1 \leq \operatorname{deg} G_{i} \leq \min \left\{\operatorname{deg} L_{\imath}-\rho, \operatorname{deg} L_{i+1}-\rho-1\right\}=t_{i}
$$

Comparing the upper and lower bounds for $\operatorname{deg} G_{i}$ we get condition (a) of the lemma. Substituting these bounds into the equality we get condition (b), and the condition $\delta \leq 0$. These are clearly sufficient conditions for the existence of $\operatorname{deg} G_{i}$, hence for the existence of g with surjective $H^{0}(g)$.

Next we construct g with injective $H^{0}(g)$. One can prove the same way as before, that this g exists, provided that $n \geq 3$ and there exists a sequence $\operatorname{deg} G_{i}$ such that

$$
\operatorname{deg} G_{i} \leq \min \left\{\operatorname{deg} L_{i}-\rho, \operatorname{deg} L_{i+1}-\rho-1, \rho-1\right\}=T_{i}
$$

and

$$
\operatorname{deg} E=\sum_{i=1}^{n} \operatorname{deg} L_{i}-\sum_{j=1}^{n-1} \operatorname{deg} G_{j}
$$

The condition (c) is satisfied iff this system has a solution sequence $\operatorname{deg} G_{i}$.
Under condition (a) we get $T_{i}=\rho-1$; hence condition (c) is equivalent to $\delta \geq 0$. If (a) holds and $\delta=0$ then there is a g such that $H^{0}(g)$ is an injective homomorphism between vectorspaces of the same dimension; hence it is an isomorphism.

Assume now that $\rho=0$ and (d) holds. If $n=1$, then there is a natural inclusion $L_{1} \leq E$, and this induces an injective homomorphism on the global sections, so the lemma is true in this case. On the other hand for $n \geq$ 2 we number the L_{i} so that $\operatorname{deg}\left(L_{i}\right)$ is nondecreasing. We do the same construction as before, except that for every degree there is only one line bundle, so the construction works for $n=2$ as well. Moreover, $T_{i}=-1$ in this case, so (c) is equivalent to $\delta \geq 0$. Therefore, by what we have proved earlier, $\delta \geq 0$ implies that there exists a g with injective $H^{0}(g)$. If $\delta=0$, then this is an injective homomorphism between isomorphic vectorspaces, so it must be an isomorphism.

So we need to deal only with the case $\delta<0$. We do again the same construction as before, and again, it works for $n \geq 2$. The conditions we need are the following: $\operatorname{deg}\left(L_{i}\right) \geq \operatorname{deg}\left(G_{i}\right)$ (so D_{i} is effective), $\operatorname{deg}\left(H_{i}\right)=$ $\operatorname{deg}\left(L_{i+1}\right)-\operatorname{deg}\left(G_{i}\right) \geq 0$ (so H_{i} is effective, we can always find H_{i} disjoint from all D_{j} and all other $\left.H_{j}\right), \operatorname{deg}\left(G_{i}\right) \geq-1$ (to make $H^{1}\left(G_{i}\right)=0$), and $\operatorname{deg} E=\sum_{i=1}^{n} \operatorname{deg} L_{i}-\sum_{j=1}^{n-1} \operatorname{deg} G_{j}$. Putting this together, we need to find $\operatorname{deg}\left(G_{i}\right)$ satisfying

$$
-1 \leq \operatorname{deg}\left(G_{i}\right) \leq \min \left(\operatorname{deg}\left(L_{i}\right), \operatorname{deg}\left(L_{i+1}\right)\right)=\operatorname{deg}\left(L_{i}\right)
$$

and the previous equation for $\operatorname{deg}(E)$. This is possible to find if and only if $-1 \leq \operatorname{deg} L_{i}$ for all $i, \operatorname{deg}\left(L_{n}\right) \leq \operatorname{deg}(E)$, and $\delta \leq 0$. This proves the lemma.

Proposition C. Let $V \subset \mathbb{P}^{n+1}$ be a complete intersection curve of multidegree $l=\left(l_{1}, \ldots l_{n}\right)$, and d a degree such that $d>l_{i}$ for all i and let

$$
\beta=\sum_{i=1}^{n} \operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}\left(l_{i}\right)\right)-\operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right)
$$

If V has genus 0 , or if $n \geq 3$ and the genus is 1 then $-\tilde{\Gamma}(n, d, 1, l)=\beta$. In particular a general X contains interesting complete intersection subvarieties of multidegree l iff $\beta \geq 0$. This happens when l is associated to (1), (2), (3) or (2,2). This implies that Corollary A is sharp.

If $d=5$ and l is related to $(2,2,2)$ then again $-\tilde{\Gamma}(n, d, 1, l)=\beta \geq 0$. In particular, a general quintic hypersurface contains a curve of multidegree l. On a general quintic threefold the nontrivial complete intersection subvarieties are curves, they have multidegree $\left(l_{1}, l_{2}, l_{3}\right)$ with $1 \leq l_{i} \leq 4$, and all such multidegrees occur.

Proof of Proposition C. By Lemma Γ we need only to construct in all cases a g such that $H^{0}(g)$ is either surjective or injective.

First we solve the case where the genus $\rho \leq 1$. We claim that in this case we can find the above homomorphism g such that $H^{0}(g)$ is either injective or surjective. Set $L_{i}=\mathcal{O}\left(l_{i}\right)$ and $E=\mathcal{O}(d)$, clearly the normal bundle of V is $\mathcal{N}_{V}=\bigoplus_{i=1}^{n} L_{i}$.

If $\rho=0$ then (d) of Lemma C is satisfied, hence our g exists. Assume now $\rho=1, n \geq 3$, and let l_{0} be $(2,2)$ or (3) such that $l \sim l_{0}$. Fix l_{0}, and vary n, d. It is enough to prove that for every value of d there is an $n=n_{0}$ such that we can find a g which gives an isomorphism $H^{0}(g)$. For other values of n the normal bundle has less or more $\mathcal{O}(1)$ components, one can restrict g, or extend it arbitrarily. For each value of d one can find an $n=n_{0}$ such that $\delta=0$ in Lemma C. It is clear that (a) holds. Lemma C proves the existence of g for $n=n_{0}$, and our claim follows.

It is clear now that Corollary A is sharp for $n \geq 3$. If $d \leq 2 n-1$ then a general X contains a line, if $d \leq \frac{3}{2} n+\frac{1}{2}$ then a general X contains a plane conic. If $d \leq n+2$ then a general X contains genus 1 curves of multidegree equivalent to (3) and (2,2). The case $n \leq 2$ is obvious from the NoetherLefschetz theorem.

Now let $d=5, l$ equivalent to $(2,2,2)$ and V is a smooth complete intersection curve of multidegree l. Then V has genus 5 and degree 8 . We need only to prove that there exist a homomorphism

$$
g: \mathcal{O}_{V}(2) \bigoplus \mathcal{O}_{V}(2) \bigoplus \mathcal{O}_{V}(2) \longrightarrow \mathcal{O}_{V}(5)
$$

such that $H^{0}(g)$ is surjective. One can check, that conditions (a) and (b) of Lemma C are satisfied, and $\delta=0$ in this case. Hence Lemma C implies the map g exists; hence (Γ) becomes an equality. Then the Observations imply that (Γ) is an equality for all l related to $(2,2,2)$.

We proved that all curves listed in the last part of Proposition Cexist on a general quintic threefold. We see either from the inequality (Γ) or from the Noether-Lefschetz theorem that there are no nontrivial complete intersection surfaces on it. Hence there are no other curves on it (see the Observations). This completes proof of the proposition.

Proposition D. Let $V \subset \mathbb{P}^{n+1}$ be a projectively normal curve of genus ρ and degree l. Assume that $H^{1}\left(\mathcal{N}_{V}\right)=0$ where \mathcal{N}_{V} is the normal bundle of V in \mathbb{P}^{n+1}. Let \mathcal{V} be the component of the Hilbert scheme of \mathbb{P}^{n+1} that contains [V]. In this case we have

$$
\Gamma(n, d, V) \geq d l-(n+2) l-(n-3)(1-\rho) .
$$

In particular, if

$$
d>n+2+\frac{(n-3)(1-\rho)}{l}
$$

then a general hypersurface X of degree d does not contain any subscheme that belongs to \mathcal{V}.

Proof of Proposition D. From Lemma Γ we know, that

$$
\Gamma(n, d, V) \geq \operatorname{dim} H^{0}\left(V, \mathcal{O}_{V}(d)\right)-\operatorname{dim} H^{0}\left(V, \mathcal{N}_{V}\right) \geq \chi\left(\mathcal{O}_{V}(d)\right)-\chi\left(\mathcal{N}_{V}\right)
$$

Clearly $\chi\left(\mathcal{O}_{V}(d)\right)=l d-\rho+1$, and

$$
\begin{gathered}
\chi\left(\mathcal{N}_{V}\right)=\chi\left(T_{\mathbb{P}^{n+1}} \mid V\right)-\chi\left(T_{V}\right)= \\
=[(n+2) l-(n+1)(1-\rho)]+[3 \rho-3]=(n+2) l-(n-2)(\rho-1) .
\end{gathered}
$$

Putting these together we get the required inequality.

Part Two.

In the rest of the paper we can forget about geometry. We shall study the classes of functions \mathcal{F}_{n} defined in the previous part. The proof consists of a sequence of lemmas. Some of these lemmas have an a and a b version with different constants. In many case the proof of the lemmas is a strait forward computation, and we shall leave it to the reader. We shall prove only Lemma 7a and Lemma 7b because these are essential for the inductions.

Lemma 1. For $m \geq 0, a \geq 0, l \geq k$ integers and $F \in \mathcal{F}_{m}$ we have

$$
F(l-a) G_{m}(k) \geq F(k-a) G_{m}(l)
$$

In particular for $l \geq 0$ one gets

$$
F(k) \leq F(l) \cdot \frac{G_{m}(k)}{G_{m}(l)}
$$

Lemma 2a. For any choice of the integers $l \geq 3, m \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{m}$ we have $f(a+l) \geq(2 m-2) f(a)$.

Lemma 2b. For any choice of the integers $l \geq 4, m \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{m}$ we have $f(a+l) \geq \frac{33}{28}(2 m-2) f(a)$.

Lemma 3a. For any choice of the integers $l \geq 4, m \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{m+1}$ we have $\frac{64}{65} \Delta_{2} f(a+l) \geq m \Delta_{2} f(a+1)$.
Lemma 3b. For any choice of the integers $l \geq 7, m \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{m+1}$ we have $\frac{18}{25} \Delta_{2} f(a+l) \geq m \Delta_{2} f(a+1)$.

Lemma 4a. For any choice of the integers $l \geq 4, p \geq 0, q \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{p+q+1}$ we have

$$
2 p \Delta_{1} f(a)+q \Delta_{2} f(a+1) \leq \frac{64}{65} \Delta_{2} f(a+l)
$$

Lemma 4b. For any choice of the integers $l \geq 7, p \geq 0, q \geq 0, a \leq l$ and any function $f \in \mathcal{F}_{p+q+1}$ we have

$$
2 p \Delta_{1} f(a)+q \Delta_{2} f(a+1) \leq \frac{18}{25} \Delta_{2} f(a+l)
$$

Lemma 5. For any integer $r \geq 1$ there is an integer $T>0$ such that for any choice of the integers $d \geq 8, t \geq T$, for any sequence $2 \leq l_{1} \leq l_{2} \cdots \leq l_{t}$ of integers and for any function $f=\Delta_{l_{1} \ldots l_{t}} F$, where $F \in \mathcal{F}_{t+r}$, we have $t d^{r} f(3)<f(d)$.

Lemma 6. For any real number $A \geq 0$ and any integer $r \geq 0$ there are integers $L>0$ depending on A, r and D depending on r, L such that for any choice of the integers $l \geq L, d \geq D$ and for any function $f=\Delta_{l} F$ where $F \in \mathcal{F}_{r+1}$ we have $A^{r} f(3)<f(d)$.

Definition. The type of a sequence $1 \leq l_{1} \leq \cdots \leq l_{n}$ is the pair (p, q) where p is the number of those l_{i} that are equal to l_{n}, and q is the number of those l_{i} that are equal to $l_{n}-1$. If $l_{n}>1$ then the truncation of this sequence is another sequence $1 \leq L_{1} \leq \cdots \leq L_{n}$ with $L_{i}=\min \left(l_{i}, l_{n}-1\right)$.

Clearly $1 \leq l_{1} \leq l_{2} \leq \cdots \leq l_{n-p-q} \leq l_{n}-2, l_{n-p-q+1}=l_{n-p-q+2}=\cdots=$ $l_{n-p}=l_{n}-1$ and $l_{n-p+1}=l_{n-p+2}=\cdots=l_{n}$. Also we have $L_{i}=l_{i}$ for $i \leq n-p$ and $L_{j}=l_{n}-1$ for $n-p+1 \leq j \leq n$.

Lemma 7a. For any choice of the integer numbers $n \geq 1, l \geq 4, d \geq 2 l$, any sequence $1 \leq l_{1} \leq l_{2} \leq \cdots \leq l_{n}=l$, and any function $f \in \mathcal{F}_{n+1}$ we denote by $\left(L_{1}, \ldots L_{n}\right)$ the truncation of $\left(l_{1}, \ldots l_{n}\right)$. Then we have

$$
\left[\sum_{i=1}^{n} \Delta_{l_{1} l_{2} \ldots l_{n}} f\left(l_{i}\right)\right]-\left[\sum_{i=1}^{n} \Delta_{L_{1} \ldots L_{n}} f\left(L_{i}\right)\right]<\frac{64}{65}\left[\Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{L_{1} \ldots L_{n}} f(d-2)\right] .
$$

Proof. The right hand side is an increasing function of d because

$$
\begin{gathered}
\Delta_{1}\left[\Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{L_{1} \ldots L_{n}} f(d-2)\right]=\Delta_{1} \Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{1} \Delta_{L_{1} \ldots L_{n}} f(d-2) \geq \\
\geq \Delta_{1} \Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{1} \Delta_{l_{1} \ldots l_{n}} f(d-2) \geq 0
\end{gathered}
$$

Hence it is enough to prove it for $d=2 l$. Let (p, q) be the type of the sequence $\left(l_{1}, \ldots l_{n}\right)$. Set $F=\Delta_{l_{1} \ldots l_{n-p-q}} f \in \mathcal{F}_{p+q+1}$. It is easy to see that $\Delta_{l_{1} \ldots l_{n}} f=\Delta_{l_{n-p-q+1} \ldots l_{n}} F ; \Delta_{L_{1} \ldots L_{n}} f=\Delta_{L_{n-p-q+1} \ldots L_{n}} F$ and for $x<l-1$ we have

$$
\Delta_{l_{1} \ldots l_{n}} f(x)=\Delta_{L_{1} \ldots L_{n}} f(x)=F(x) .
$$

In the sequence $\left(l_{n-p-q+1}, l_{n-p-q+2} \ldots l_{n}\right)$ the number l occurs p times and the remaining q numbers are all $l-1$. Therefore we can easily calculate $\Delta_{l_{n-p-q+1} \ldots l_{n}} F(x)$ and $\Delta_{L_{n-p-q+1} \ldots L_{n}} F(x)$ for any $x \leq 2 l$ using the fact that $F(y)=0$ for $y<0$. Our inequality becomes

$$
\begin{gathered}
\sum_{i=1}^{n-p-q} F\left(l_{i}\right)+p[F(l)-q F(1)-p F(0)]+q[F(l-1)-q F(0)]- \\
-\sum_{i=1}^{n-p-q} F\left(l_{i}\right)-(p+q)[F(l-1)-(p+q) F(0)]< \\
<\frac{64}{65}\left[F(2 l)-q F(l+1)-p F(l)+\binom{q}{2} F(2)+p q F(1)+\binom{p}{2} F(0)-\right. \\
\left.-F(2 l-2)+(p+q) F(l-1)-\binom{p+q}{2} F(0)\right]
\end{gathered}
$$

Using the fact that $\binom{p+q}{2}=\binom{p}{2}+\binom{q}{2}+p q$ we see that our inequality is the sum of the following two:

$$
p \Delta_{1} F(l) \leq \frac{64}{65}\left[\Delta_{2} F(2 l)-p \Delta_{1} F(l)-q \Delta_{2} F(l+1)\right]
$$

$$
-p q F(1)+2 p q F(0)<\frac{64}{65}\left[\binom{q}{2} \Delta_{2} F(2)+p q \Delta_{1} F(1)\right] .
$$

Since $\frac{64}{65}\left[-p \Delta_{1} F(l)-q \Delta_{2} F(l+1)\right] \geq\left[-p \Delta_{1} F(l)-q \Delta_{2} F(l+1)\right]$, the first inequality follows from Lemma 4 a if we set $a=l$. Lemma 1 implies that $F(1) \geq 3 F(0)$; hence the left hand side of the second is negative, the right hand side is positive. Therefore the lemma is proved.

Lemma 7b. For any choice of the integer numbers $n \geq 1, l \geq 7, d \geq 2 l$, any sequence $1 \leq l_{1} \leq l_{2} \leq \cdots \leq l_{n}=l$ and any function $f \in \mathcal{F}_{n+1}$ we denote by $\left(L_{1}, \ldots L_{n}\right)$ the truncation of $\left(l_{1}, \ldots l_{n}\right)$. Then we have

$$
\left[\sum_{i=1}^{n} \Delta_{l_{1} l_{2} \ldots l_{n}} f\left(l_{i}\right)\right]-\left[\sum_{i=1}^{n} \Delta_{L_{1} \ldots L_{n}} f\left(L_{i}\right)\right]<\frac{18}{25}\left[\Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{L_{1} \ldots L_{n}} f(d-2)\right] .
$$

Proof. We can copy the proof of Lemma 7a with the following changes. We have to write $\frac{18}{25}$ everywhere in place of $\frac{64}{65}$, and we have to use Lemma 4 b instead of Lemma 4a.

Theorem 1. For any choice of the integers $m \geq 1,3 \leq l_{1} \leq \cdots \leq l_{m}$, $d \geq 2 l_{m}$, and any function $f \in \mathcal{F}_{m+1}$ we have

$$
\sum_{i=1}^{m} \Delta_{l_{1} \ldots l_{m}} f\left(l_{i}\right)<\Delta_{l_{1} \ldots l_{m}} f(d)
$$

If we have $4 \leq l_{1} \leq \cdots \leq l_{m}$ together with the above assumptions then we have

$$
\sum_{i=1}^{m} \Delta_{l_{1} \ldots l_{m}} f\left(l_{i}\right)<\frac{64}{65} \Delta_{l_{1} \ldots l_{m}} f(d)
$$

Proof. First we note that the left hand side is independent of d and the right hand side is monotonic. Hence we may assume that $d=2 l_{m}$. We shall prove the theorem by induction on l_{m}. If $l_{1}=l_{2}=\cdots=l_{m}=l$ then the inequality becomes

$$
m f(l)-m^{2} f(0)<f(2 l)-m f(l)+\binom{m}{2} f(0)
$$

Lemma 2a tells us that $2 m f(l)=(2(m+1)-2) f(l) \leq f(2 l)$, and obviously $\left(m^{2}+\binom{m}{2}\right) f(0) \geq 0$, so the first inequality is true in this case. If $l \geq 4$ then Lemma 2b tells us that $2 m f(l) \leq \frac{28}{33} f(2 l)<\frac{64}{65} f(2 l)$, so the second inequality is true as well. In particular we proved the first inequality for $l_{m}=3$, and
the second for $l_{m}=4$. Let $l \geq 4$, assume that the theorem is true whenever $l_{m}<l$, and we shall prove it for $l_{m}=l$. Lemma 7 a tells us that

$$
\begin{aligned}
& {\left[\sum_{i=1}^{m} \Delta_{l_{1} l_{2} \ldots l_{m}} f\left(l_{i}\right)\right]-\left[\sum_{l=1}^{m} \Delta_{L_{1} \ldots L_{m}} f\left(L_{i}\right)\right]<} \\
& \quad<\frac{64}{65}\left[\Delta_{l_{1} \ldots l_{m}} f(2 l)-\Delta_{L_{1} \ldots L_{m}} f(2 l-2)\right]
\end{aligned}
$$

with a sequence $l_{1} \leq L_{1} \leq \cdots \leq L_{m} \leq l-1$. By our assumption we know that

$$
\sum_{\imath=1}^{m} \Delta_{L_{1} \ldots L_{m}} f\left(L_{i}\right)<\Delta_{L_{1} \ldots L_{m}} f(2 l-2)
$$

and the sum of the last two inequalities gives us the first inequality ofthe theorem. If $4 \leq l_{1}$ then we have

$$
\sum_{\imath=1}^{m} \Delta_{L_{1} \ldots L_{m}} f\left(L_{i}\right)<\frac{64}{65}\left[\Delta_{L_{1} \ldots L_{m}} f(2 l-2)\right]
$$

and adding it to the previous one we get the second inequality of the theorem.

Theorem 2. For any real numbers $C \geq 0, \alpha>0$ and any integer $r \geq 1$ there are integers $D, L, T>0$ such that whenever we choose integers $n \geq 1$, $d \geq \max \left(D, \alpha n^{1 / r}\right)$, a sequence $1 \leq l_{1} \leq l_{2} \cdots \leq l_{n} \leq d / 2$ and a function $f \in \mathcal{F}_{n+r}$, we find either that $l_{1}=l_{2}=\cdots=l_{n-T}=1$ and $l_{i}<L$ for all i, or

$$
\begin{equation*}
C d^{r}+\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)<\Delta_{l_{1} \ldots l_{n}} f(d) \tag{**}
\end{equation*}
$$

Proof. We set $A=65\left(C+\alpha^{-r}\right)$, then Lemma 6 gives us integers D, L depending on A, r. We can assume that $D \geq 8$. Lemma 5 gives us an integer T, we can assume that $T \geq A$. We shall prove the theorem with this D, L, T.

Let $n, d, l_{1} \ldots l_{n}, f$ be as in the theorem, and assume, that we are not in the first case, so either $l_{n-T} \geq 2$ or $l_{n} \geq L$. Let j be the largest index such that $l_{j} \leq 3$. If $j<n$ then applying Theorem 1 to the function $\Delta_{l_{1} \ldots l_{j}} f$ we get

$$
\sum_{i=j+1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)<\frac{64}{65} f(d)
$$

If $j=n$, then the left hand side is 0 ; hence this inequality remains true. It is easy to see that

$$
\begin{aligned}
C d^{r}+\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right) & \leq C d^{r} f(3)+n f(3)+\sum_{i=j+1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right) \\
& <\frac{1}{65} A d^{r} f(3)+\frac{64}{65} f(d)
\end{aligned}
$$

hence in order to prove $\left({ }^{* *}\right)$ we need only to establish

$$
A d^{r} f(3) \leq f(d)
$$

This follows from Lemma 5 if $l_{n} \geq l_{n-1} \geq \cdots \geq l_{n-T} \geq 2$, and follows from Lemma 6 if $l_{n} \geq L$. So the theorem is proved.

Lemma 8. If $f=\Delta_{t} F$ where $F \in \mathcal{F}_{2}$ and $t \geq 7$ then $f(d)>d f(1)+f(t)$ for all $d \geq 2 t$.

Lemma 9. Let $F \in \mathcal{F}_{3}$ and choose integers $a \geq 7, b \geq 2, c \geq 2$ and $e \geq 2$. Then for all $d \geq 8$ we have

$$
2 \Delta_{a, b} F(1)<\frac{7}{25}\left[\Delta_{a, b} F(d)-\Delta_{a-1, b} F(d-2)\right]
$$

If in addition $F \in \mathcal{F}_{5}$ then for all $d \geq 14$ we have

$$
2 \Delta_{a, b, c, e} F(2)<\frac{7}{25}\left[\Delta_{a, b, c, e} F(d)-\Delta_{a-1, b, c, e} F(d-2)\right] .
$$

Lemma 10a. If $f=\Delta_{2,2} F$ for some $F \in \mathcal{F}_{3}$ or $f=\Delta_{t} F$ for some $F \in \mathcal{F}_{2}$ and $t \geq 3$, then $f(1) \leq \Delta_{1} f(d)$ for all $d \geq 2$.

Lemma 10b. If $f=\Delta_{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}} F$ for some $F \in \mathcal{F}_{6}$ and every $t_{i} \geq 2$ then $f(2)>\Delta_{1} f(d)$ for all $d \geq 4$.

Theorem 3. Choose arbitrary integers $n \geq 1,1 \leq l_{1} \leq \cdots \leq l_{n}$, $d \geq \max \left\{2 l_{n}, n+1\right\}$, and any function $f \in \mathcal{F}_{n+1}$.

- If $d \geq 11$ and the sequence $l=\left(l_{1}, l_{2} \ldots l_{n}\right)$ is not equivalent to any of the following sequences: (1), (2), $(2,2)$, or (3), then the following inequality holds:

$$
\begin{equation*}
\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)<\Delta_{l_{1} \ldots l_{n}} f(d) \tag{}
\end{equation*}
$$

- If $d=8,9,10$ and l is not equivalent to (1), (2), (2,2), (3), (4), then again $\left(^{* * *}\right)$ holds.
- If $d=7$ and l is not equivalent to (1), (2), (2,2), (3), (2, 3), then again (***) holds.
- For $d=6$ and l is not equivalent to (1), (2), (2,2), (2,2,2), (3), (2, 3), $(2,2,3),(3,3)$, then again $\left({ }^{* * *}\right)$ holds.
Proof. We shall prove the theorem in three steps. To start the inductions I verified by computer the first few cases. Since $\left({ }^{* * *}\right)$ is linear in f it is enough to check it for $f(x)=G_{n+1}(x-T)$ for all $0 \leq T \leq l_{n}$. I checked all cases with $d=n+1 \leq 11$ and all cases with $d=n+1=2 l_{n}=12$.

If l is a sequence that is not equivalent to (1), (2), $(2,2)$ and (3) then the sequence of the k largest element of l is not equivalent to these for all $k>2$. If $l_{n}>4$ then the truncation of l is also not equivalent to the above sequences. Let l denote the increasing sequence $\left(l_{1}, l_{2} \ldots l_{n}\right)$ and assume that l is not equivalent to (1), (2), (2,2) and (3). If $l_{1} \geq 3$ then Theorem 1 proves $\left({ }^{* * *}\right)$. So we assume $l_{1} \leq 2$ in the entire proof.

First step: We prove the theorem under the assumption that $d=n+1=$ $2 l_{n} \geq 6$. The computer verified it for $d=n+1=2 l_{n} \leq 12$, we shall prove the rest by induction on $d=n+1=2 l_{n}$. So we assume $l_{n} \geq 7$ and $d \geq 14$. Let L be the truncation of l. We can apply Lemma 7 b to n, d, to our sequences l and L, and our function f, and we get
(2) $\sum_{i=1}^{n} \Delta_{l_{1} \ldots l_{n}} f\left(l_{i}\right)-\sum_{i=1}^{n} \Delta_{L_{1} \ldots L_{n}} f\left(L_{i}\right)<\frac{18}{25}\left[\Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{L_{1} \ldots L_{n}} f(d-2)\right]$.

If $l_{n-1}=1$ then Lemma 8 proves $\left({ }^{* * *}\right)$. So we assume that $l_{n-1} \geq 2$.
Case A: If $l_{2} \leq 2$ then from the induction hypothesis for $n-2, d-2$, the sequence ($L_{3}, L_{4} \ldots L_{n}$) and function $\Delta_{l_{1} l_{2}} f$ we get

$$
\sum_{i=3}^{n} \Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(L_{\imath}\right)<\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f(d-2)
$$

We add (2) to this inequality, and use that $L_{1}=l_{1}, L_{2}=l_{2}$. Then we get

$$
\begin{align*}
& \sum_{i=1}^{n} \Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f\left(l_{i}\right)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{1}\right)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{2}\right)+ \tag{3}\\
+ & \frac{7}{25}\left[\Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f(d)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f(d-2)\right]<\Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f(d) .
\end{align*}
$$

On one hand, if $l_{1}=l_{2}=1$ then we apply the first half of Lemma 9 to the
function $F=\Delta_{l_{1} \ldots l_{n-2}} f$ and get

$$
\begin{array}{rl}
\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} & f\left(l_{1}\right)+\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{2}\right) \\
& \leq 2 \Delta_{l_{n}, l_{n-1}} F(1) \\
& <\frac{7}{25}\left[\Delta_{l_{n}, l_{n-1}} F(d)-\Delta_{l_{n}-1, l_{n-1}} F(d-2)\right] \\
& \leq \frac{7}{25}\left[\Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f(d)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f(d-2)\right]
\end{array}
$$

On the other hand, if $l_{1} \leq l_{2}=2$ then we apply the second half of Lemma 9 to the function $F=\Delta_{l_{1} \ldots l_{n-4}} f$ and get

$$
\begin{aligned}
\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{1}\right)+ & \Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{2}\right) \\
& \leq 2 \Delta_{l_{n}, l_{n-1} l_{n-2} l_{n-3}} F(2) \\
& <\frac{7}{25}\left[\Delta_{l_{n}, l_{n-1} l_{n-2} l_{n-3}} F(d)-\Delta_{l_{n}-1, l_{n-1} l_{n-2} l_{n-3}} F(d-2)\right] \\
& \leq \frac{7}{25}\left[\Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f(d)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f(d-2)\right]
\end{aligned}
$$

Hence in both cases we get

$$
\begin{aligned}
\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f\left(l_{1}\right)+\Delta_{l_{1} l_{2}} & \Delta_{L_{3} \ldots L_{n}} f\left(l_{2}\right) \\
& \leq \frac{7}{25}\left[\Delta_{l_{1} l_{2}} \Delta_{l_{3} \ldots l_{n}} f(d)-\Delta_{l_{1} l_{2}} \Delta_{L_{3} \ldots L_{n}} f(d-2)\right]
\end{aligned}
$$

If we add (3) to this inequality, we get (${ }^{* * *}$).
Case B: If $l_{2} \geq 3$ then we use Theorem 1 for $n-1, d-2$, the sequence $\left(L_{2}, L_{3} \ldots L_{n}\right)$ and function $\Delta_{l_{1}} f$. This gives us the following inequality:

$$
\sum_{i=2}^{n} \Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f\left(L_{i}\right)<\Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f(d-2)
$$

If we add (2) to this inequality, we get

$$
\begin{gather*}
\sum_{i=1}^{n} \Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f\left(l_{i}\right)-\Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f\left(l_{1}\right)+ \tag{4}\\
+\frac{7}{25}\left[\Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d)-\Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f(d-2)\right] \leq \Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d)
\end{gather*}
$$

We apply the second half of Lemma 9 to $F=\Delta_{l_{1} \ldots l_{n-4}} f$ and we get

$$
\begin{aligned}
\Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f\left(l_{1}\right) & \leq \Delta_{l_{n}, l_{n-1} l_{n-2} l_{n-3}} F(2) \\
& <2 \Delta_{l_{n}, l_{n-1} l_{n-2} l_{n-3}} F(2) \\
& <\frac{7}{25}\left[\Delta_{l_{n}, l_{n-1} l_{n-2} l_{n-3}} F(d)-\Delta_{l_{n}-1, l_{n-1} l_{n-2} l_{n-3}} F(d-2)\right] \\
& \leq \frac{7}{25}\left[\Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d)-\Delta_{l_{1}} \Delta_{L_{2} \ldots L_{n}} f(d-2)\right]
\end{aligned}
$$

Adding (4) to this inequality we get $\left({ }^{(* *)}\right.$. We proved $\left({ }^{(* *)}\right.$) in Case A and Case B; hence the First step is completed.
Second step: we prove the theorem under the assumption that $d=n+1 \geq 6$. We use induction on d. In the First step we proved it for $d=2 l_{n}$, the computer verified this for $d \leq 11$ so now we assume that $d>2 l_{n}$ and $d=n+1 \geq 12$. From the induction hypothesis for $n-1, d-1$, and $\Delta_{l_{1}} f$ we get

$$
\begin{equation*}
\sum_{i=2}^{n} \Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f\left(l_{i}\right) \leq \Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d) . \tag{5}
\end{equation*}
$$

On one hand, if $l_{1}=2$ then we apply Lemma 10 b to the function $F=$ $\Delta_{l_{1} \ldots l_{n-5}} f$. Then we get

$$
\begin{aligned}
\Delta_{l_{1} \ldots l_{n}} f\left(l_{1}\right) & =\Delta_{l_{n}-1, l_{n-1}, l_{n-2}, l_{n-3}} F(2) \\
& <\Delta_{1} \Delta_{l_{n}-1, l_{n-1}, l_{n-2}, l_{n-3}} F(d) \\
& =\Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d-1) .
\end{aligned}
$$

On the other hand, if $l_{1}=1$ then the sequence l is not equivalent to (2). Hence either $l_{n} \geq 3$ or $l_{n}-1=l_{n}=2$. We can apply Lemma 10a and we get again that

$$
\Delta_{l_{1} \ldots l_{n}} f\left(l_{1}\right) \leq \Delta_{l_{1} \ldots l_{n}} f(d)-\Delta_{l_{1}} \Delta_{l_{2} \ldots l_{n}} f(d-1) .
$$

Adding (5) to this inequality we get $\left({ }^{* * *}\right)$, so the Second step is completed.

Last step: finally we prove the theorem with no extra assumption.
Let $L=\left(L_{1} \ldots L_{d-1}\right)$ be the following sequence. $L_{i}=l_{i+n-d+1}$ for $d-n \leq$ $i \leq d-1$ and $L_{j}=1$ for $1 \leq j<d-n$. We choose a function $F \in \mathcal{F}_{d}$ such that $f=\Delta_{L_{1} \ldots L_{d-n-1}} F=\Delta_{1,1, \ldots 1} F$. By the Second step we can apply (${ }^{* * *}$) to F, d, and the sequence L. Then we get that

$$
(d-n-1) \Delta_{L_{1} \ldots L_{d-1}} F(1)+\sum_{i=d-n}^{d-1} \Delta_{L_{1} \ldots L_{d-1}} F\left(L_{i}\right)<\Delta_{L_{1} \ldots L_{d-1}} F(d) .
$$

If we drop the first term we get (***) for f, d and l since $\Delta_{L_{1} \ldots L_{d-1}} F=$ $\Delta_{l_{1} \ldots l_{n}} f$ and $l_{i}=L_{d-n+i}$ for all i. So we proved the theorem.

References

[1] E. Ballico, C. Ciliberto (eds.), Algebraic Curves and Projective Geometry, vol. 1389 of Lecture Notes, Springer-Verlag, New York, 1988.
[2] M.L. Green, Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. of Differential Geometry, 29 (1989), 545-555.
[3] P. Griffith and J. Harris, On the Noether - Lefschetz Theorem and some Remarks on Codimension Two Cycles, Math. Ann., 271 (1985), 31-51.
[4] E. Cattani, F. Gnillén, A. Kaplan, F. Puerta (eds.), Hodge Theory: Proceedings of the U.S.-Spain Workshop Held in Saint Cugat (Barcelona), vol. 1246 of Lecture Notes, Springer-Verlag, New York, 1987.
[5] T. Shioda, Algebraic Cycles on Hypersurfaces in \mathbb{P}^{N}, Algebraic Geometry, Sendai, Adv. Stud. Pure Math., 10 (1987), 717-732.
[6] E. Ballico, F. Catanese, C. Ciliberto (eds.), Classification of Irregular Varieties, Minimal Models and Abelien Varieties, vol. 1515 of Lecture Notes, Springer-Verlag, New York, 1990.
[7] X. Wu, On a Conjecture of Griffiths-Harris Generalizing the Noether-Lefschetz Theorem, Duke Mathematical Journal, 60 (1990), 465-472.

Received January 24, 1994.
Universitat Bayreuth
Graduirtenkolleg "Komlexe Mannigfaltigkeiten"
Universitatsttr. 30
95440 Bayreuth, Germany

