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MAXIMAL SUBFIELDS OF Q(ΐ)-DIVISION RINGS

STEVEN LIEDAHL

In this paper we determine the Q(i)-division rings which
have maximal subfields of the form E(i), where E/Q is cyclic
and i = y/—l. These are precisely the (5(i)-division rings having
maximal subfields which are abelian over Q. More generally
we determine the Q(i)-division rings having maximal subfields
which are Galois over Q. We show that a division ring D
contains such subfields if and only if the same is true for the
2-part of the Sylow decomposition of D.

1. Introduction and Preliminaries.

Let K be a field, and let D be a finite-dimensional if-central division ring.
The dimension [D : K] = m2 is a square, and one defines the index of D
by ind(D) — m. The maximal subfields of D are precisely those subfields
which contain K and which have degree m over K. In case D has a maximal
subfield L which is Galois over K, there exists a 2-cocycle / : G x G -» L*
such that D is isomorphic to the crossed product algebra (L/K,f). This
is proved in the chapter on simple algebras in [Hers], and we will assume
familiarity with the results given there. It is well known that if K is a
number field, then D has a maximal subfield which is cyclic of degree 777,
over K. In [Alb], A.A. Albert posed the following rationality question: if F
is a subfield of UΓ, does there exist a cyclic extension E/F of degree m such
that EK is a maximal subfield of DΊ He showed that such E need not exist,
but considered conditions on ind(D) and [K : F] under which such E could
be found (e.g., Proposition 6, below).

The results of the present paper are motivated by this question in the
special case K — Q(i), F = Q. If E/Q is a cyclic extension of degree m
such that E(i) is a maximal subfield of a Q(i)-division ring D, then E(i)
is, in particular, an abelian extension of Q. It turns out that, conversely, if
D has maximal subfields abelian over Q, then it has one of the form E(i)^
where E/Q is cyclic. This raises the question of whether a ζ)(i)-division
ring has maximal subfields which are cyclic, abelian, or even Galois over
Q. We determine the Q(i)-division rings having such subfields in our main
theorems 7, 8, and 12, according to the local indices of D. To define these,
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let K be any number field, let p denote a finite or infinite prime of if, and
let Kp denote the completion of K at p. Then Kp ®κ D is a matrix ring
over a ifp-division ring Dp, and we define indp(D) = Ίnd(Dp) = mp. The
if-division ring D is determined uniquely up to if-isomorphism by its Hasse
invariants invp(D) = rp/mp E Q/Z, where (rp,mp) = 1. For their definition,
we refer to [A-T] and especially to [Rein]. The invariants satisfy

(i) rp/mp — 0 for all but finitely many p,

(ii) rp/mp — 0 or 1/2 if p is real, rp/mp = 0 if p is complex, and

(ϋi) Σ P (r P /m p ) = 0.
Moreover, given fractions rp/mp in Q/Z satisfying (i), (ii), and (iii), with
the nonzero rp/mp satisfying (rp,mp) — 1, there is a unique if-division ring
D such that invp(D) = rp/mpi and one has ind(D) = l.c.m. {mp}. If L is a
finite extension of if then L®KD is a central simple L-algebra. Its invariant
at a prime p dividing p is given by invp(L ®κ D) — [Lp : Kp] invp(D). Let
Br(if) denote the Brauer group of if, and denote the Brauer class of D by
[D]. Let Res denote the restriction homomorphism from Br(if) to Br(L)
induced by D -> L ®κ D.

We recall the splitting behavior of rational primes in Q(i). The primes
p = 2 and p = p^ are the only ramified primes; they have unique extensions
to Q(i). A prime p = 1 (mod 4) has two divisors p, p in Q(i) which are
conjugate under the action of Gal(Q(i)/Q) on the set of primes of Q(i). The
primes p = 3 (mod 4) remain prime in Q{i).

Finally, we will need a description of the Galois extensions of degree ef
of a local field F such that the ramification index e is prime to the residue
characteristic p of F. Accordingly, let F be a finite extension of Qp, let q
denote the number of elements of the residue field of F. Let T/F be the
unramified extension of degree /. Choose a prime element πF of F and a
root of unity ζ £ T of order qf — 1.

Theorem 1 ([Alb, Has]). Assume e,f, and i are integers such that qf =
1 (mod e), e\i(q - 1), 0 < i < qf - 1, and (e,p) = 1. TΛen £Λe /ieW if =
F(ζηπκ) defined by πe

κ — ζιπF is a Galois extension whose Galois group is
generated by elements x,y with defining relations xe = 1, yf — x% y~λxy =
xq. Conversely, each Galois extension of F having degree ef and ramification
index e is obtained in this manner by a choice of integer i satisfying the
congruence conditions above.

This paper is based on part of the author's U.C.L.A. doctoral dissertation,
which was written under the kind supervision of Professor M. Schacher, and
which was supported by a U.S. Department of Education Dissertation Year
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Grant.

2. Maximal Subflelds.

We shall give necessary and sufficient conditions for a ζ)(i)-division ring
to have maximal subfields which are cyclic, abelian, or Galois over Q in
terms of the local indices indp(D). Assume D is a Q(z)-division ring for
which the class [D] lies in the image of Res : Br(Q) —> Br(Q(i)), with
[Q(i) ®Q Δ] = [D] for some Q-division ring Δ. Then either Q(i) ®Q A = D
or Q(i) ® Q Δ = M2(D) and ind(D) = \ ind(Δ). In the first case, if L/Q is a
cyclic maximal subfield of Δ, then L(i) is a maximal subfield of D and is an
abelian extension of Q. By contrast, it may happen in the second case that
no maximal subfield of D is Galois over Q. These cases are distinguished in
the following proposition.

Proposition 2. For a Q-diυision ring A, the following are equivalent:
(i) Q(i) ΘQ A is a Q(i)-division ring,

(ii) x/^Δ,

(iii) // ind(Δ) = 2t m, m odd, then 2ι divides indp(Δ) for a prime p =
I(mod4).

Proof (i) =» (ii). If ^Λ e A then Q(i) ® Δ contains Q(i) ® Q(i) =
Q(i) ® Q[X]/(X2 + 1) = Q(i)[X]/(X2 + 1) = Q(i) Θ Q(i), which contains
zero-divisors.

(ii) =ϊ (i). The regular representation gives Q(i) C M2(Q), therefore
Q(i) ®Q Δ C M2(Q) ® Q Δ = M2(Δ). If Q(i) ® Q Δ is not a division ring then
Q(i) ®Q Δ = M2(D) contains a copy of M2(Q) centralized by Z(Q(i) <S>Q

Δ) = Q(i). By [Hers, Thm. 4.4.2], M2(Δ) - Af2(C?) ®Q C, where C is the
centralizer of M2(Q) in M2(Δ). Then C is a central simple Q-algebra, so
C = Δ and there is an embedding Q(i) C Δ.

(i) 4^ (iii). The index of D = Q(i) ®Q Δ equals the l.c.m. of the indices
indp(jD). So Q(i) ®Q A is a division ring iff 2t divides mdp(A)/[Q(i)p : Qp]
for some p iff 2* divides indp(Δ) for some p split completely in Q(i). D

It is known from [Schl] that if Δ is a Q-division ring which is a crossed
product algebra for G, then each Sylow subgroup of G is metacyclic, i.e., a
Sylow subgroup P has a cyclic normal subgroup N such that P/N is cyclic.
This important property is preserved by Res : Br(Q) -> Br(Q(i)) in the
following sense.

Proposition 3. If the class [D] lies in the image of Res : Br(Q) -+ Bτ(Q(i)),
and if D is a crossed product algebra for a group G, then G is Sylow-
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metacyclic.

Proof. Let L/Q(i) be maximal subfield of D, assume L/Q(i) is Galois, and
let P be a Sylow p-subgroup of Gal(L/Q(i)). We claim P is contained in a
decomposition group of L/Q(i) at a prime of Q(i) not dividing p. This will
imply P is metacyclic by Theorem 1. By [Schl, Prop. 2.6], P is contained in
Gal(Lp/Q(i)p) for at least two primes p of Q(i). If p = 2 or p = 3 (mod 4),
the claim follows from the fact that p has a unique extension to Q(i). If
p = 1 (mod 4) and p divides p, then invp(D) = mvp(D). Since 2 is prime
top, the element invp(,D)-hinVp(.D) oΐQ/Z has order a multiple of |P | . Then
Σ invp(D) = 0 implies \P\ divides the local index of D at some prime v other
than p, p. This implies that a copy of P is contained in Gal(Lv/Q(i)v) as
desired. D

Proposition 3 reflects the statement above about Q-division rings as crossed
products. However the proposition is easily false if Q(i) is replaced by an
arbitrary number field. For instance, let p be an odd prime, let K/Q be
a cyclic extension of degree p3 in which p splits completely. Let D be the
unique K-division ring whose invariants are 1/p3 at each of the p3 divisors
of p in UΓ, and 0 elsewhere. Let G be the nonabelian group of order p3 and
exponent p. Since G is generated by two elements, it follows easily from
[Sh] and [Neu2, Main Thm.] that D has a G-Galois maximal subfield L/K.
This D lies in the image of the restriction map. For if Δ is the Q-division
ring whose invariants are 1/p3 at p, — 1/p3 at some prime of degree p3, and
0 elsewhere, then K ®Q A = D.

We have used the fact that a class [D] in the image of Res : Br(Q) -»
Bΐ(Q(ί)) has equal invariants at conjugate primes. This property actually
characterizes the image in the present case. We omit the easy proof of the
following proposition, which uses only the fact that Gal(Q(i)/Q) is cyclic.
The case of a finite Galois extension is slightly more complicated, and is
treated in [Mac, p. 330].

Proposition 4. The image of Res : Br(Q) —> Bτ(Q(i)) consists of those
classes [D] such that Ίnvp(D) = ΊΏYP(D) whenever p is conjugate to p over
Q.

With Proposition 4 we describe those (5(^)-division rings which may be
defined over Q:

Proposition 5. Let D be a Q{ϊ)-division ring of index 2ι m, m odd. Then
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there exists a Q-diυision ring Δ such that D = Q(i) ®Q Δ if and only if
(i) invp(D) = 'mVp(D) for all primes p, p conjugate over Q, and

(ii) if t > 1, then 2ι divides Ίndp(D) only if p divides a rational prime
p = 1 (mod 4).

Proof. If D = Q(i) ®Q Δ is a division ring, then the invariants of Z) are equal
at conjugate primes, and 2* is the highest power of 2 dividing ind(Δ), so 2*
divides indp(Δ) for some prime p. If t > 1, then (ii) follows from the fact
that [Q(i)p : QJ = 2 unless p = 1 (mod 4). Conversely, if (i) holds then
there is a Q-division ring Δ such that [Q(i) ΘQ A] — [D] by Proposition 4,
and ind(Δ) > ind(jD). If (ii) is assumed, then the 2-part of indp(Δ) is at
most 2* for all rational primes p. Therefore ind(Δ) = 2* m = ind(D) and

^D. D

We begin our study of maximal subfields of Q(i)-division rings with a
determination of those division rings having a maximal subfield which is a
cyclic extension of Q. Suppose D has index 2* ra, m odd, and assume D
has such a maximal subfield. Then t = 0 according to the fact that Q(i)/Q
cannot be embedded a cyclic extension of degree 4. We show that conversely,
a ζ)(2)-division ring of odd index has a maximal subfield which is cyclic over
Q. This is immediate from:

Proposition 6 ([Alb, Thm. 24]). Let K and F be number fields with [K :
F] = q, and assume KjF is Galois. If D is a K-division ring of index n
prime to q, then there is a cyclic extension E/F of degree n such that EK
is a maximal subfield of D.

Proof. Let S be the set of primes of F which lie under primes of K where
indp(D) > 1. By the Grunwald-Wang theorem ([A-T, Chap. 10]), there is a
cyclic extension E/F of degree n such that [Ep : Fp] = indp(D) for all p G 5.
Then [EK : K] — n. Since KjF is Galois, the degrees [Kp : Fp] are divisors
of q. Therefore Kp and Ep are disjoint over Fp and [(EK)P : Kp] — indp(Z?)
for all p such that indp(£>) > 1. This shows that EK splits D, and is a
maximal subfield of D. D

Remarks. 1. The assumption that K/F be Galois was omitted in [Alb], but
is shown to be necessary by the following example. We take F — Q. Since-
the 3-adic field Q$ contains no primitive 5-th root of unity, the only cyclic
extension of Q3 of degree 5 is unramified. Let L/Q be a Galois extension
with group S7 such that Lp is unramified of degree 5 at a divisor of 3. Let
a E L be such that [Q(a) : Q] = 7 and L is generated by the conjugates of
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a over Q. We may assume a is chosen so that Lp — Q3(a). Let K = Q(a)
and let D be a if-division ring of index 5 such that indp(D) = 5, where
p lies under the prime p of L. Then Kp = Lp is unramified of degree 5
over Q3. Any cyclic extension E/Q of degree 5 such that EK splits D must
have the property that [Ep : Q3] = 5 at the unique divisor of 3 in £7, and
[(J57JFC)P : ϋCp] = 5 at the unique divisor of p in EK, But then Ep/Q3 is
unramified, hence (EK)P = ifp, and ϋλftT cannot split Zλ

2. The following related question is considered in [Sch2]. If D is a
if-division ring, K a number field, it is well known that D has a cyclo-
tomic splitting field L C K(μn) for some n (see [A-T, p. 57]). Thus
[D] = [(L/K, /)] for a cyclotomic extension L of if. It had been conjectured
that L could be chosen to be a maximal subfield of D, so that similarity
could be strengthened to an isomorphism D == (L/K,f). This conjecture
is disproved in [Sch2] (counterexamples over Q(i) are given below). It was
stated in [Sch2, Thm. 2] that this conjecture is true if K/Q has degree
q prime to n = ind(D). The proof given there is valid if K/Q is Galois,
but the if-division ring D of the preceding remark is a counterexample to
the conjecture, hence also to [Sch2, Thm. 2]. Indeed, if L C K(μn) is a
maximal subfield of D, then K Π Q{μn).— Q implies L has the form EK,
where E C Q(μn) is cyclic of degree 5 over Q. By Remark 1, D has no such
subfield.

According to Proposition 6, if ind(D) = m is odd, there is a cyclic ex-
tension E/Q of degree m such that E(i) is a maximal subfield of JD, and
E(i)/Q is clearly cyclic. We have proved

Theorem 7. A Q(i)-division ring D has maximal subfields which are cyclic
over Q if and only if ind(Z)) is odd.

Next we determine the ζ)(i)-division rings having maximal subfields which
are abelian over Q. The problem is easily reduced to the case of 2-power
index as follows. According to [Hers, Thm. 4.4.6], let D = Dλ ®Q(Ϊ) D2,
where ind(Di) = m is odd, and ind(D2) = 2*. If Dx and D2 have maximal
subfields Li and L2, respectively, then the composite LιL2 = L\ ®Q(») L2 is
a maximal subfield of D. If Iq and L2 are abelian over Q, then so is LχL2.
Conversely, if D has a maximal subfield L abelian over Q, let M be the fixed
field of the Sylow 2-subgroup H of Gal(L/Q), and let K be the fixed field
of the complement of H. Then M(i) splits Z?l7 K splits D2, and these â e
abelian over Q.

According to the above decomposition of D, we define four sets of primes
as follows:
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S' = the finite set of primes p of Q(i) such that indp(D2) > 1,

S = the restrictions to Q of primes in S",

$3 = primes p E S such that p Ξ 3 (mod 4),

T = primes in 5 3 such that ind p (D 2 ) = 2 * , p a divisor of p.

Theorem 8. Lei D be a Q(i)-division ring of index 2t -m, m odd. Ift~l,
then D has maximal sub fields which are abelian over Q. If t > 2, then D
has maximal subfields which are abelian over Q if and only

Proof. As shown above, we may assume D has 2-power index. Assume ί = 1.

By the approximation theorem, let E/Q be a quadratic extension such that

[Ep : Qp] = 2 for each p <E 5, and J ^ £ Ep if p = 2 or p = 3 (mod 4).

Then [E{ϊ)p : Q{i)p] = 2 for each p G 5 ;, so £7(i) splits D.
Next assume ί > 2 and that D has a maximal subfield L abelian over

Q. Then [L : Q) — 2t+1. Let σ denote complex conjugation restricted to
L. Then y/^Λ G L implies σ has order 2, and we let M denote the fixed
field of σ, [M : Q] = 2ι. If indp(Z>) = 2*, and p divides a rational prime
p = 3 (mod 4), then [Lp : Q(z)p] - 2*, L p = Af (ΐ)P, and Mp Π Q(i) p - Qp,
with [Mp : Qp] = 2*. The unramified quadratic extension of Qp is Q(i) p , so
Mp/Qp is totally and tamely ramified. Therefore Mp = Q p (α), α a root of
X2< — π for some prime element π of Qp. Then Mp/Qp is Galois, so μ2* Q Qp?
which contradicts >/—T 0 QP

Conversely, assume ind(jD) = 2*, ί > 2, and Γ = 0. By the Grunwald-

Wang theorem ([A-T, Chap. 10, Thm. 5]) let E/Q be a cyclic extension of

degree 2t with the following properties:

(i) L2 = Q2(C + C"1)) C a primitive 2 ί + 2-th root of unity, and

(ii) Lp/Qp is unramified of degree 2* for odd primes p E S.

Though we are in the special case of the Grunwald-Wang theorem

[A-T, Thm. 5, Chap. 10] if t > 3, this choice of L2 permits its use by

[A-T, Lemma 8, p. 104]. Then E(i)/Q(i) has degree 2*, has local degree

2ι~ι at divisors of primes in S congruent to 3 (mod 4), and has local de-

gree 2t over all other primes in S. So E(i) is a maximal subfield of D and

Gal(E(i)/Q) is abelian. D

Example. If D is the Q(i)-division ring of index 4 with invariant 0 at all
primes except invp(D) = 1/4, mvq(D) = —1/4, where p and q are the
divisors of 3 and 7 in Q(i), then D has no maximal subfield abelian over Q. In
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particular, no maximal subfield of D is contained in a cyclotomic extension of
Q(i). Thus we have additional counterexamples to the conjecture considered
in [Sch2].

As a corollary to the proof of Theorem 8, we answer the rationality ques-
tion for Q(i)/Q stated in the introduction.

Corollary 9. A Q(i)-diυision ring of index n has maximal subfields of the
form E(i), where E/Q is cyclic of degree n, if and only if D has maximal
subfields which are abelian over Q.

We now consider maximal subfields which are Galois over Q. As in the
abelian case, the existence of such subfields depends only on the local indices
of the 2-component of Dx ®Q{Ϊ) D2 at divisors of rational primes congruent
to 3 (mod 4). We are now at a disadvantage in that if L D Q(i) D Q is
Galois, a Sylow 2-subgroup of Gal(L/Q) need not be a normal subgroup,
and there need not exist a complementary subgroup of order m. It will turn
out that some choice of L/Q yields a Galois group with these properties.

In order to show that the existence of maximal subfields of D Galois over
Q does not depend on mdp(D) at the prime divisor of 2, we are required to
solve certain 2-adic embedding problems. We define the following groups:

D2t+i = (χ,y\χ2t = 1, y2 = 1, y~λxy = x~1) > t > 1

Q2t+i = (x,y\ χ2t = 1, i/2 = x2*~\ y~xχy = χ~ι), t > 2

SD»+i = (x,y\x2t = 1, y2 = 1, y'xxy = x'1^'1), t > 3.

The presentations of the dihedral and quaternion groups as metacyclic groups
are unique, but the relation y2 — 1 in the presentation for the semidihedral
group may be replaced by y2 — x2 . We let X denote the subgroup gener-
ated by x, and similarly Y — (y).

Lemma 10. For t > I, Q2M/Q2 has an embedding in a dihedral extension
of degree 2 ί + 1. For t > 3, Q2W/Q2 has an embedding in a semidihedral
extension of degree 2 ί + 1.

Proof Let K denote Q2(i) Then K has the prime element π = 1 — i. For
j > 1, let Uj denote the group of units of K which are congruent to 1 modulo
πj. In the direct decomposition

K* = (π) x U\

U1 is invariant under automorphisms from Y = Gal(K/Q2) and is therefore
a right multiplicative module for the group ring Z2[Y] of Y over the 2-adic
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integers. We claim U1 has a normal basis, i.e., that there is a 1-unit θ such
that every 1-unit has a unique expression of the form iaθbθcy, where 0 < a < 3
and b, c E Z2. Let θ = 1 — 2i, fl27 = 1 + 2z. To prove the claim it suffices
to show that the 1-units i, 1 — 2i, 1 + 2% generate a set of representatives
of each of the quotients Uj /Uj+1, for then they generate U1 itself and the
module structure is completely determined. Since K/Q2 is totally ramified,
each Uj/[P+1 has order 2, so it is enough to produce a nontrivial element of
each level. In fact:

i — 1 — π generates U1 /U2,

- 1 = 1 - iπ2 generates U2/U3,

-1(1 - 2ΐ) = 1 + iπ 3 generates C/3/ί74,

5 = ΛΓ(1 - 2i) = 1 - π 4 generates C/4/C/5.

It follows from [Has, Chap. 15, §5] that (1 + iπ3)2" generates level 3 + 2υ,
and (1 — π 4 ) 2 ^ generates level 4 + 2v. This proves the claim.

The relations πy = 1 -f- i — iπ show that the subgroup of K* generated
by π,i is y-invariant, with the submodule generated by θ as Y-invariant
complement. Therefore if we let Γ be the subgroup of K* generated by
(-RΓ*)2*,π,2, then K*/Γ is Y-isomorphic to the group ring Z2t[Y] of Y over
Z/2'Z.

By local class field theory there is a unique abelian extension L/K such
that Ni/K(L*) — Γ, and one has the reciprocity isomorphism

r-L/κ : K*/Y - ^

The Y-invariance of Γ implies that L/Q2 is a Galois extension. Here Y acts

on K*/Γ on the right via the Galois action and Y acts on Gal(L/K) via

the conjugation σ —> τ~ιστ, τ a lift of y to G Q 2 , and the map rijK com-

mutes with these actions ([Neu3, Prop. 2.8]). This makes r^/ivΓ : Z2t[Y] -»

Gal(L/K) an isomorphism of Y-modules. The exact sequence 0 —>• Z2* [Y] -^

Gal(Z/Q2) -> Y -> 1 is therefore split.
In the dihedral case, the conjugation y~1xy = x"1 makes X a Z2t[Y]-

module. It is a quotient of the free module Z2t [Y] by the map which sends
1 H-> x. Let L C Z be the fixed field of the kernel of this map. Then
1 —> X —>• Gal(L/Q2) —>• Gal(ΛΓ/Q2) —> 1 is split exact, and L/Q2 is a
dihedral extension of K/Q2. In the same way, L contains a semidihedral"
extension of K/Q2. D

We next consider cyclic extensions L/Q(ί) of degree 2* for which L/Q is
Galois and Gal (L/Q) — G is dihedral or semidihedral. These groups have
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unique cyclic subgroups of index 2, and we identify Gal(Q(i)/Q) with G/X.
Let Gp = Gsl(Lp/Qp) be the decomposition group of G over a rational prime
p = 3 (mod 4). Then >/—ΐ 0 Qp implies that the restriction to Gp of the
canonical map G —» G/X is surjective, i.e., G p and X generate G. This puts
some restriction on the isomorphism types of subgroups which may occur as
decomposition groups at such primes. We now determine these. The same
remarks apply to extensions of the form L/M(i)/M, where p is a divisor of
p such that y/^ϊ 0 Mp.

L e m m a 11. For t > 2, α subgroup H of D2t+i for which HX = D2t+ι is

isomorphic to one of D2t+i, D2t,... , £>4, or C2. For t > 3, α subgroup H of

SD2t+i for which HX — SD2t+i is isomorphic to one of SD2t+i,D2t,... ,Z>4;

Q2t,... ,Q8,C4, or C2.

Proof. Let H be generated by xr and a preimage xjy of σ in the exact

sequence

1->XΠH->H-+ (σ) ->1,

where σ has order 2. If i = 0 then H — D2t+i or SD2t+i. We assume i > 1,
then xjy sends J;2 ' to x~r by conjugation. In ̂ ί + i ί &V has order 2, so H
is dihedral of order 2\X Π £f|, unless i ϊ Π X = (1) and H = C2. In SD2t+i,
(xjy)2 = x j 2 , so xJy has order < 4, with equality if and only if j is odd. If
j is odd then (xjy)2 = a;2 and i ϊ is quaternion of order 2|X Π H\, unless
| X Π i ί | = 2 and H — C4. If j is even then x 7?/ has order 2, and i7 is dihedral
of order 2\X Π H\, unless X Π ί ί - (1) and H = C2. D

Definition. For a prime p = 3 (mod 4), we denote by oίp the greatest
integer d such that p = —1 (mod 2d).

One has 2 < dp < oo. For p Ξ 3 (mod 4), Theorem 1 implies D2t+ι
occurs as a Galois group over Qp iff p = —1 (mod 2*) iff t < cfp, and SD2t+ι
occurs iff p = - 1 + 2 ί- 1 (mod 2*) iff ί = dp + 1. For ί > 3, we will refer
to the following conditions on the sets of primes S3 and T defined prior to
Theorem 8, and the indices ind p (D 2 ):

(a) each prime in T is congruent to —1 (mod 2£). If p G S% then

ind p (D 2 ) < 2d".

(b) each prime in Γ is congruent to — 1 + 2ι~ι (mod 2*). If p £ 5 3 , then
p = - 1 (mod 2*) => indp(£>2) < 2*""1;

p ^ - 1 (mod 2*) and p ̂  - 1 + 2*"1 (mod 2*) =» indp(£>2) < 2^.

We now prove our main theorem.
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Theorem 12. Let D be a Q(i)-diυision ring of index 2ι m? where t > 0
and m is odd. Then the following statements hold:

(i) D has maximal subfields cyclic over Q if and only if t = 0.

(ii) D has maximal subfields abelian over Q if and only if t < 1 or T = 0.

(iii) D has maximal subfields Galois over Q if and only if t < 2 or T — 0,

orTφ$ and condition (a) or (b) is satisfied.

Proof. Assume D has a maximal subίield L Galois over Q, and assume
t > 3. Let σ denote complex conjugation restricted to L, let H be a Sylow
2-subgroup of G — Gal(L/Q) containing σ, and let M C L be the fixed
field of H. Then [M : Qj = m = [M(i) : Q(i)] and Gal(L/M(i)) is a Sylow
2-subgroup of Gal(L/Q(i)). If p e T then Gp = Gal(Lp/Qp) contains H,
where p is some divisor of p in L, and σ is identified with an element of
H = Hp = Gal(Lp/Mp). In addition, [Lp : M(i) p ] = 2* shows Λf (i) ® Q ( i ) Z?2

is an M(i)-division ring of index 2t having L as a maximal subfield.

The unramified quadratic extension of M p is M(i)p. Therefore L p , the
subfield of L p fixed by σ, is a totally and tamely ramified extension of Mp of
degree 2ι. It follows that Lσ

p — M p (α), α a root of X2* — π, π a prime element
of M p . The normal closure of Lσ

p/Mp contains μ2t, and ί > 3, so Lσ

p/Mp is
not normal. But μ2t C L p and Mp(μ2t)/Mp is unramified, so μ2* C M(i)p.
If </ denotes the number of elements of the residue field of M p , it follows that
2 equals the least positive integer / such that qf = 1 (mod 2£). Since q
equals p raised to the odd power f(Mp/Qp) = residue degree of Mp/Qp, we
have p~q (mod 2*), and p = — 1 or — 1 + 2t~~1 (mod 2*). Theorem 1 shows
ifp has a presentation (x,y\ x2 —\^y2— x\ y~ιxy — x p), where j = 2* or
2 t - 1 . But σ £ ί/p restricts to a generator of Gal(M(i) p /M p ), so we take y
to have order 2, j = 2ι. Then i ϊ = Γ ^ 1 oτ H ~ SD2t+i according as each
prime in T is congruent to —1 or — 1 + 2ι~ι (mod 2*).

Suppose p = —1 (mod 2ι) for all p G T, so that Gal(L/Q) has a Sylow 2-
subgroup H = (α:,y|rr2 = 1, y2 = 1, y~ιxy = x" 1 ) . We show that condition
(a) is satisfied by the indices mdp(M(i) ®Q(Ϊ) -D2) — indp(I?2) Let p E S3, p
a divisor of p in L such that Hp = ί/" Π G p is a Sylow 2-subgroup of G p , and
ffp has fixed field Mp. Then Q(i)p/Qp is proper, so £ΓP g Gal(L p /Q(i) p ). In
particular, Hp <£ Gal(L p /M(i) p ), so \/--ϊ 0 M p , and H is generated by ί ί p

and X. Then J ϊ p is among the groups listed in Lemma 11. In particular, Hp

has order at most 2dp+1 by Theorem 1, which implies ind p(M(i) ®Q(;) D2) <
2d*. This proves that (a) is satisfied. If p = - l-h2 ί ~ 1 (mod 2ι) for allp G T,
then H - (z,y |z 2 t = 1, y2 = 1, y " 1 ^ = a;-^ 2 *" 1 ). If p = - 1 (mod 2*)
and p G 5, then Lemma 11 and Theorem 1 show Hp may be dihedral (or
quaternion) of order at most 2*, so that ind p (D 2 ) ^ 2 ί~1. If p is congruent
to neither - 1 nor - 1 + 2t~1 (mod 2*) then similarly indp(£>2) < 2d p. This
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proves that (b) is satisfied.
Conversely, let D — D10Q^D2 as usual. Suppose Lλ is a maximal subfield

of Dγ which is cyclic over Q according to Theorem 7. If L2 is a maximal
subfield of D2 which is Galois over ζ), then LXL2 is a maximal subfield of D
which is Galois over Q. So we assume D — D2 has index 2*, and t > 2 by
Theorem 8.

Suppose first that t — 2. If p l 5 . . . ,p s are the rational primes in 5, then
the splitting field L of f(X) — X4 — Pi ps has Galois group D8 over ζ),
L/Q(i) is cyclic of degree 4, and [X(ίί)p : Q(i)P] — 4 at the critical primes,
so L is a maximal subfield of D which is Galois over Q.

Now let t > 3 and assume a nonempty set T which satisfies condition (a).
We embed Q(i)/Q in a D2t+i-extension L with prescribed behavior at the
primes p G S a s follows. By Lemma 10, there is an embedding of Q2(i)/Q2

in a dihedral extension L2 of degree 2 ί + 1 . If p E T, the splitting field Lp

of /(X) = X2* - p is a Z^t+i-extension of Q(i)p/Qp by Theorem 1. More
generally, if p E S^ then Q{i)p/Qp embeds in a dihedral extension Lp/Qp of
degree 2 r, where r = min(cfp + l, ί + 1). If p E 5 and p = 1 (mod 4), let
Lp/Qv be unramified of degree 2ι. These local prescriptions are consistent
by Lemma 11.

If the nonempty set T satisfies (b), we embed Q(i)/Q in an SD2t+i-
extension L/Q with the following localizations. By Lemma 10, there is
an embedding of Q2(i)/Q2 in a semidihedral extension L2 of degree 2 ΐ + 1 . If
p E Γ, the splitting field Lp of f(X) — X2' — p is an SD2t+i-extension of
Q(i)p/Qp by Theorem 1. If p E 5 and p ~ - 1 (mod 2*), then Q(i)p/Qp

embeds in a dihedral extension Lp of degree 2t. For all other p G S3,
Q(i)p/QP embeds in a dihedral extension Lp of degree 2 r f p + 1. If p E S
and p = 1 (mod 4), let Lp/Qp be unramified of degree 2*. These local
prescriptions are consistent by Lemma 11.

We now solve the embedding problem, with prescribed local solutions,
given by the exact sequence 1 - ) I 4 G - 4 Y - ) 1 , where Y = Gal(Q(i)/Q)
and G — D2t+i or G — SD2t+i. Let GQ denote the absolute Galois group
of Q, and let φ : GQ -+ Gal(Q(i)/Q) be the canonical map. Observe that
the group extension is split for either choice of G. It follows that there is
trivially a weak solution to the embedding problem, i.e., a (not surjective)
homomorphism ψ : GQ —> G such that j o ψ = φ. For q — — l o r — 1 + 2 ί~1,
the conjugation y~1xy — xg makes X a GQ-module. Also GQ acts on X' —
Hom(X,/i2t) by /z(a;) = f{xz~λ)z, x E X, z E G Q . Let Γ ; denote the fixed
field of the kernel of this action. If σq, for <? odd, denotes the automorphism
of Q(μ2t) defined by sending a primitive 2 ί-th root of unity to its q-th power,
then one may easily check that T" equals the fixed field of σ_i in the dihedral
case , and T" equals the fixed field of σ_1 + 2

t-1 in the semidihedral case. These
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fixed fields are cyclic extensions of Q. If G' denotes the Galois group ofT'/Q,
then G' is cyclic, in particular the decomposition groups G'p for p G S are
cyclic. It follows from [Neul, Kor. 2.5, Kor. 6.4(b)] that there is a G-Galois
extension L of Q(i)/Q such that the completions of L at divisors of primes
p G S coincide with the given fields Lp.

Since [Lp : Q{i)p] is a multiple of ind p(D) for each p G S", we have shown
that L is a splitting field of D, and is a maximal subfield of D which is a
Galois extension of Q. D

We have two corollaries from the proof of Theorem 12.

Corollary 13. Assume D has maximal subfields L Galois over Q, but no
maximal subfields abelian over Q. Then the Sylow 2-subgroups of the Galois
groups Gal(L/Q) are all dihedral or all semidihedral. In this case, L may
be chosen to be the composite of a cyclic m-extension of Q with a dihedral
or semidihedral extension of Q(i)/Q.

Corollary 14. Let D = D\ ®Q{i) D2, where ind(Di) is odd, ind(D2) — 2*.
Then D has maximal subfields cyclic, abelian, or Galois over Q if and only
if the same is true for D2.

Examples. 1. If D is the Q(i)-division ring of index 8 with invariant 0 at
all primes except invp(jD) = 1/8, mvq(D) = —1/8, where p and q are the
divisors of 3 and 7 in Q(i), then D has no maximal subfield Galois over
Q. By Proposition 4, [D] belongs to the image of Res : Br(Q) -> Bτ(Q(i)).
For instance, the Q-division ring Δ with invariant 0 at all primes except
inv3(Δ) = 1/16 and inv7(Δ) = -1/16 satisfies Q(i) ®Q A ^ M2(D).

2. Let PI,P2 5JP3 be distinct primes of Q(i) which divide rational primes
congruent to —1 (mod 16) and let p be the divisor of 3 in Q(i). Let D be
the Q(i)-division ring of index 16 having invariant 0 at all primes except
invp(jD) = 1/8, invp.(D) = -1/8,1/16, and -1/16 for j = 1,2,3. Then
d3 = 2 and indp(D) > 4 show that condition (a) is not satisfied, and D has
no maximal subfield Galois over Q. In terms of the proof of Theorem 12, if
L/Q is any .D32-extension of Q(i)/Q, then [Lp : Qs(i)] < 4, so indp(jD) < 4
would be implied by the existence of such a subfield.
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