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A N EQUIVALENCE RELATION FOR CODIMENSION ONE
FOLIATIONS OF 3-MANIFOLDS

SANDRA L. SHIELDS

We consider codimension one foliations of closed, Reiman-
nian 3-manifolds. We show all branched surfaces constructed
from a foliation and a transverse flow are conjugate. We use
branched surfaces to define an equivalence relation on foli-
ations transverse to the same nonsingular flow. Under this
relation, foliations in the same equivalence class need not be
topologically conjugate yet they will share important qualita-
tive properties.

Introduction.

The purpose of this paper is to define an equivalence relation for codimen-
sion one foliations of closed, orientable, Riemannian 3-manifolds. We use
branched surfaces constructed from foliations with transverse flow φ to de-
fine an equivalence relation on foliations transverse to φ. One of our con-
ditions for two foliations to be equivalent is that both foliations may be
used to construct the same branched surface. In [5], Penner gives a similar
relation on laminations using Thurston's train tracks [10]. This, in part,
motivated our definition. However, unlike Penner's relation, foliations in the
same equivalence class need not be topologically conjugate.

If a branched surface W is constructed from a foliation / it can be shown
that every foliation sufficiently close to / (in C1 metric defined by Hirsch [4])
can be used to constuct W. However, because of additional conditions that
we require for equivalence, arbitrarily close foliations may not be equivalent
to /. These additional conditions are necessary to ensure that foliations in
the same equivalence class share certain topological properties such as the
existence of a compact leaf or the existence of a covering by a trivial product
of hyperplanes. To illustrate the former, we consider a lower dimensional
analog. All foliations of the torus, induced by lines in R2 with fixed rational
slope (by taking the quotient over the integer lattice) are equivalent under
our definition. Yet they are not equivalent to any foliation induced by lines
with arbitrary close irrational slope.

In Section I, we give a brief outline of the construction of a branched
surface from a foliation using a transverse flow and a finite set of surfaces
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imbedded in the leaves. This outline is sufficient for understanding the
results in this paper. However, a detailed description of this construction is
given by Christy and Goodman in [1]. In Section II, we look at properties
of branched surfaces constructed from foliations. In Section III, we extend
Penner's moves on train tracks to moves on branched surfaces. We show that
all branched surfaces constructed from a foliation using a minimal number of
surfaces can be made diίfeomorphic using these moves. This we use to show
the relation defined in Section IV is an equivalence relation. We end with a
brief look at the relationship between topologically conjugate foliations and
equivalent foliations.

I. The construction of a branched surface from a foliation.

For this paper we will only consider codimension one foliations of closed, ori-
entable, Riemannian 3-manifolds and their lower dimensional analogs (codi-
mension one foliations of the torus). We may construct a branched surface
from a foliation / of a closed manifold M using a continuous, transverse flow
φ. We shall use both (/, φ) and (M, /) to denote this foliation, depending on
the context. We choose a set, Δ = {£)i}i=i,...n5 of compact, planar surfaces
with boundary that are imbedded in the leaves of / and satisfy the following
general position requirements with respect to φ:

I. The orbit φ(x, t) of every x G M meets the interior of some surface in
Δ at some t > 0.

II. For each i, the orbits of at most finitely many points in dDi meet the
boundary of a surface in Δ.

III. Any orbit meets at most two points that are in the boundary of a
surface in Δ.

It is worth noting that I is equivalent to the requirement that the orbit of
every point meets the interior of some surface of Δ at some t < 0 since M
is compact and the limit set of any orbit is invariant under the flow.

We remove the interior of the surfaces in Δ to obtain a manifold M*
imbedded in M. We open the components of M — M* slightly and take the
closure of the resulting imbedded manifold. This gives a manifold N(W)
with boundary which has a foliation /* induced by /. The leaves of /*
are tangent to the boundary of N(W). We may construct N(W) so its
complement in M is the union of lens-shaped 3-manifolds, {£?i}i:=i,...n> and
the upper and lower hemispheres in the boundary of each are identified to
recover (M,/) from (N(W),f*). See Figure 1.1. The foliation/* has a
transverse flow φ* induced by φ. By the way we chose the elements of Δ,
all orbits of φ* are homeomorphic to closed, connected subsets of 5H. These
orbits are called the "fibers" of N(W).
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N(W)

Φ

Figure 1.1.

We form the quotient space N(W)/ ~ where x ~ y if and only if both x
and y lie on the same orbit of φ*. By expanding the lens-shaped components
of M — N(W) so that each fiber of N(W) is contracted to a point, we obtain
an imbedding of the quotient space. This imbedding is the branched surface
W. W inherits a transverse orientation from the oriented fibers of N(W).

It is worth noting that Christy and Goodman's technique, which was
described above, may be generalized to construct a branched surface from
any set of imbedded compact surfaces. However, for our purposes we assume
that the compact surfaces in Δ are planar imbeddings.

Given a foliation with transverse flow, (/, </>), we let n(f,φ) be the mini-
mal number of planar surfaces required to construct a branched surface from
(/, φ). That is, n(/, φ) is the minimal number of surfaces necessary to satisfy
the general position requirements. In Appendix A, we describe a straight-
forward procedure for calculating n(f,φ) from any set, X = {Ci}i=i...n, of
planar surfaces satisfying the general position requirements. (For example,
if we have a covering of (M, /) by foliation boxes, we may take X to be
any set that contains exactly one slice from each box, modified slightly to
satisfy conditions II and III.) For this procedure we use X to construct a
branched surface V from (/, φ) and then take successive modifications of X,
that are determined by V. We do this until X can no longer be modified in
the prescribed manner. It will then have n(/, φ) elements. Since V tends to
become more complex for larger values of n, this procedure is more practical
when we can choose a relatively small X to start.

We will henceforth consider only those branched surfaces that can be
constructed from n(/, φ) planar surfaces using Christy and Goodman's tech-
nique.
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II. Branched surfaces constructed from a foliation.

The branched surfaces we obtain by this construction are the same as those
in [3] and they are more restricted than those in [11]. Each branched surface
W is a transversely oriented 2-manifold except on a nonmanifold subset con-
sisting of "branch points". This subset is called "branch set". The connected
components of W-(branch set) are called the "sectors" of W.

The elements of Δ may be chosen large enough to ensure the branch set
is connected and intersects itself transversely at least once. We will assume
all branched surfaces have these properties.

By construction, each transversely oriented neighborhood of a point in W
is locally modeled on one of the following:

Figure 2.1.

Each local model projects horizontally onto a vertical model of ίH2. There-
fore, TίK2 induces a tangent bundle on W when we pull back each local
projection.

We may thicken any x E W along the transverse direction to recover the
fiber of N(W) that was contracted to x in the construction of W. (We
say each point of this fiber lies "over" x). We may reconstruct N(W) by
thickening W in this manner. (See Figure 2.2.)
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•Fiber over >

Figure 2.2. The diagram above shows how we thicken W locally to
reconstruct the "fiber" heighborhood, N(W).

Formally, a curve in W (or N(W)) is a map from a connected subset of
9ΐ into W (N(W) respectively). However, we will consider it as the image of
such a map, where the map gives the curve its parameterization. Similarily,
an "integral curve" of a foliation is a map from a connected subset of *K into
a leaf. However, for our purposes it will be the oriented image of such a
map.

We only consider those foliations of N(W) by surfaces (possibly branched)
which are transverse to the fibers and tangent to dN(W), such that {branch
points of leaves}={branch points of N(W)}. Figure 2.3 illustrates how such
a foliation may appear locally.

Figure 2.3.

If we have such a foliation, the boundary of each lens-shaped component
of M - N(W) is contained in a leaf. When we "collapse" the components
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of M — N(W) by identifying the upper and lower hemispheres of the lens-
shaped 2-manifolds that bound them, a foliation of N(W) yields a foliation
/' of M. Further, the fibers induce a flow φ' that is transverse to /'. We say
the foliation (/',</>') (or simply /' when the flow is clear) is "carried by W\
In particular, if W is constructed from (/, 0), then some foliation of N(W)
yields / and we may collapse the complement of N(W) in such a way that
the fibers induce φ. So in this case, (/, φ) is carried by W.

If (/', φ') is carried by W, /' may be used to construct W. The flow used
for the construction is φ'. The surfaces used are the collapsed lens-shaped
2-manifolds that bound the complement of N(W) in M.

Definition. Let k* be an immersion in N(W) of a planar strip, [0,1] x
[—e, e]. Suppose that for any lens-shaped component B{ of M — N(W),
fc*(ί, s) Π dBi = φ whenever t is sufficiently near (but not equal to) 0 or 1.
The image, K = A;*([0,1] x [—e, e]), of the strip is a "connecting strip" of
N(W) if it is transverse to the fibers, and both ends, k*({0} x [—e, e]) and

x [—€,e]), are contained in the set of branch points of N(W).

That is, connecting strip of N(W) is simply an immersed strip, transverse
to the fibers, with dN(W) branching from both its ends. (See shaded region
in Figure 2.4.)

Restrictions of different foliations of N(W) to a local neighborhood con-
taining a connecting strip may vary. For example, there are three canonical
foliations of the local neighborhood in Figure 2.4. They are shown in Figure
2.5.

It is worth noting that a foliation of a local neighborhood of N(W) does
not necessarily complete to a foliation of N(W). In particular, if completion
requires nontrivial holonomy along the boundary of an imbedded disk, then
by Reeb stability [7] it is not possible.

Let πw N(W) -» W be the continuous map induced by the quotient
map from N(W) onto N(W)/ ~ (i.e. πw is the map that collapses each
fiber of N(W) to a point in W). For every connecting strip ϋί7, we associate
curves 7 in W that have W branching out of both ends and lie in the image
under πw of KΊ. Each we call a "connecting curve". For our purposes, we
need only consider connecting curves that are contained in the branched set
and the connecting strips that correspond to such curves. It is often the
case that for some foliation (M, /) carried by W a connecting strip KΊ is
contained in a leaf of the corresponding foliation of N(W). In this case, we
say KΊ and the associated connecting curve are "strong connecting in /".
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Figure 2.4. The shaded region in the figure is a "strong connecting strip"
in the foliation shown.

Figure 2.5.
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Definition. Now let KΊ = fc*([0,1] x [—e, e]) be a connecting strip of
N(W) such that k*({0} x [-e,e]) C B{ and k*({l} x [-e,e]) C Bά for some
lens-shaped components, Bi and Bj in M — N(W).

Suppose a is a curve in a surface that is transverse to the fibers and
suppose a is mapped by πw onto the corresponding connecting curve 7.
Each curve containing α "crosses KΊ in increasing (decreasing) order" if α
extends from fibers through the lower (upper) hemisphere of Bi and dKΊ, to
a fiber through the upper (lower) hemisphere of Bj and dKΊ (where "above"
and "below" are determined by the transverse orientation of N{W)). For the
connecting curve 7 we say a curve in W "crosses 7 in increasing (decreasing)
order" if it properly contains 7 and its preimage under πw contains a curve
that crosses KΊ in increasing (decreasing) order. (See Figure 2.6.)

Figure 2.6. The figure at left shows a curve a crossing a con-
necting strip KΊ in increasing order (orientation of fibers is in-
dicated). The figure at right shows the projection of the curve.
It is a curve crossing this corresponding connecting curve 7 in
increasing order.

Definition. Let / be a foliation carried by a branched surface W and /*
be the corresponding foliation of N(W). A curve a on W is an "/-curve" if
it is the image under πw of an integral curve for /* (i.e., a is an /-curve if
an integral curve of /* lies over a). A surface S (possibly branched) in W
is called an "/-surface" if it is the image under πw of a leaf in /* (i.e. S is
an /-surface if some leaf of /* lies over S).

If a connecting curve is strong connecting in /, then there is an /-curve
that crosses it in increasing order and another that crosses it in decreasing
order. Moreover, given an /-curve a and a second foliation /' carried by W^
if a is not an /'-curve, then there exists a connecting curve in W crossed by
α, that is not crossed any /'-curve in the same order. This is straightforward
to verify. We will use this observation to prove Lemma 4.1.

Definition. Two branched surfaces, W\ and W2, imbedded in M are
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"conjugate" if there is an orientation preserving diffeomorphism g of M
that maps Wλ injectively onto W2 and maps smooth submanifolds of Wλ

onto smooth submanifolds of W2. The map g is called a "conjugacy map".
Suppose Wx carries (fuφ) and W2 carries (/2,</>) If g maps the set of
/i-curves in Wλ injectively onto the set of /2-curves in W2, then we say g
"respects the fι — f2 structure" and the branched surfaces, W\ and W2, are
"/i — f2 counterparts".

For simplicity, we will refer to conjugacy maps from W\ onto W2, with
the underlying assumption that each extends to a diffeomorphism of M.

III. Extending and contracting surfaces of Δ.

Let W be a branched surface constructed from (/, φ) and let /* be the cor-
responding foliation of N(W). In this section we discuss the effect on W of
extending or contracting a surface in Δ. Suppose D G Δ i s contained in the
leaf L. When we "extend" D, we replace D with a compact, connected, pla-
nar surface in L that contains D. When we "contract" D we replace it with
a compact, connected, planar surface contained in D. We require that these
extensions and contractions yield a set that satisfies the general position re-
quirements for the construction of a branched surface from (/, φ). After we
extend or contract an element in Δ, the branched surface we construct from
/ (using this modified set) may be slightly different from W. We say W has
been modified by a "move in /". We note that the moves presented here are
upper dimensional analogs of "zipping" and "unzipping" train tracks [5].

The effect of an extension on N(W) is to enlarge some component of
M — N(W) by further splitting the leaf of /* containing it. For example,
the upper diagram in Figure 3.1 depicts a local neighborhood in N(W).
When we split the indicated leaf further, we obtain the fiber neighborhood
shown below it. This corresponds to splitting W to enlarge a component of
its complement. The upper diagram in Figure 3.2 shows a portion of the
branched surface carrying the foliation /. It is the image under πw of the
local neighborhood in Figure 3.1. The lower diagram in Figure 3.2 is the
modified portion of the branched surface that we have after the extension. As
another example, we split the local branched surface in Figure 3.3 along the
indicated curve. This splitting also corresponds to an extension of a surface
in Δ. The effect of a contraction on N(W) is to decrease the size of some
component in M — N(W) by pinching together subsets of its upper and lower
hemisphere. This corresponds to pinching regions of W together in such a
way that we do not change the number of components in its complement.
All splits by extensions in / may be reversed by contracting the extended
surface back to its initial state.



244 SANDRA L. SHIELDS

Figure 3.1. Effect of extending a surface in Δ along the corre-
sponding leaf of /.

! U. J

Figure 3.2. Figure 3.3.
If 7 in W is a strong connecting curve in /, then we may enlarge some

component in the complement of N(W) by splitting N(W) along the cop-
responding connecting strip. (This corresponds to extending some surface
D G Δ.) See Figure 3.4. If 7 connects 2 distinct components of M — W, then
this split may be reversed by deleting the appropriate (connected) subset in
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the interior of D. This pinches the branched surface back together along 7.
In general, when we contract a surface in Δ to delete a connected subset
of its interior, the branched surface is pinched together to create a strong
connecting curve /.

effect on N{W) splitting of W

I
/

/

Figure 3.4.

Definition. Given surfaces, D and D\ transverse to the fibers in JV(W),
we say "D covers D' in N(W)" if we may continuously project D along the
fibers, onto a subset of N(W) that contains D''.

The third type of modification of W that we consider, a "substitution
in /", results when some D £ Δ is replaced by a surface E, where some
extension of E is covered by an extension of D and contains a loop whose
preimage under this covering is not closed.

Recall that we are only considering branched surfaces constructed from
(/, φ) using n(/, φ) surfaces in leaves of /, where n(/, φ) is the minimal num-
ber of such surfaces necessary to satisfy the general position requirements.

Proposition 3.1. If two branched surfaces W and V are constructed from
(/,</>), then they may be made conjugate by moves in f.

That is, we may modify W and V using moves in f to obtain two conjugate
branched surfaces.

Proof. Suppose V and W are constructed from (/, φ) using sets of surfaces,
X = {Cj}i=i...n and Δ = {A}*=i...n> respectively, where n = n(f,φ). Con-
sider the lens-shaped component of M - N(W) that collapses to give A
The flow φ is transverse to D{ and therefore induces a transverse orientation
on the lens-shaped 2-manifold that bounds this component. Let Df (D^)
be the closure of the hemisphere which is "upper" ("lower") with respect
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to this orientation. (When we collapse this component of M — N(W), each
point p+ E Df is identified with a point p~~ E D~.) Let Δ + = {D/~};=i...n.
When we open M along the interior of elements in Δ (the complement of
M*) and take the closure N(W), the set X becomes a set X* — {Ct*}<=i...n

of surfaces in JV(W), transverse to the fibers and possibly branched.
Given Dj E Δ we show that there exists x E Ui=i...n{C<} such that its

orbit φ(x, t) under φ meets Dj before meeting the interior of some other
element in Δ as t -* — oo. We suppose this is not the case for some j . Every
orbit (in particular, φ(x, t) for x E Ui=i...n{int Ci}) meets the interior of some
element in Δ as t -> — oo. Since the orbit of every point in M must meet
Uϊ=i...n{int Ci] at some t > 0, every orbit meets the interior of some element
of Δ — {-Dj} as t -> +00. But then Δ — {Dj} also satisfies general position
requirement I for the construction of branched surface from (/, φ) yet has
less than n elements. We may extend the remaining elements slightly (if
necessary) so Δ — {Dj} satisfies all 3 general position requirements. Since
Δ — {Dj} has n — 1 elements, we have a contradiction to our assumption
that n = n(f,φ). So for every j , there exists a,n x e Ui=i...n{C;} such that
φ(x, t) meets Dj before meeting the interior of some other element in Δ as
t -> - 0 0 .

We may conclude that for every D^ E Δ + there exists an i such that some
x E C* projects along a fiber of N(W) into D+. We show that for any D^
we may apply a move in / so that some C* E X* covers Df. This is trivial
to show when Dj intersects an element Ci of X. In this case we simply
extend Ci to Dj DC*. So we assume the elements of Δ do not intersect an
element of X.

Given £)+, choose i such that some x E C* projects along a fiber of N(W)
into D^~. Suppose there is no extension of C* that covers Df in N{W). Then
for each sufficiently large extension of C*, the /-surface that contains πw(C*)
meets a branching of W in πw(D~j~) and branches away from πw(D^) along

%, for some k. See Figure 3.5.

VΦ

Figure 3.5.

Let S be the sector of W (i.e. connected component of W-{branch set}),
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that is adjacent to πw(C*) Π πw(Df) and not met by this /-surface. Now,
either: 1) there is some C G X that may be extended so that πw{C*)
intersects πw(C*) Π πw(Dj') and contains S or 2) πw(C*) Π S = 0 for every
i. In case 1, C* is closer along fibers of N(W) to D^~ than C*. Therefore,
since the image under πw of an extension of C* intersects πw(C*)Ππw(D+),
no extension of C* can couse πw(C?) to branch away from π\y(C*)Γ\πw(D~j~).
We may extend C so that the image of C* under πw covers S and contains
πw(C*) Π πw(Dj~). We then repeat the above argument using the modified
X. In case 2, we may contract Dj so that the corresponding contraction of
Df does not intersect a fiber over 5, and still have a set of surfaces which
satisfies the first general position requirement with respect to (/, φ). (That
is, we may modify Dj to delete 5, yet the orbit of any point in Ui=i...„{(?»}
and hence all points in M, will still meet the interior of some surface in Δ
as t -» — oo.) We then repeat the above argument using the modified Δ.
There are only a finite number of sectors of W. So, after a finite number of
modifications of Δ and X, we obtain C E I which may be extended in / so
that C* covers the interior of Df (possibly contracted) in N(W).

Thus, we may modify X using sufficiently large extensions, so that the
interior of each element of Δ + (possibly contracted) in N(W) is covered by
some element of X. Now every element of X covers the interior of some
element of Δ + , since otherwise X would contain more than n(f,φ) sur-
faces. We may further modify X by contractions so that for every i, C*
projects along fibers of N(W) onto the interior of an element of Δ + yet not
onto a planar subset that properly contains it. These modifications of X
may be constructed so it satisfies the general position requirements. After
these modifications, we have a surjective map, r : {X*} —> {Δ+}, where
for any C* G X*, C* covers the interior of τ(C*) in N(W). Now repeating
the above argument using πy, the modified X, and the corresponding set
X~ = {C7}i==i...n of lower hemispheres for elements in M — N(V), we obtain
(after further modifications) a surjective map r'{Δ*} —» {X~}, where D*
covers the interior of τ'(D*) in N(V). If this cover does not extend to a
homeomorphism from D* onto τ'(D*), then one of these surfaces contains a
loop that is not covered by a loop in the other, and we replace the latter using
a substitution in /. After this last set of modifications of Δ and X, C* home-,
omorphically covers r(C*) in N(W). For each j , C* > r(C*) G Δ + (where
> is determined by the relative position along the oriented fibers). Let
σw : N(W) —• M be the map which identifies upper and lower hemishpefes-
in the lens-shaped 2-manifolds that bound the components of M — N(W).
Then Δ = Ui=i...n{σw r(Cf*)} and for every z, σw*τ(C*) is diffeomorphic
to d via translation along the orbits of φ. Without loss of generality, we
assume Δ is indexed so <7iy*τ(C*) = Dι for all i. Then there is a diffeomor-
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phism of M that translates A G Δ , along orbits of φ, onto C* € X for each
i. Further, these orbits of points in Di G Δ meet Ci G X before meeting any
other element of X. Since the construction of a branched surface depends
only on the surfaces chosen and their relative position with respect to the
flow, this diffeomorphism induces a conjugacy map from W onto V. D

IV. An equivalence relation.

In this section we define a relation on foliations with the same transverse
flow and show that this is an equivalence relation. For a foliation / carried
by a branched surface W, we shall let /* denote the foliation on N(W) that
yields / when we collapse the complement of N(W) in M. Given a set
Δ = {-Di}i=i...n u s e d t o construct a branched surface from (/, φ), we shall
say x £ M flows into Di under φ if as t —> +00, the orbit φ(x, t) meets int Di
before meeting the interior of some other element of Δ.

Recall that we only consider branched surfaces constructed from (/, φ)
using n(f,φ) imbedded, compact, planar surfaces with boundary. Suppose
V and W are constructed from (/, φ). By proposition 3.1, we may obtain
conjugate branched surfaces, V and W\ from V and W, respectively, by
moves in /. We let /^, be the foliation of N(W) that yields / when we
collapse the complement of N(W) in M. Similarity, we let fy, be the fo-
liation of N(V) that yields / when we collapse the complement of N(V)
in M. We assume X' = {Ci}i=i,...n is the set of (modified) surfaces used
to construct V and Δ' = {-Dί}t=i...n is the set of (modified) surfaces used
to construct W. It follows from the proof of Proposition 3.1 that we may
assume each element of Δ' = {J?ί}i=i...n flows injectively along orbits of φ,
onto an element of X' = {C[}i=ι.m.n. We will henceforth assume X' has been
indexed so D\ flows injectively onto C[ for every i. For each i, let A'{ be
the lens-shaped component in M — N(Vf) that collapses to C[ and B[ be
the lens-shaped component in M — N(W) that collapses to D[. It also fol-
lows from our proof of Proposition 3.1, that there exists a conjugacy map,
g:W ~> V, such that g * nw,(dB<) = πy,(&4'.). We have the following:

L e m m a 4.1. If g does not respect the f — f structure, we may construct

branched surfaces that are f — f counterparts by replacing C[ G X1 and

D[ G Δ ; with some surface E\ for selected values of 1 < i < n.

Proof. Suppose the conjugacy map g from W onto V does not map tEe
set of /-curves of W injectively onto the set of /-curves of V. Then, as
we observed in Section II, W has a connecting curve 7 such that either its
image #(7) is crossed by /-curves in some order that 7 is not, or the converse
holds. (E.g. 7 and #(7) are not both strong connecting in /.) Without loss
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of generality, we assume the former. Let KΊ be a connecting strip in N(W)
corresponding to 7 and Kg(Ί) be the connecting strip in N(V) corresponding
#(7). Assume the branching at the two ends of KΊ are contained in dB[ and
dBj respectively.

We show that i = j . If i φ j , then neither 7 nor (7(7) are strong connecting
in / since W and V are constructed from n(/, φ) surfaces. (Otherwise we
could extend one of these surfaces so that the branched surface is split along
the strong connecting strip. This would decrease the number of components
in the complement of the branched surface. This is not possible since each
surface used for the construction of a branched surface is obtained by col-
lapsing one of these components.) Without loss of generality, suppose some
/-curve in W crosses 7 in increasing order. (If not, reverse the orientation
of 7.) Then some integral curve of /^, beginning in dB[ crosses KΊ in in-
creasing order. Further, some /-curve of V crosses #(7) in decreasing order.
So, some integral curve of fy, beginning in dA[ crosses Kg(Ί) in decreasing
order. Let σw> (KΊ) be the image of KΊ when we collapse the complement of
N(W) in M and let σyf(Kg^)) be the image of Kg(Ί) when we collapse the
complement of N(V) in M. Recall that g is induced by a diffeomorphism
of M that maps each σw,{dB'k) = D'k G Δ' onto σv,(dA'k) = C'k G X' by
translation along orbits of φ. Thus KΊ and Kg(Ί) may be chosen so σw'{KΊ)
flows injectively onto σyt(Kg(Ί)). We may extend C[ in / so that C[ flows
injectively under φ~~x, onto σw> (KΊ) U Ό\ U Dj. See Figure 4.1. Now D\ and
Dj in Δ' can be replaced with this extended C[ to obtain a modification of
A' that also satisfies the general position requirements for the construction
of a branched surface from (/, φ). However, this modification of Δ' has less
elements than the original Δ' used to construct W. This contradicts the
fact that n(/, φ) surfaces were used to construct W. So, i — j .

Figure 4.1. The directed segments are orbits of φ. The bold
lines indicate the extension of C[ in /.

Without loss of generality, we again assume that 7 is crossed by /-curves
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in increasing order and #(7) is crossed by /-curves in decreasing order. As
above, we may choose KΊ and Kg(Ί) so that σw>(KΊ) flows injectively onto
σy>(Kg^). Let a(t)ι<t<2π be an oriented immersion of S1 in M that is
transverse to orbits of φ between D[ U σw>{KΊ) and C[ U σV'(Kg^). So,
for each x G α, φ(x,t) meets Ct' U σy>{Kg^) at some £ > 0. If k* is a
curve in i^y(7) such that πy>[h*(t)] = #(7(2)) for some parameterization of
fc* and 5(7), we may choose α so that a connected subset of a flows into
σy(λ;*). Let / be part of an orbit of </>, that extends from dD[ Π σw>{KΊ)
to dC[ Π σy/(ίΓp(7)) and intersects a at say α(0) = α(2τr). See Figure 4.2.
The holonomy map of each point on / along a (i.e. along an integral curve
of / that transversely projects onto α) has its image in /. Therefore, the
holonomy map of / along a has a fixed point. Since the leaves of / are
transverse to φ, the leaf L of f through this point contains a surface E[
that flows injectively onto C[ under φ and injectively onto D[ under φ"1.
Therefore, we may use E\ in place of C\ G X1 for the construction of V and
E[ in place of D[ G Δ' for the construction of W. The branched surfaces we
construct are conjugate to the original W and V. The images under the
respective conjugacy maps of both 7 and #(7) are strong connecting curves
in /. Moreover, A[ in M - N(V) and J5 in M - N(W) now collapse to E\.
So any connecting curve with an end in 7ΓVi(dA'i) is crossed by /-curves in
the same order as a connecting curve with an end in πw'{dB[).

After substituting some E[ as above for all necessary 1 < i < n, the new
V and W we construct are / — / conjugate. D

Figure 4.2. The bold lines indicate surfaces, C[ and D[, used to
construct the branched surfaces. The dotted lines depict portions
of the leaves that contain them.

When we replace Ό\ G Δ' (or C\ G X') with E[ as above, the branched
surface we construct is conjugate to the original. We may think of this as
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changing a connecting curve in the original that is not strong connecting
in / to one that is strong connecting in / (that is, it's image under the
conjugacy map) by "altering" Δ' (X' respectively). If a connecting curve 7
can be changed to strong connecting by altering Δ' (x1 respectively) we say
it is "critically connecting in /". We will always assume that E[ is chosen
to ensure that the maximum number of critically connecting curves in / are
changed to strong connecting in / when we alter Δ' (Xf respectively) with
this substitution.

Let Wι be a branched surface constructed from (fi,φ) using Δi =
{£>i}i=i...n- Let W2 be a branched surface constructed from (f2,φ) using
Δ 2 = {-E }̂ι=i...n such that Wι and W2 are /Ί — f2 counterparts. For
j G {1,2}, we represent its complement, \j — 2| + 1, by j c . Suppose we
modify Wj using a sequence of substitutions in f2. If each successive substi-
tution in Δj can be chosen so that by altering Ajc with similar substitutions,
we obtain branched surfaces that are still fx — f2 counterparts, then we say
(/1, Wλ) and (/2, W2) are "compatible". For example, if (/1? Wλ) and (/2, W2)
are compatible then whenever we change connecting curves in Wj that are
not strong connecting (in fj) to ones that are (by altering Δj), we may
subsequently do the same for the corresponding connecting curves in Wjc

(by altering ΔjJ, without destroying the structure preserving property of
conjugacy map. If all elements in Δj can be chosen in compact leaves of /j,
it follows from results in [8] that (/1, W\) and (f2,W2) are compatible.

Definition. Given two foliations, f1 and /2, that are transverse to φ:

(/1? Φ) ~ (Λ? Φ) if the following conditions are satisfied:
A- n(fuφ)=n(f2,φ).
B. There exists a branched surface W± carrying (/1? φ), that is an fλ — f2

counterpart to a branched surface W2 carrying (f2,φ)

C. Wι and W2 may be chosen so that (/1, W\) and (/2, W2) are compatible.
Condition B in the definition of ~ is sufficient to guarantee equivalent foli-

ations share certain topological properties such as the existence of a compact
leaf of a particular genus and the existence of a covering by a trivial product
of hyperplanes in 9\3 (Details can be found in [8] and [9].) We emphasize
that compatibility is only required to ensure transitivity of conditions A and
B. We do not have an example that illustrates the necessity of condition C
for transitivity. However, it seems likely that such examples exist.

Although compatability may be difficult to verify, it is often the case that"
there are substitutions in Δj which change all critically connecting curves
in fj to strong connecting in fj. In appendix B we discuss conditions under
which it is sufficient for transitivity to check that alterations of this type do
not destroy the structure preserving property of the conjugacy map.
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Theorem 4.2. ~ is an equivalence relation.

Proof. It is obvious that ~ is reflexive. The symmetry follows directly from
the definitions.

The transitivity of condition A is immediate. To show transitivity of con-
dition B, we assume W\ and W2 are /x — f2 counterparts and (/i, W\) and
(ΛJ W2) are compatible. Further, we assume V2 and V3 are f2 — f3 counter-
parts and (f2,V2) and (f3,V3) are compatible. Suppose W2 is constructed
from (f2,φ) using Δ = {A}i=i...m a n d V2 is constructed from (f2,φ) using
X — {Ci}i=i...n Since W2 and V2 are both constructed from /2, they can be
made conjugate by moves in f2. So there exist conjugate branched surfaces,
W2' and V±, obtained from W2 and V2, respectively, by moves in f2. Suppose
W2 is constructed from (/2, φ) using the modification, Δ' = {/?<}<=i...nj of A
and V̂ ' is constructed from (/2,(/>) using the modification, X1 = {C^}<-i...n,
of X. By Lemma 4.1, if W£ and V̂ ' are not f2 — /2 counterparts, then for
some i we may change critically connecting curves of both W2 and V{ to
strong connecting curves (in f2) by replacing D\ € Δ' and C[ £ X' with
a particular surface E\. (It is worth noting that in this case D[ + C[ are
distinct so neither came from a substitution in /2.) This surface E[ flows
injectively onto D\ and C[ under φ~x and 0, respectively. So E\ can be
modified by moves in f2 so that it flows injectively onto Di under φ~ι. We
construct a new W2 by substituting this modified E[ for J9i E Δ. We may
also modify E[ so it flows injectively onto Ci under φ. We construct a new
V2 by substituting this modified E[ for Ci G X. Since (/2, W2) and (fu Wx)
were originally chosen to be compatible, we may choose a new W\ that is
an /1 — f2 counterpart to the new W2. Similarity, since (/2, V2) and (/3, V3)
were originally chosen to be compatible, we may choose a new V3 that is an
ίi — ίz counterpart to the new V2. By Lemma 4.1, at most n new choices
for W2 + V2 are necessary to ensure the conjugate modifications W^ a n d V*
of W2 and V2 are /2 — f2 counterparts. If we modify W\ and V3 as above
at each stage, the moves in f2 to obtain W^ fr°m ^ e n e w ^2 correspond to
the moves in /1 on the new Wx. These moves in /1 give a branched surface
that is an fι — f2 counterpart to W2. The moves in f2 to obtain V2 from the
new V2 correspond to moves in /3 on the new V3. These moves in /3 give a
branched surface that is an f2 — f3 counterpart to V̂ . It follows that some
branched surface that carries fx (and is obtained from the new Wx using
moves in /1), is an /1 — /3 counterpart to some branched surface that carries
/3 (and is obtained from the new V3 using moves in / 3 ) .

Now, for the new choices of WUW2,V2 and V3, {f2,W2) and {fι,Wχ) are
still compatible and (/2,F2) and (f3jV3) are still compatible. So, the tran-
sitivity of condition C follows from the transitivity of compatibility and
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the fact that compatibility is not affected by moves in the respective folia-
tions. D

For example, consider foliations, /α, of the torus induced by lines in *K2

with fixed rational slope a (when we take the quotient over integer lat-
tice). For every α ^ O such that fa is transverse to a flow φ with fixed
slope, n(/α,(/>) = 1 (i.e., Aa = {£>i}) Moreover, the surface used for the
construction of a branched surface from (fa >Φ) c a ^ be chosen in any leaf.
Since all leaves are compact, each pair of branched surfaces, Wai and Wa2,
constructed from (fai, φ) and (fa2, φ) respectively, can be made fai — fa2

counterparts simply by extending in fai and fQ2 when aλ and a2 are suf-
ficiently close (no substitutions in Δ α are necessary). It is immediate that
(fai: Wai) and (/α2, Wa2) are compatible. So when a.λ and α2 are both ratio-
nal and sufficiently close, fai is equivalent to fa2 Further, no foliation with
fixed rational slope is equivalent to a foliation with fixed irrational slope.

As another example, consider the Reeb foliation fR of S3 with a single
toral leaf C. Let φ be a transverse Morse-Smale flow with two periodic orbits,
one attracting and the other repelling, contained in different components of
S3 - C. It is easy to verify that n(/Λ, φ) — 2. Figure 4.3 shows a branched
surface constructed from {f^φ) using two imbedded disks, one transverse
to each periodic orbit. It can be shown that all foliations carried by this
branched surface are equivalent to the Reeb foliation. It was shown in [8]
that each of these foliations has a compact toral leaf.

Figure 4.3.

We note that the relation, ~, is different from topological conjugacy. As
the above example suggests, there are many foliations that are equivalent un-
der ~ yet not topologically conjugate. In addition, we do not know whether
(fiΦ) ~ (fiΦ) whenever / and /' are transverse to φ and topologically
conjugate.
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Appendix A.

Here we use the techique described in Section III together with the proof of Propo-
sition 3.1, to develop a procedure for calculating n(f,φ). We shall consider sets
used to construct branched surfaces from (/, φ). When we say a point x € M flows
into an element of one such set under φ, we shall mean that the orbit φ(x, t) meets
the interior of this element as t —> -f co before meeting the interior of any other
element of the set.

We begin with any branched surface V constructed from (/, φ) using a set, X =
{Ci}i=i...n, of planar surfaces that satisfies the general position requirements. By
the definition of n(f,φ), there exists a set, Δ = {A}ϊ=i...n(/,0)> that c a n be used
to construct a branched surface from (/, φ). Assume that n φ n(f,φ) (so I / Δ ) .
In the proof of Proposition 3.1, we showed that Δ having cardinality n(f,φ) is
sufficient to conclude that for every Dj € Δ, there exists an a; € Ui=i...n{Ci) that
flows under φ~ι into Dj (before meeting the interior of some other element in Δ).
We then used this to show that X may be altered by extending, contracting, or
substituting its elements in / until each D~j~ € Δ + is surjectively covered by some
element of X. After these modifications, some element of X, say Co, may be omitted
and we would still have a set that satisfies the first general position requirement for
the construction of a branched surface from (/, φ) (since n > n(f,φ)). Therefore,
the orbit of any point in Co flows under φ"1 into one of the remaining elements of
X. So a collection of connected subsets of U^o{Ci} flows under φ onto Co. Further,
only slight additional contractions or extensions of the remaining elements in X are
necessary to obtain a set that satisfies all the general position requirements. The
cardinality of the complement for the new branched surface is n — 1.

This procedure for reducing the number of components in X (and hence in M —
N(V)) may be repeated until we can no longer modify a collection of components
in M — N(V) with moves in / so that a subset of their boundaries covers some
Cj~ G l + that is not in the collection. In other words, we may continue to reduce the
cardinality of by deleting elements of X until we can no longer alter the remaining
set so that it satisfies the general positions requirements.

Appendix B.

Condition C of the equivalence relation is difficult to check as stated. Here we
find sufficient conditions for transitivity which, in some cases, is a straightforward
exercise. Recall the proof of Theorem 4.2. If W<ι and F2 can always be chosen
so that substitutions in /2 are not necessery to obtain conjugacy, then to ensure
transitivity we need only check that changing critical connecting curves to strong
connecting does not interfere with the structure preserving property of conjugacy
maps. So we assume W2 and V2 can always be chosen in this manner.

We let W\ be a branched surface constructed from (fi,φ) using Δi = {Dj}i~i^rι

and we let W2 be a branched surface constructed from (/2, φ) using Δ 2 = {Df }i=i...n

Assume that W\ and W<ι are /1 — /2 counterparts. We denote the complement,
\j - 2| + 1, of j G {1,2} by j c . Let B{ be the component of M - N{Wό) that col-
lapses to D\. Suppose we may change a critically connecting curve of Wj to strong
connecting in fj by replacing D\ e Aj with some surface E? that flows injectively
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onto Ό\ under φ (or φ"1). As before, we may assume each such alternation changes
the maximum number of critical connecting curves in /j with ends in πwό (dBJ

r), to
strong connecting. If each such alternation changes all critical connecting curves in
fj with ends in πw3 (dBj), then there are only a finite number of these substitutions
that can be used to alter Aj, at most one for each i.

We now find conditions under which this is the case. For each i such that
π\Vj{dB?) contains the ends of a critically connecting curve, we consider a fiber
of N(Wj) through dB\. We take a closed, connected subset I of this fiber such
that all leaves through / contain a surface that bijectively projects, along fibers,
onto some hemisphere of dB\. There is a set A consisting of oriented immersions
of S1 in Wj, each contained in the union of π\Vj(dBj) with a critically connecting
curve (in fj). We require that each curve in A begins at πv^(/) For a £ A,
let Inv(α) be the set of all points in / which map back to / along a holonomy
map of /* (the corresponding foliation of N{Wj)) over a. By the properties of
a e A, Inv(α) contains at least one fixed point under this map. Further, Inv(α) is
closed and connected. So if {Inv(α)|α G ̂ 4} satisfies the finite intersection property,
then ΓΊα{Inv(α:)} is nonempty. We may then take the lowest (with respect to the
orientation of /) point in Πα{Inv(α)}. This point is fixed under the holonomy map
of any curve in A. The surface E{ will be in the leaf through this point since the
substitution changes all critically connecting curves in fj with ends in πw3 (9BJ

t) to
strong connecting.

Assume now that the above conditions are satisfied. If we can choose these
successive substitutions in Aj and Ajc so that branched surfaces constructed at
each stage from the altered sets are /i - f2 counterparts, such substitutions do not
interfere with the structure preserving property of the conjugacy map. So we focus
on means to verify this condition is satisfied at each stage.

To avoid confusion with W\ and W2, we let Uj (for j £ {1,2}) be the branched
surfaces constructed from (fj,φ) after we substitute E\ for Ό\ in Δj for some i.
Since W\ and W2 are conjugate, there is a conjugacy map h from U\ onto U2. We
must find a way to verify that h respects the /1 — f2 structure.

Let 7 be a connecting curve of Wj that is changed to a strong connecting curve
in fj when we substitute Ej for Ό\ in Δj. There is a closed integral curve of f*
through E\ that lies over 7 in Wj. (E.q. take any curve over 7 and through the
integral strip of fj that becomes a strong connecting strip after the substitution.
Join its ends with a curve in E\ to obtain the desired closed curve.) It was shown
in [8] that if Wγ and W2 are /1 — f2 counterparts, then for each set Cj of closed
curves in some leaf Lj of f*, there exists a set of closed curves Cjc in some leaf Ljc

of f*c such that 7Wi(Ci) is mapped injectively onto πw2(C2) under the conjugacy
map g that respects the /1 - f2 structure. In fact, πw1(Lι) is mapped injectively
onto πw2 (L2). So once we have chosen E\, we may always choose E\c to ensure the
image of the new 7 under h (when j = 1) or h~ι (when j = 2), is strong connecting-
in fjc. Since each alteration of Aj changes all critical connecting curves with ends
in πwj (dB?) to strong connecting, then the same is true for alterations of Ajc.

Now for j e {1,2}, consider the component of d[M - N(Uj)] that collapses to E{
and let Kj be the set of connecting strips that have both ends in this component.
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Let Xj be the corresponding set of connecting curves. We note that h maps each
element of X\ injectively onto some element of X2 Since the conjugacy map g from
W\ onto W2 respects /i —/b structure, whether or not h respects the f\ — / 2 structure
depends entirely on the manner in which the connecting curves in X\ and X2 are
crossed by /i-curves and /2-curves, respectively. In particular, if E\ is contained
in a compact leaf Lj of / J 5 then by [8] we may choose E\c in a homeomorphic leaf
Ljc of fjc for which g * TΓVΓI(ZΊ) = πw2(^2)' In this case, U\ and U2 are f\ — f2

counterparts.

For the more general case, we consider integral curves ot*(t) (0 < t < 1) of fj.

Let a = πwr. (α*). We require that some curve in a lies an element of Xj and that

α*(0) € J5f. If a is closed, we take the integral curve Pa{t) (0 < t < 1) (of / ,) that

α* yields when we collapse the components of M — N(Wj). If for each closed a

(as above) in the branch set of Wu /£(1) > /£(0) as /^ ( α )(l) > /^(α)(0) (where >

determined by relative position along Φ), then h respects the f\ — / 2 structure.
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