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SHARING VALUES AND A PROBLEM DUE TO C.C. YANG

XlN-HOU HUA

In this paper, we proved a unicity theorem for meronaorphic
functions with one sharing pair and a condition on deficiency.
An example shows that the condition on deficiency is best
possible. This result gives a general answer to the problem
due to C.C.Yang (1977).

1. Introduction.

In this paper, by meromorphic function we always mean a function which
meronaorphic in the plane. Let f(z) be meronaorphic. We shall use the
following standard notations in Nevanlinna theory:

T(r,/), m(rj), N(r, / ) , . . .

(see Gross [5]). We denote by 5(r, /) any function satisfying

as r -> +oo, possibly outside a set of finite Lebesgue measure. A meromor-

phic function a(z) is said to be a small function of / if

In this case, we define

δ(a,f) = l- lim
T(r,f)

and a(z) is said to be a deficient function of / if 5(α, /) > 0.

Let g(z), ax(z) and a2(z) be meromorphic functions. If the two functions
f(z) — cίι(z) and g(z) — a2{z) assume the same zeros with the same multi-
plicities, then we call that / and g share the pair {aι,a2) CM. In particular^
if a,ι = a2 = α, then the word "the pair" is replaced by "the value" or "the
function" provided that a is a constant or a is a function respectively (cf.
Prank-Ohlenroth [4], Gundersen [6], etc.). In addition, if

N(r, (f = ai)A(g = α2)) = min{5(r,/), S(r,g)} ,
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then we say that / and g almost share the pair (αi, α2) CM. Here, N(r, (/ =
aι)A(g = α2)) is the counting function of those points which satisfy one of
the following three cases: (i) f — aλ but g φ α2; (ϋ) f Φ a>ι but g — α2; (iii)
/ = αi and g — a2 but the multiplicities are not the same.

In 1977, Yang [9] proved the following result.

Theorem A. Suppose that F is a family of the functions which are of
the form a.\(z)eμ^ + OL2[Z), where μ(z) is an entire functions with finite
order, ctj(z) (j = 1,2) are meromorphic functions of finite order, oti φ 0,
a2 φ const., the order of ctj (j = 1,2) is less than the order of μ. Let cγ

and c2 be two distinct constants, and let f G F, g G F. If f and g share the
two values Cγ and c2 CM, then f = g or

c2 -cιλ(z)\ ί c2-c1\(z)

1 - λ(z) J V3 1 - λ(z) J (1 - λ{z)Y '

where λ(z) is a nonconstant meromorphic function.

Based on this result, Yang [9] proposed the following problem.

Yang's problem. Whether can we omit the restrictions on the order in the
family F?

It is easy to see from the hypotheses of Theorem A that, if / = aι(z)eμ^ +

a2(z) G F and g = a3(z)e^ + aA(z) G F, then N(r, γ^) - o{Γ(r,/)}

( , J ^ : ) { ( , ί 7 ) } . Thus

(1)

(2) ί ( o o , / ) = ί ( o o , / ) = l.

These observations lead to our main result.

Theorem 1. Let f{z), g(z), a(z), b(z), a(z) and β(z) be meromorphic
functions in the plane, where a(z) and a(z) are small functions of f, b(z)
and β(z) are small functions of g(z), a(z) φ ot(z), b(z) φ β(z). Suppose
that f and g share the pair (α, b) CM and

(3) δ = δ(a, f) + δ(β, g) + δ(oo, /) + ί(oo, g) > 3.

Then either

(4) f-a ^g-β
V ' a-a b-β
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or

(5) L^9^β _

Remark 1. The number 3 in the inequality (3) is sharp.
For example, let P and Q be two nonzero polynomials, / = e2z — Qez,

g — I,V . Then one can check that / and g share the pair (P, Q) CM and

0, /) + *(0, g) + ί(oo, /) + ί(oo, g) = I + 1 + 1 + I = 3.

However, p ^ Q and ̂ ^ 1 .

Remark 2. Note that Theorem A needs two shared values. However, in
our theorem 1, we only need one shared pair.

Remark 3. The topic on unicity theorem concerning deficiency were studied
by Ozawa [7], Ueda [8] etc. The case that / and g are entire functions and
a(z) = b(z) — 1 was considered by Yi [10].

Remark 4. From the proof of Theorem 1 we see that the word "share" can
be replaced by "almost share".

As an application, we obtain the following

Corollary. The answer to Yang's problem is affirmative.

2. Some Symbols.

For the sake of convienence, we shall use some symbols introduced by Chuang
[1] and Chuang-Hua [2].

For meromorphic function f(z) and a point £, according as z is a pole of
f or not, we denote by ω(f,z) the multiplicity of z or 0 and by ω(f,z) the
value 1 or 0. For three meromorphic functions /, g and /ι, we divide the
set of the poles of / and g on {\z\ < r} into five pairwise disjoint subsets as
follows:

V i = :
V2=:

V3=:

V4=:

{z: }{z)

{z: f(z)

{z: f(z)

{z • f(z)

Φ oo,
= oo,

= 00,

= oo,

g(z) = oo}
g(z) φ oo}

9(z) = oo,

g{z) = oo,

h(z)

h(z)

= oo},
7^0,00}

Vs =: {z : f(z) = 00, g(z) = 00,
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Furthermore, for each j £ {1,...,5}, we denote by Πj(f) and rij(g) the
number of the poles of / and g in the set Vj respectively, with due count
of multiplicity. The corresponding counting functions are denoted by Nj(f)
and Nj(g) respectively. Obviously,

(6) N(r, f) = N2(f) + N3(f) + N4(f) + N5(f),

(7) N(r,g) = N^g) + N3(g) + N4(g) + N6(g).

3. One Basic Lemma.

For the proof of our results, we need the following lemma which can be found
in Chuang-Yang [3, p. 39] or Gross [5, pp. 70-73].

Lemma 1. Let fj (j = 1, ...,n > 2) be n linearly independent meromorphic

functions. If fι + ... + fn = 1? then we have

Γ(r, h) < Σ N (V, 1 ) + 7V(r, W) - N (V,

3=2

where W = W(z) is the Wronskian of /i,..., / n .

4. Proof of Theorem 1.

Let

F
λ
 =: {z : a(z) = oo} U {* : 6(z) = oo} U {z : α(^) = oo} U {z : /3(̂ ) = oo} ,

F
2
 =: {z : a{z) = α(^)} U {z : δ(^) = β(z)} .

Set

F=:FxUF
2
,

the corresponding counting function is denoted by NF(T). Put

(8) hlz)- f { z ) ~a{z)

Since a(z) and 6(z) are small functions of / and g respectively, we know that
h(z) φ 0, oo. Let z0 be a pole of h with zo £ F. Since / and g share the
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pair (α, b) CM, we have zo E V2 U V3. If zo G V2, then ω(Λ, zo) = ω(/, zo); If

ô G V3? then ω(/ι, zo) = ω(/, zo) - ω(g, 20). Thus

(9)
N2(f) + N3(f)-N3(g)-NF(r)<N(r,h)<N2(f) + N3{f)-N3(

Similarly we have

(10) N (r, ± ) < N^g) + N5(g) - N5(f) + NF(r).

Let

Λ , A , /,
α — a a — a a — a.

Then

(11) N (r, 1 ) < N (r, - ^ ) + ΛΓF(r),

(12)

(13) N(r, h) - NF(r) < N(r, f3) < N(r, h) + NF(r).

From (8) it is easy to see that any zero of h which is not in the set F is not
a zero of / 2. Thus

(14) 7

Now for any pole zo of / 2 with zo ^ F, we know that zo is a pole of g or h.

If zo e Vu then ω(g,z0) = ω(\,zo), and so, ω(f2,zo) = 0; If ^o G V2, then

^(Λ, ^o) = ω(/ι, 2?o) = α;(/, zo); If z0 G F 3, then ω(h, zo) = ω(f, zo) - ω(g, z0),

and so, ω(/ 2, ̂ o) = ω(g, 2ίo)+ω(Λ, z0) = ω(/, ̂ 0 ) ; If zo E F 4, then Λ(^o) φ 0, oo

and ω(f2,zo) = ω{g,zo)\ lί z0 G V̂ , then ω(£,s o ) = ω(g,zo) -ω(f,zo) and

^(Λ? ^o) — ̂ (^? ^o) "" ω(|;5 ^o) = ω(/> ̂ o) Combining all these facts we get

(15) N2(f) + N3(f) + Ntig) + N5(f) - NF(r) < N(r,f2)

< N2(f) + N3(f) + N4(g) + N5(f) + NF(r).

Next we rewrite (8) in the form

(16) Λ + f2 + h = I-
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Without loss of generality, we suppose that there exists a set I with infinite
measure such that

(17) T(r,g)<T(r,f), re I.

(Otherwise, we only need to consider T(r, g) instead of T(r, /) in the follow-
ing discussions.) Thus NF(r) = S(r,f), r e I.

In the sequel, we always let r G I. Now we prove the following lemma.

Lemma 2. fί} f2 and f3 are linearly dependent.

Proof. Suppose on the contrary that the /'s are linearly independent. By
lemma 1,

T{r,h) <ΣN (r,y-) +N(r,W) -N (r,-ί) -N(r,f2) - N(rJ3)

where W is the Wronskian of /x, f2, fz, i.e.,

W =
h h h

fi u n
Λ" fϋ fξ

SΊS'z
Λ" fS

by (16). Now by (10), (11), (12) and (14),

+ N1(g)+N5(g)-N5(f)

In addition, by the inequalities on the left hand sides of (9), (13) and (15),

N(r, f2) + N(r, f3) > 2N2(f) + 2N3(f) + N4(f) + N5(f) - N3(g) - 3iVF(r).

Combining the three inequalities above we get

Γ(r, Λ) <N(r, W)-N (r, ̂ ) + N (r, J i - ) + N (r, -L

+ N^g) + N3(g) + N5(g)

- 2N2(f) - 2N3(f) - N4(f) - 2N5(f)

+ 7NF(r) + S(r, Λ) + S(r, f2) + S(r, f3)



=N(r, W) -

+ N1{g)Λ

-2iV2(/)

SHARING

N(T
 l

N V' w
-N3(g)+,

-2iV3(/)

VALUES

/V4(ff) + iV5

- 2 J V 4 ( / ) -

1

f - o

Xg)
-2N5

;) +
N(T

 l

\'g-β
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+ 7NF(r) + Sir,/,) + S(rJ2) + S(r,f3).

Substituting (6) and (7) into the above inequality and using the facts that

ΛW) - N4(g), T(r,f) - T{r,fλ) + S(r,f),

T(r,a), T(r,b), T(r,a), T(r,β) = S(r, /),

NF(r), S(r,fj) = S(r,f), (j = l,...,3)

we obtain

T(r, f)<N (r, j ^ j + N (r, - L g ) + iV(r, W) - N (r, ^

(18)

Next we estimate the term N(r, W) - N (r, ψ). Since

from the expressions of /i and /3 we see that the poles of VF only occur at
the poles of / and the points in F. Let z0 be a pole of / with z0 £ F.

If zo £ V2, then near z — z0,

where x and y are nonzero constants. If α>(/, ^0) > 2, then

L ) + 3 {-ω(/,zo)
2(ω(/^o) + l)xy + O(z

and so,

/ί/s' - /ί'/s = O [ {z _ Zo)2ω{f,za)+2 }
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If ω(f, ZQ) = 1, then

-2xy Q(l)

( ) 3

-2sy Q(l)
Λ / s ~ (z - *)« + (z -

and so,

Thus

f b ) + 2, ifα;(/,zo)>2

\ iΐω(f,zo) = l

<3ω(f,z0).

lΐz0 € V3, then ω(£?,z0) > 1 and ω(f,z0) > 2. Thus, by (19),

ω(W, z0) < 2ω(f, z0) + 3 - ω(£, z0)

If ZQ € F4, then ω(f,z0) = ω(5,z0), and so, ω(f3,z0) = 0. By (19), we get

ω{W,z0) < ω(f,z0) + 2 < 3ω(/,zo)

If z0 6 F5, and if z0 is a pole of W, then by (19),

ω(W,z0) <ω{f,zo) + 2

<3ω(f,z0).

Combining all the cases above and noting (6), we deduce that

N{r,W)<3N(r,f) + NF(r).

This and (18) give

(20) T(r, f)<N (r, ~^J + N (r, -L^j + N(r, f) + N(r, g) + S(r, /).

Now by the definition of deficiency, for e = η-p > 0, where δ is the sum in
(3), there exists ro > 0 such that

N
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N (r' J^β) ~ ( 1 ~

and
N(r,g) <(l-δ(oo, g)+e)T(r,g)

hold for r G / and r > r0. Substituting all these inequality into (20) and
noting (17), we get δ < 3, which contradicts our hypothesis. This completes
the proof of the lemma.

Now by Lemma 2, there exist three constants Ci, c2 and c3 with

(21) M + h l + lcsl^O

and

(22) CX.Λ+02/3 + 03/3=0.

If d = 0, then c2c3 φ 0 and /2 = - a / 3 . This leads to g = ^-b(z) +

ί l — ̂ jβ(z), which contradicts the assumptions that b(z) and (̂2?) are

small functions of g. Thus, C\ φ 0. We may suppose cx — — 1, and (22) reads

fλ — c2/2 + C3/3. Combining this and (16) we obtain

(23) (l + c2)/2 + ( l + c 3 ) / 3 - l .

Next we consider two cases.
(i) 1 + c2 = 0. Then 1 + c3 φ 0 and (1 + c3)/3 = 1. It follows from (8) and

the definition of f3 between (10) and (11) that

c3a -ha C3C1 + a

( 2 4 ) 6 —

6-/3'

If c3 φ 0, then c\V^a φ Oί. By the Nevanlinna "three-functions theorem" we
deduce that

T(r, f) < N(r, f)+N (r, y - ^ ) + N ίr' ; L + α ) + S(r, f)

= N(r, f)+N (r, - ^ ) + JV (r, ^
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This is impossible by the same reasoning as in the proof of Lemma 2. There-
fore c3 — 0 and (24) reads

/ — a a — a

This is what we need.

(ii) 1 + c2 φ 0. It follows from (8), (23) and the definitions of f2 and f3

between (10) and (11) that -(1 + c2)f5f + (1 + C3)£Ξ£ = fΞJS w h i c h c a n b e

written as

/OKX / C 2 α + α __ ( C2 ~ c3 ^ (a-a)(b-β)
\Δ0) J T~t ~

If c2 Φ 0, then £f^L φ α. By the "three-functions theorem", we have

T(r, f) < N(r, f)+N (r, ̂ ) + ΛΓ (r, , j α + α ) + S(r, /)

\ J -OLJ \ J ~ 1+ C 2 /

hΛΓ(r^) + 5(r,/).

By the same reasoning as in the proof of Lemma 2, we can get a contradiction.

Thus c2 = 0, and (25) reads

(26) /-«= - (-«)( '-«
' 9-(l + c,)i,-

If c3 = —1, then
(/-α)( 5 -/3) = ( α - α ) ( 6 - ^ ) ,

as asserted. If c3 φ —1, then α+c3Q ^ α and (26) can be written as

_ α + c3α / c3

C3 U + C3/ 5 -

Thus, the "three-functions theorem" gives

T(r, /) < N(r, f) + N (r, - i — ) + iV (r, j

< iV(r, /) + iV (r, - ^ ) + JV (r, j ^ j + S(r, /).

Λ + S(r, f)

1+C3 /

By the same reasoning as in the proof of Lemma 2 we obtain a contradiction.
This completes the proof of the theorem. D
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