GENERALIZED MODULAR SYMBOLS AND RELATIVE LIE ALGEBRA COHOMOLOGY

Avner Ash and David Ginzburg

In this paper we explore the limitations forced on the infinity type of a cohomological automorphic representation given the non-vanishing of an associated period over a generalized modular symbol. After some general remarks, we discuss the example of $G L(2 n)$ over a totally real field.
Let G be a reductive group defined over the number field F and $\pi \approx \underset{v}{\otimes} \pi_{v}$ a cuspidal irreducible automorphic representation of $G(\mathbb{A})$, where v runs over all the places of F and \mathbb{A} denotes the adeles of F. Write ω for the central character of π. Let $G_{\infty}=\Pi G_{v}$ where v runs over the archimedean places of F and choose K_{∞} to be a compact subgroup of G_{∞} which contains the connected component of the identity of a maximal compact subgroup of G_{∞}. Denote by X the symmetric space $G_{\infty} / K_{\infty} Z_{\infty}^{0}$ where Z is the center of G. We assume X is non-compact.

Set $G_{f}=\Pi G_{v}$ where v runs over the non-archimedean places of F and choose a compact open subgroup L of G_{f}. We let Γ be the arithmetic subgroup of $G(F)$ defined to be the projection of $G(F) \cap G_{\infty} L$ into G_{∞}. We assume $\Gamma \backslash X$ is orientable. Let $\mathfrak{g}=$ Lie $G_{\infty}^{0} / Z_{\infty}^{0}$ and $\bar{K}_{\infty}=$ image of K_{∞} in $G_{\infty}^{0} / Z_{\infty}^{0}$.

We recall the well-known isomorphism of cohomology groups $H_{\text {cusp }}^{*}(\Gamma \backslash X, \mathbb{C}) \approx \otimes H^{*}\left(\mathfrak{g}, \bar{K}_{\infty} ; L_{\text {cusp }}^{2}(G(F) \backslash G(\mathbb{A}), \omega)\right)^{L}$. The latter contains $H^{*}\left(\mathfrak{g}, \bar{K}_{\infty} ; \pi_{\infty}\right) \otimes \pi_{f}^{L}$ as a summand (identifying π with its image in $L_{\text {cusp }}^{2}(G(F) \backslash G(\mathbb{A}), \omega)$ but taking care to remember that the isomorphism $\pi \approx \underset{v}{\otimes} \pi_{v}$ is an abstract one and doesn't "take place" inside $\left.L_{\text {cusp }}^{2}\right)$. We let d be a non-negative integer and choose $[\psi] \in H_{\text {cusp }}^{d}(\Gamma \backslash X, \mathbb{C})$ where ψ is a closed differential d-form on $\Gamma \backslash X$ representing the cohomology class $[\psi]-$ we may even take ψ harmonic. Under the isomorphism above, we suppose ψ goes over to $\alpha \otimes \beta$, with $\alpha \in H^{d}\left(\mathfrak{g}, \bar{K}_{\infty} ; \pi_{\infty}\right)$ and $\beta \in \pi_{f}^{L}$. Recall that $H^{d}\left(\mathfrak{g}, \bar{K}_{\infty} ; \pi_{\infty}\right) \approx \operatorname{Hom}_{K_{\infty}}\left(\wedge^{d} \mathfrak{g} / \mathfrak{k}, \pi_{\infty}\right)$ and we view α as such a homomorphism. (Here $\mathfrak{k}=$ Lie \bar{K}_{∞}.)

Now let H denote a reductive F-subgroup of G. We assume H_{∞} is connected and $H(\mathbb{A})$ satisfies strong approximation. Choose $e \in X$ fixed by K_{∞} and set $X_{H}=H\left(F_{\infty}\right) e \subset X$. We assume $M=\left(H_{\infty} \cap \Gamma\right) \backslash X_{H}$ is orientable,
and we fix an orientation. Then the two propositions of Section 1 of [AGR] imply that for some f in the space of π

$$
\int_{H} \psi=\int_{[Z(\mathbb{A}) \cap H(\mathbb{A})] H(F) \backslash H(\mathbb{A})} \omega^{-1}(h) f(h) d h .
$$

There is a canonical procedure for finding f given ψ or vice versa. Following the argument in Section 5.2 of [AG], we take a basis $Y_{1}, \ldots Y_{d}$ of Lie $H_{\infty}^{0} /\left(K_{\infty} \cap H_{\infty}^{0}\right) Z_{\infty}^{0}$ and set $Y_{M}=Y=Y_{1} \wedge \cdots \wedge Y_{d}$. Then up to a nonzero multiplicative constant we may take $f=\alpha(Y) \beta$. In particular, if the integral doesn't vanish then $\alpha(Y) \neq 0$, and of course $d=\operatorname{dim} X_{H}=\operatorname{dim} M$.

We call f a cohomological vector for π. We call such an integral a period (of the cuspform f or the cohomology class $[\psi]$) over the (generalized) modular symbol M. In our terminology, a modular symbol is an oriented locally finite cycle such as M arising as the projected orbit of a reductive group.

In [AGR] it is shown that these integrals are absolutely convergent. Combining the topological methods of [RS] with the deRham theorem, it is easy to construct modular symbols M that support non-vanishing periods. Here the reductive group H underlying M will be the fixed points in G of some finite group action.

The non-vanishing of periods seems to be connected with properties of π and its L-functions, e.g. whether π is a lift from some other group, or whether a certain L-function has a pole. This is being investigated by Jacquet, Rallis and others. See $[\mathbf{A G}]$ for an example, and the references cited there.

On the local level, a non-vanishing period implies the existence of a nontrivial H_{∞} - invariant functional on π_{∞}, which should be related to whether π_{∞} is a lift.

In this paper we begin to study the question: Does the non-vanishing of a period put a constraint on the isomorphism type of π_{∞} ? The case of $G L(4)$ was studied already in [AG] and there led to a proof of the non-vanishing of a p-adic L-function. This paper arose out of an attempt to extend those results to $G L(2 n)$ for $n>2$. We shall see that although many possibilities for π_{∞} are ruled out by the nonvanishing of the period, already for $G L(6)$ and $G L(8)$ there are too many possibilities left to allow the use of the trick in Section 5 of [AG] for $n>2$ to prove the non-vanishing of a certain archimedean integral and hence of the p-adic L-function.

In Section 1 we review the Vogan-Zuckerman classification of π_{∞} with nontrivial $\left(\mathfrak{g}, \bar{K}_{\infty}\right)$-cohomology. In Section 2 we show how the nonvanishing period enters the picture and prove some propositions that can be used in practice to rule out certain π_{∞} 's. In Section 3 we outline the example of $G L(8)$ with remarks applying to $G L(m)$ for various m, notably $m=2,4,6$. In the appendix we give a heuristic connection between the existence of a
nontrivial $K_{\infty}^{0} \cap H_{\infty}$-fixed vector in the cohomological K-type of π_{∞} and a nontrivial H_{∞}-invariant continuous linear functional on π_{∞} in the case where $G=G L(2 n)$ and $H=G L(n) \times G L(n)$.

We close this introduction by pointing out a comparison among the results in $[\mathbf{A}],[\mathbf{A G R}]$, and this paper. In [A] the existence of a non-vanishing period for π puts constraints on the local component π_{v} of π at a non-archimedean place, for local reasons. In this paper, we have similarly locally effected results at archimedean places. In [AGR], vanishing of certain periods was derived from global considerations.

1. Classification of representations with nontrivial (\mathfrak{g}, K) cohomology.

For simplicity we assume in this section G is a semi-simple, real, connected Lie group with finite center. Let $\mathfrak{g}=\operatorname{Lie}(G) \otimes \mathbb{C}$ and $K \subset G$ a maximal compact subgroup. The modifications needed when G is reductive or non-connected are most easily performed on an ad hoc basis. In [VZ] a finite list of irreducible admissible (\mathfrak{g}, K) - modules $\{\pi\}$ is given such that $H^{*}(\mathfrak{g}, K ; \pi) \neq 0$ and it is shown that every irreducible unitary G representation with nontrivial (\mathfrak{g}, K) - cohomology has its Harish-Chandra module isomorphic to some π on the list. Later in [V] and [W] it was shown that each π on the list is the Harish-Chandra module of a unitary G-representation. Hence the unitary nature of a π_{∞} arising from a cohomological cuspform places no restrictions on its isomorphism type. In [VZ] twisting π by a finite dimensional representation is also allowed, but we are interested only in untwisted coefficients here. We summarize the properties of the classification that we will use. See [VZ] for complete details.

Let $\mathfrak{k}=\operatorname{Lie}(K) \otimes \mathbb{C}, \theta$ be the corresponding Cartan involution, and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ the Cartan decomposition. A finite set $\{\mathfrak{q}\}$ of θ-stable parabolic subalgebras of \mathfrak{g} is defined. Write $\mathfrak{q}=\ell+\mathfrak{u}$, where ℓ is a Levi-factor and \mathfrak{u} the radical of \mathfrak{q}. One chooses a Cartan subalgebra \mathfrak{t} of \mathfrak{k} which is contained in ℓ and let $\mu=\mu(\mathfrak{q})=$ irreducible representation of K with highest weight $2 \rho(\mathfrak{u} \cap \mathfrak{p})$. Here $\rho(\mathfrak{u} \cap \mathfrak{p})$ is one-half the sum of the \mathfrak{t} weights on $\mathfrak{u} \cap \mathfrak{p}$.

We shall call the isomorphism class of μ a cohomological K-type. It appears in $\wedge^{*} \mathfrak{p}$. There is a unique irreducible admissible (\mathfrak{g}, K)-module $\cdot A_{\text {व }}$ such that $H^{*}\left(\mathfrak{g}, K ; A_{\mathfrak{q}}\right)=\operatorname{Hom}_{K}\left(\wedge^{*} \mathfrak{p}, A_{\mathfrak{q}}\right) \neq 0$ and the only K-type shared by $\wedge^{*} \mathfrak{p}$ and $A_{\mathfrak{q}}$ is $\mu(\mathfrak{q})$. Moreover for different \mathfrak{q} 's the $\mu(\mathfrak{q})$'s (and hence the $A_{\mathfrak{q}}$'s) are distinct. Every irreducible admissible (\mathfrak{g}, K)-module π with $H^{*}(\mathfrak{g}, K ; \pi) \neq 0$ is isomorphic to one of the A_{q} 's.

2. Enter the nonvanishing period.

We maintain all the preceeding notation.
Now suppose π_{∞} is isomorphic to $A_{\mathfrak{q}}$ for some \mathfrak{q} and that the period of a cohomological vector for π over $H(\mathbb{A})$ doesn't vanish. In this case we shall say that π has a nontrivial H-period. Let d be the dimension of the corresponding modular symbol M, with $Y_{M} \in \wedge^{d} \mathfrak{p}$.

Proposition 2.1. Suppose π has a nontrivial H-period, and $\pi_{\infty} \approx A_{q}$. Then
(1) $\mu(\mathfrak{q})$ appears in $\wedge^{d} \mathfrak{p}$;
(2) $\mu(\mathfrak{q})$ contains a nontrivial vector invariant under $H_{\infty} \cap K$;
(3) The K-submodule of $\wedge^{d} \mathfrak{p}$ generated by Y_{M} projected onto the $\mu(\mathfrak{q})$ isotypic component of $\wedge^{d} \mathfrak{p}$ is non-vanishing.

Remark. Although (1) and (2) immediately follow from (3) since Y_{M} is clearly $H_{\infty} \cap K$-invariant, we stated the three items in order of ease of checking in any given example.

Proof. As stated we need only prove (3). From the hypothesis, there exists $\alpha \in \operatorname{Hom}_{K}\left(\wedge^{d} \mathfrak{p}, A_{q}\right)$ such that $\alpha\left(Y_{M}\right) \neq 0$. Since $\mu(\mathfrak{p})$ is the only K-type shared by $\wedge^{d} \mathfrak{p}$ and $A_{\mathfrak{q}}$, (3) follows.

Proposition 2.2. Under the hypotheses of the previous proposition, suppose in addition there exists a connected noncompact semi-simple Lie group G_{1} with Iwasawa decomposition $G_{1}=K_{1} A_{1} N_{1}$ such that (Lie G_{1}) $\otimes \mathbb{C}$ is isomorphic to $($ Lie $K) \otimes \mathbb{C}$ by an isomorphism that takes $\left(\right.$ Lie $\left.K_{1}\right) \otimes \mathbb{C}$ onto $\operatorname{Lie}\left(H_{\infty} \cap K_{1}\right) \otimes \mathbb{C}$. Extend Lie A_{1} to a maximal abelian subalgebra \mathfrak{t}_{0} of \mathfrak{g}, so that $\mathfrak{t}_{0}=\mathfrak{t}_{0} \cap$ Lie $K_{1} \oplus$ Lie A_{1} is a Cartan subalgebra of Lie G_{1}. Let λ be the highest weight of $\mu(\mathfrak{q})$ with respect to \mathfrak{t}_{0}. Then
(1) $\lambda\left(\sqrt{-1}\left(\mathfrak{t}_{0} \cap\right.\right.$ Lie $\left.\left.K_{1}\right)\right)=0$;
(2) $\frac{\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}^{+}$for all $\alpha \in \Sigma^{+}$
where Σ^{+}is the set of positive restricted roots on Lie A_{1} with respect to the ordering induced by the choice of N_{1}.

Proof. This follows from Proposition 2.1 (2) and Helgason's criterion Theorem 4.1 p. 535 of $[\mathbf{H}]$ after complexifying the Lie algebras and taking the hypotheses into account.

In the following, with a view to our examples in the next section, we go back to the notation of Section 1 and allow G to be reductive and not necessarily connected. Thus $\mathfrak{g}=$ Lie $G_{\infty}^{0} / Z_{\infty}^{0}, \mathfrak{k}=$ Lie \bar{K}_{∞}, etc.

The group of components $\bar{K}_{\infty} / \bar{K}_{\infty}^{0}$ acts on the set of cohomological K types $\{\mu(\mathfrak{q})\}$ in the obvious way. If O is an orbit, there is an obvious way to make $\underset{\mu(\mathfrak{q}) \in O}{\oplus} A_{\mathfrak{q}}$ into an irreducible $\left(\mathfrak{q}, \bar{K}_{\infty}\right)$-module. We will denote it by $B_{\mathfrak{q}}$ for any \mathfrak{q} such that $\mu(\mathfrak{q}) \in O$. Every irreducible ($\mathfrak{q}, \bar{K}_{\infty}$)-module with nontrivial cohomology is isomorphic to $B_{\mathfrak{q}}$ for some \mathfrak{q}.

Now let \tilde{K} denote the algebraic \mathbb{R}-group such that $\tilde{K}(\mathbb{R})=\bar{K}_{\infty}$, so Lie $\tilde{K}(\mathbb{C})=\mathfrak{k}$. Given $\mathfrak{q}=\ell+\mathfrak{u}$, we have the Cartan subalgebra \mathfrak{t} of \mathfrak{k} contained in ℓ and we choose a Borel subalgebra $\mathfrak{b}=\mathfrak{t}+\mathfrak{n}$ of \mathfrak{k} such that $\mathfrak{u} \subset \mathfrak{n}$. We use capital Roman letters to denote subgroups of $\tilde{K}(\mathbb{C})$ whose Liealgebra equals the corresponding small Gothic letter. Thus Q is a parabolic subgroup of $K=\tilde{K}(\mathbb{C})$ with Levi decomposition $Q=L U$. Also, B is a Borel subgroup of K with Levi decomposition $B=T N$. We let H stand for $H(\mathbb{C})$.

We now make the following additional hypothesis. For an illustration of it, see Section 3.

Hypothesis 2.3. There exists a parabolic subgroup P_{0} of K with Levi decomposition $P_{0}=L_{0} U_{0}$ such that
(i) $P_{0} \supset B$ and hence $U_{0} \subset N$;
(ii) $T \subset L_{0}$;
(iii) $\quad U_{0}$ contains a subgroup W_{0} such that Lie $N=$ Lie $N \cap H \oplus W_{0}$;
(iv) $L_{0} \subset H$ and L_{0} stabilizes W_{0} under conjugation.

Now choose an order on \mathfrak{t}^{*} so that B corresponds to the positive roots Φ_{+} and for each $\alpha \in \Phi_{+}$fix $u_{\alpha}: \mathbb{C} \underset{\rightarrow}{\rightarrow} U_{\alpha} \subset N$. Order the positive roots $\alpha_{1}, \ldots \alpha_{r}$ and write $u_{i}=u_{\alpha_{i}}$. We assume the ordering chosen so that $u_{1}, \ldots u_{m}$ generate W_{0} and $u_{m+1}, \ldots u_{r}$ generate $N \cap H$. Let $x_{1}, \ldots x_{r}$ be indeterminates and view them as coordinates on N by $x=\left(x_{1}, \ldots x_{r}\right)=u_{1}\left(x_{1}\right) \ldots u_{r}\left(x_{r}\right)=$ $u\left(x_{1}, \ldots x_{r}\right)=u(x)$. Let $x^{\prime}=\left(x_{1}, \ldots x_{m}\right)=u_{1}\left(x_{1}\right) \ldots u_{m}\left(x_{m}\right)=u\left(x^{\prime}\right)$. We have an induced action of L_{0} on $P \in \mathbb{C}\left[x^{\prime}\right]=\mathbb{C}\left[x_{1}, \ldots x_{m}\right]=\mathbb{C}\left[W_{0}\right]$ by $(g \cdot P)\left(x^{\prime}\right)=P\left(g^{-1} \cdot x^{\prime}\right)=P\left(g^{-1} u\left(x^{\prime}\right) g\right)$.

Fix an irreducible K-submodule V of $\wedge^{d} \mathfrak{g} / \mathfrak{k}$ with highest weight δ (all weights with respect to \mathfrak{t}) and let proj denote the K-equivariant projection onto V. Let Y be a generator of the line \wedge^{d} Lie $H /$ Lie $H \cap \mathfrak{k}$ in $\wedge^{d} \mathfrak{g} / \mathfrak{k}$. It has weight zero. For any T-module M and weight λ write M_{λ} for the λ isotypic component of M. For each weight μ in V choose a \mathbb{C}-basis $\left\{v_{\mu, i}\right.$: $\left.i=1, \ldots j_{\mu}\right\}$ of V_{μ}. Since V_{δ} is one-dimensional we write v_{δ} in place of $v_{\delta, 1}$.

Lemma 2.4. Define $\left\{P_{\mu, i}(x) \in \mathbb{C}[x]\right\}$ by proj $u(x) \cdot Y=\Sigma_{i} P_{\mu, i}(x) v_{\mu, i}$.
(i) $P_{\mu, i}(x)$ is independent of $x_{m+1}, \ldots x_{r}$ for all μ, i.
(ii) P_{δ} is a maximal vector for $L_{0} \cap B^{\mathrm{opp}}$ of weight $-\delta$ and generates an

L_{0}^{0}-module contragredient to a quotient of $\operatorname{Res}_{L_{0}^{0}}^{K} V$.

(iii) V is contained in the K-span of Y if and only if $P_{\delta} \neq 0$.

Proof. Since for $i>m \quad u_{i}\left(x_{i}\right) \in H \cap N$ and H^{0} fixes Y, statement (i) is true. To prove (ii) reindex the $\left\{v_{\mu, i}\right\}$ as $\left\{v_{k}\right\}$. Let $g \in L_{0}^{0} \subset H$, so $g Y=Y$. Then

$$
\operatorname{proj} u\left(g \cdot x^{\prime}\right) Y=\operatorname{proj} g u\left(x^{\prime}\right) g^{-1} g Y=\Sigma P_{k}\left(x^{\prime}\right) g v_{k}
$$

On the other hand

$$
\operatorname{proj} u\left(g \cdot x^{\prime}\right) Y=\Sigma P_{k}\left(g \cdot x^{\prime}\right) v_{k}=\Sigma g^{-1} P_{k}\left(x^{\prime}\right) v_{k} .
$$

Comparing the right hand sides, we see that the matrix representation of g on the span of $\left\{P_{k}\right\}$ is a quotient of the contragredient V^{*} of V. Thus P_{δ} generates an L_{0}^{0} - module isomorphic to a quotient of $\operatorname{Res}_{L_{o}^{0}}^{K} V^{*}$.

View δ as a character on T and extend it to B by making it trivial on N. If $g \in B^{\circ \mathrm{opp}}$, since v_{δ} is a maximal vector in V, we have $g v_{k}$ has no v_{δ}-component unless $v_{k}=v_{\delta}$ and then $g v_{\delta}=\delta(g) v_{\delta}$. Comparing the right hand sides again we get

$$
\delta(g) P_{\delta}=g^{-1} P_{\delta}
$$

Statement (iii) follows from Lemma 5.5 .1 of [AG] except we use V in place of the whole isotypic component of type δ.

Lemma 2.5. If δ is the cohomological K-type of $B_{\mathfrak{q}}$ and $Q=L U$ is the Levi decomposition, then as $L \cap K$-module, $V=V_{\delta} \oplus\left(\sum_{\mu \neq \delta} V_{\mu}\right)$.

Proof. From the proof of Proposition 3.6 of [VZ] we see that $L \cap K$ fixes the line V_{δ}. Therefore, if α is any root of $L \cap K$, the α-string of weights of V in $\delta+\mathbb{Z} \alpha$ is just $\{\delta\}$. (Incidentally this proves that $\langle\delta, \alpha\rangle=0$ in the notation of Section 21.3 of $[\mathbf{H u}]$.) So if μ is a weight of $V, \mu \neq \delta$, the α-string through μ can't reach to δ. Hence $\sum_{\mu \neq \delta} V_{\mu}$ is also $L \cap K$-invariant.

Lemma 2.6. Suppose $s \in L \cap L_{0}$ such that $s \cdot P_{\delta}=a P_{\delta}, s \cdot Y=b Y, s \cdot v_{\delta}=c v_{\delta}$ with $a, b, c \in \mathbb{C}$. Then if $a b c \neq 1, V$ is not contained in the K-span of Y in $\wedge^{d} \mathfrak{g} / \mathfrak{k}$.

Proof. As in the proof of (ii) of Lemma 2.4 we obtain $b \Sigma P_{k} s v_{k}=\Sigma s^{-1} \cdot P_{k} v_{k}$. From Lemma 2.5 we can equate the terms involving v_{δ} to get $b P_{\delta} s v_{\delta}=$ $s^{-1} P_{\delta} v_{\delta}$ or $a b c P_{\delta}=P_{\delta}$. If $a b c \neq 1, P_{\delta}=0$ and the conclusion follows from (iii) of Lemma 2.4.

3. Examples: $G L(2 n)$.

In this section we apply the foregoing to the example whose interest stems from [AG]. We refer the reader to the introduction of that paper for motivation.

We let $G=G L(2 n) / \mathbb{Q}$ for $n \geq 1$. Choose $K_{\infty}=O(2 n, \mathbb{R})$ and $H=$ $G L(n) \times G L(n)$. Although H doesn't satisfy all the hypotheses made in Section 1, in this particular example all the conclusions there and in Section 2 remain true, as comparison with Section 5 of [AG] will show.

We found in [AG] that for $n=2$, the nonvanishing of the H-period determined π_{∞} uniquely up to isomorphism. The same is easily seen to be the case for $n=1$. Here we will investigate $n=3$ and $n=4$.

Of particular interest in the following calculations is the invariant theory that comes in.

We will present the $G L(8)$ case in detail and summarize our results for the $G L(6)$ case. The methods in both cases are basically the same, but since $G L(6)$ is smaller that $G L(8)$, less variety appears.
3.1. Case of $G L(N)$. First we present the list of irreducible (\mathfrak{g}, K)-modules π with non-trivial cohomology. We thank J.S. Li for providing us with this, which may be derived either from Speh's original article [\mathbf{S}] or from the general theory of Vogan and Zuckermann [VZ].

In this subsection, let $G=G L(N, \mathbb{R}), K=O(N), \mathfrak{a}=$ Lie $G, \mathfrak{k}=$ Lie K, $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ a Cartan decomposition. Let $\epsilon_{j}, 1 \leq j \leq\lfloor N / 2\rfloor$ be the usual basis for the dual of a Cartan subalgebra of \mathfrak{k}.

Let $r_{1}, \ldots r_{k}$ be positive integers with $m=r_{1}+\cdots+r_{k} \leq N / 2$. We allow the case $k=0$. There corresponds a θ-stable parabolic subalgebra $\mathfrak{q}=\ell+\mathfrak{u}$ whose corresponding Levi subgroup is

$$
L=G L\left(r_{1}, \mathbb{C}\right) \times \cdots \times G L\left(r_{k}, \mathbb{C}\right) \times G L(N-2 m, \mathbb{R})
$$

In the notation of Section 2 the (\mathfrak{g}, K) - module $B_{\mathfrak{q}}$ is irreducible, unitarizable and $H^{*}\left(\mathfrak{g}, K ; B_{\mathfrak{q}}\right) \neq 0$. Any such π is isomorphic to $B_{\mathfrak{q}}$ for some $\mathfrak{q}=\mathfrak{q}\left(r_{1}, \ldots r_{k}\right)$ arising this way.

Set $m_{s}=r_{1}+\cdots+r_{s}, 1 \leq s \leq k$. Then the cohomological K-type of $B_{\mathfrak{q}}$ has highest weight

$$
2_{\rho}(\mathfrak{u} \cap \mathfrak{p})=\sum_{1 \leq s \leq k} \sum_{m_{s-1} \leq i \leq m_{s}}\left(N+1-m_{s-1}-m_{s}\right) \epsilon_{i}
$$

This is the unique K-type of $A(\mathfrak{q})$ that occurs in $\wedge^{*}(\mathfrak{g} / \mathfrak{k})$.
Let P be the standard parabolic subgroup of G with Levi component

$$
M=G L\left(2 r_{1}, \mathbb{R}\right) \times \cdots \times G L\left(2 r_{k}, \mathbb{R}\right) \times G L(N-2 m, \mathbb{R})
$$

Let π_{s} be the Speh representation of $G L\left(2 r_{s}, \mathbb{R}\right)$ which is the Langlands quotient of

$$
\operatorname{Ind}\left(\sigma_{s}|d e t|^{\frac{r_{s}-1}{2}} \otimes \cdots \otimes \sigma_{s}|d e t|^{\frac{-r_{s}+1}{2}}\right)
$$

where σ_{s} is the discrete series representation of $G L(2, \mathbb{R})$ given by $\sigma_{s}=$ $\pi\left(\mu_{s},-\mu_{s}\right)$ with $\mu_{s}=\frac{1}{2}\left(N-m_{s-1}-m_{s}\right)$. We also let 1 denote the trivial representation of $G L(N-2 m, \mathbb{R})$. Then $B_{\mathfrak{q}} \approx \operatorname{Ind}_{P}^{G}\left(\pi_{1} \otimes \cdots \otimes \pi_{k} \otimes 1\right)$.

For $N=6$ and 8 we record this information in tabular form. The case $N=4$ is already treated in [AG]. We give each representation an identifying number for later reference.

Table for $G L(6)$

$\#$	k	$r_{1}, \ldots r_{k}$	m_{1}, \ldots, m_{k}	$\delta(\epsilon$ - basis $)$	$\delta(f$ - basis $)$
1	0	-	-	$0,0,0$	$0,0,0$
2	1	1	1	$6,0,0$	$0,6,0$
3		2	2	$5,5,0$	$5,0,5$
4		3	3	$4,4,4$	$8,0,0$
5	2	1,1	1,2	$6,4,0$	$4,2,4$
6		1,2	1,3	$6,3,3$	$6,3,0$
7		2,1	2,3	$5,5,2$	$7,0,3$
8	3	$1,1,1$	$1,2,3$	$6,4,2$	$6,2,2$

In these tables, δ refers to the cohomological K-type. The ϵ-basis was defined above; (a, \ldots, b, c) stands for $a \epsilon_{1} \cdots+b \epsilon_{n-1}+c \epsilon_{n}, N=2 n$. The f-basis refers to the parametrization of K-types in terms of fundamental weights; draw the Dynkin diagram so that the all but two of the nodes lie along a horizontal line, and the outer automorphism switches the two nodes on the far right; then (a, \ldots, b, c) in that basis stands for a times the leftmost weight plus ... plus b times the upper rightmost weight plus c times the lower rightmost weight.

The last entry in each table is the unique representation on the list which could occur as the infinity type of a global cuspidal representation on $G L(N) / \mathbb{Q}$.

If π is isomorphic to $B_{\mathfrak{q}}$ for the \mathfrak{q} from the i-th line on the list, write $\pi=\pi_{i}=\pi_{\delta}$ where δ is the corresponding cohomological K-type.
3.2. Case of $G L(8)$. Resumé of notations: $G_{\infty}=G L(8, \mathbb{R}), K_{\infty}=O(8)$, $H_{\infty}=G L(4, \mathbb{R}) \times G L(4, \mathbb{R}), \mathfrak{g}_{\infty}=\mathfrak{k}_{\infty} \oplus \mathfrak{p}_{\infty}$ where \mathfrak{p}_{∞} can be viewed as 8×8 symmetric matrices. Let ${ }^{0} \mathfrak{p}_{\infty}$ denote the traceless matrices in \mathfrak{p}_{∞}. Identify $\mathfrak{g}_{\infty} / \mathfrak{k}_{\infty}$ with \mathfrak{p}_{∞} and let $Y \in \wedge{ }^{19} \mathfrak{p}_{\infty}$ be the wedge of a fixed basis of Lie $H_{\infty} \cap^{0} \mathfrak{p}_{\infty}$.

Table for $G L(8)$

$\#$	k	$r_{1}, \ldots r_{k}$	m_{1}, \ldots, m_{k}	$\delta(\epsilon$ - basis $)$	$\delta(f$ - basis $)$
1	0	-	-	0000	0000
2	1	1	1	8000	8000
3		2	2	7700	0700
4		3	3	6660	0066
5		4	4	5550	00010
6	2	1,1	1,2	8600	2600
7		1,2	1,3	8550	3055
8		1,3	1,4	8444	4008
9		2,1	2,3	7740	0344
10		2,2	2,4	7733	0406
11		3,1	3,4	6662	0048
12	3	$1,1,1$	$1,2,3$	8640	2244
13		$1,1,2$	$1,2,4$	8633	2306
14		$1,2,1$	$1,3,4$	8552	3037
15		$2,1,1$	$2,3,4$	7742	0326
16	4	$1,1,1,1$	$1,2,3,4$	8642	2226

Theorem.

(i) If $\alpha \in \operatorname{Hom}_{K_{\infty}}\left(\wedge^{19} \mathfrak{p}_{\infty}, \pi\right)$ and $\alpha(Y) \neq 0$ then π is type 8,11 or 16.
(ii) Conversely, if π is one of those three types, there exists α such that $\alpha(Y) \neq 0$.

Proof. We do part (i) by eliminating possibilities.
Because Y is invariant under $S O(4) \times S O(4)$ we can apply Proposition 2.2: π_{δ} contains a nontrivial $K_{\infty}^{0} \cap H_{\infty}$-fixed vector if and only if

$$
\frac{(\delta \mid \beta)}{(\beta \mid \beta)} \in \mathbb{Z} \quad \text { for all roots } \beta \text { of } \mathfrak{k}_{\infty}
$$

In the ϵ-basis we have $\left(\epsilon_{i} \mid \epsilon_{j}\right)=\delta_{i j}$. Since $(\beta \mid \beta)=2$ for all β, the criterion becomes $(\delta \mid \beta) \in 2 \mathbb{Z}$. Write $\delta=\Sigma c_{i} \epsilon_{i}$. Each β has the form $\epsilon_{i} \pm \epsilon_{j}$ for $i \neq j$. Thus $(\delta \mid \beta) \in 2 \mathbb{Z} \Longleftrightarrow$ all c_{i} 's have same parity \Longleftrightarrow either all r_{s} 's have same parity or $m_{k}<n$ and all r_{s} 's are odd. This eliminates types $3,7,9$, $13,14,15$.

The other cases require a more detailed analysis. It will be convenient to complexify and work with a split version of K_{∞}. We let $K=O(2 n, \mathbb{C})$, $\mathfrak{p}=\mathfrak{p}_{\infty} \otimes \mathbb{C},{ }^{0} \mathfrak{p}={ }^{0} \mathfrak{p}_{\infty} \otimes \mathbb{C}$. However we have to keep track of H_{∞} when we do this. Let θ be the standard Cartan involution $g \rightarrow{ }^{t} g^{-1}$ and σ be the involution $\left({ }^{I_{n}}-I_{n}\right)$ so that H is the fixed-points of σ. Then we conjugate θ
and σ by the same complex $2 n \times 2 n$ matrix to get a split form of K and the new H. Let

$$
\begin{aligned}
J_{m} & =\left(\begin{array}{ll}
& \\
1 &
\end{array}\right) \in G L(m) \\
J & =\left(\begin{array}{cc}
0 & J_{n} \\
J_{n} & 0
\end{array}\right) \in G L(2 n) \\
A & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
J_{n} & I_{n} \\
-i I_{n} & i J_{n}
\end{array}\right)
\end{aligned}
$$

Then $A J^{t} A=I$ and $A^{-1} \sigma A=A d J$, so conjugation by A takes $O(2 n)$ to $O(J)$ and σ to $A d J$. We can then conjugate further by $g \in O(J)$ such that $g J g^{-1}=\left(\begin{array}{ccc}I_{n / 2} & & \\ & -I_{n} & \\ & & I_{n / 2}\end{array}\right)=\xi$ assuming n is even. (The odd n case is a little more complicated - see the section on $G L(6)$.)

From now on, assume n even and set $K=O(J)(\mathbb{C}), H=\operatorname{Ad}(\xi)$-fixed points in $G L(2 n, \mathbb{C})$:

$$
H=\left\{\left(\begin{array}{ccc}
* & 0 & * \\
0 & * & 0 \\
* & 0 & *
\end{array}\right) \begin{array}{c}
n / 2 \\
n / 2
\end{array}\right\}
$$

If $X \in M_{2 n}$, let X_{T} denote the transpose of X about the non-main diagonal. Then

$$
\begin{aligned}
K & =\left\{g \in G L(2 n, \mathbb{C}) \mid g_{T}^{-1}=g\right\} \\
\mathfrak{p} & =\left\{X \in M_{2 n}(\mathbb{C}) \mid X_{T}=X\right\} \\
Y & =\text { generator of } \wedge^{\text {top }}\left({ }^{0} \mathfrak{p} \cap \text { Lie } H\right)
\end{aligned}
$$

Now define some groups that will satisfy Hypothesis 2.3. First let

$$
\begin{aligned}
B & =\{\text { upper triangular matrices in } K\} \\
N & =\{\text { unipotent matrices in } B\} \\
T & =\{\text { diagonal matrices in } B\}
\end{aligned}
$$

Then set

$$
P_{0}=\left\{\left(\begin{array}{c}
* * * \\
0 * * \\
00 *
\end{array}\right) \begin{array}{c}
n / 2 \\
n / 2
\end{array}\right\} \cap K
$$

$$
\begin{aligned}
& P_{0}=L_{0} U_{0} \text { with } U_{0}=R_{u}\left(P_{0}\right) \text { and } \\
& L_{0}=\left\{\left(\begin{array}{c}
* \\
* \\
*
\end{array}\right)\right\} \cap K .
\end{aligned}
$$

Finally set

$$
W_{0}=\exp \left(\left\{\left(\begin{array}{ccc}
0 & * & 0 \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right)\right\} \cap K\right) .
$$

We make the choices prescribed after Hypothesis 2.3 so that we are in a position to apply the rest of Section 2.

Now set $n=4$. Fix a cohomological K-type $\delta=\left(\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right)$ in the ϵ coordinates. Put coordinates on T and W_{0} as follows:

$$
\begin{aligned}
& t=\left(\begin{array}{llllllll}
d_{1} & & & & & & \\
& & d_{2} & & & & & \\
& & & & & & & \\
& & & d_{3} & & & & \\
& & & d_{4} & & & \\
& & & & d_{4}^{-1} & & & \\
& & & & d_{3}^{-1} & & \\
& & & & & d_{2}^{-1} & \\
& & & & & & d_{1}^{-1}
\end{array}\right) \in T \\
& w(X, Y)=w=\left(\begin{array}{cccccccc}
1 & 0 & X_{1} & X_{2} & X_{3} & X_{4} & * & * \\
0 & 1 & Y_{1} & Y_{2} & Y_{3} & Y_{4} & * & * \\
& 1 & 0 & 0 & 0 & -Y_{4} & -X_{4} \\
& & 1 & 0 & 0 & -Y_{3} & -X_{3} \\
& & & 1 & 0 & -Y_{2} & -X_{2} \\
& & & & & 1 & -Y_{1} & -X_{1} \\
& & & & & & 1 & 1 \\
& & & & & & 0 & 0 \\
\hline
\end{array}\right) \in W_{0}
\end{aligned}
$$

so $\epsilon_{i}(t)=d_{i}$. If

$$
\ell=\left(\begin{array}{lll}
A & & \\
& B & \\
& & A_{T}^{-1}
\end{array}\right) \in L_{0}
$$

then ℓ acts by conjugation on W_{0} via $M \rightarrow A M B^{-1}$ where

$$
M=\left(\begin{array}{llll}
X_{1} & X_{2} & X_{3} & X_{4} \\
Y_{1} & Y_{2} & Y_{3} & Y_{4}
\end{array}\right)=\binom{X}{Y}
$$

Lemma 3.4. The space of polynomials $P(X, Y)$ fixed under the induced action by $L_{0} \cap R_{u}\left(B^{\text {opp }}\right)$ is the \mathbb{C}-span of the 6 polynomials $P_{1}, \ldots P_{6}$ in the table. Each of these is an eigenpolynomial for the action of T. The right hand column of the table gives the character χ_{i} such that $P_{i}(t \cdot w)=$ $\chi_{i}(t) P_{i}(w)$.

Table of semi-invariants for $L_{0} \cap B^{\mathrm{opp}}$ in $\operatorname{Sym}^{*}\left(W_{0}\right)$:

$$
\begin{array}{ll}
P_{1}=X_{4} & \chi_{1}=d_{1} d_{3} \\
P_{2}=X_{2} Y_{4}-Y_{2} X_{4} & \chi_{2}=d_{1} d_{2} d_{3} d_{4}^{-1} \\
P_{3}=X_{3} Y_{4}-Y_{3} X_{4} & \chi_{3}=d_{1} d_{2} d_{3} d_{4} \\
P_{4}=X_{1} X_{4}+X_{2} X_{3} & \chi_{4}=d_{1}^{2} \\
P_{5}=Y_{1} X_{4}^{2}-X_{1} X_{4} Y_{4}+X_{2} Y_{3} X_{4}+Y_{2} X_{3} X_{4}-2 X_{2} X_{3} Y_{4} & \chi_{5}=d_{1}^{3} d_{3} \\
P_{6}=\operatorname{det}\left(M J_{4}^{t} M\right) & \chi_{6}=d_{1}^{2} d_{2}^{2}
\end{array}
$$

Proof. It is easily checked each P_{i} is semi-invariant with the designated character. To show these span the space of semi-invariants one can use a result from [P-SR]. The local unramified computation in that paper induces a decomposition of the symmetric algebra of $G L(2, \mathbb{C})^{3} \approx G L(2, \mathbb{C}) \times G O(4, \mathbb{C})$. Using this decomposition one gets the desired assertion.

Now consider types $2,4,6,12$. They all have $\delta_{4}=0$. Writing $P_{\delta}=\Pi P_{i}^{e_{1}}$, as we may by Lemma 2.4 (iii), we see that necessarily $e_{2}=e_{3}$, since $\delta=\Pi \chi_{i}^{e_{1}}$. Set

$$
s=\left(\begin{array}{cccc}
I_{3} & & \\
& 0 & \\
& & 1 & \\
& 1 & 0 & \\
& & & I_{3}
\end{array}\right) \in K
$$

Then s induces the permutation (23) on the indices of X and Y. Since $s\left(P_{i}\right)=P_{i}$ for $i \neq 2,3$ and $s\left(P_{2}\right)=P_{3}, s\left(P_{3}\right)=P_{2}$, we have $s P_{\delta}=P_{\delta}$ in the case where $\delta_{4}=0$.

Also, s acts on ${ }^{0} \mathfrak{p}$ by conjugation and preserves H, hence Y. It's easy to see $s Y=-Y$.

Now let V be an irreducible K-submodule of $\wedge^{19} \mathfrak{p}$ of type δ, with highest weight vector v_{δ}. Since $\delta_{4}=0, s$ preserves δ and hence $s v_{\delta}= \pm v_{\delta}$.

Lemma 3.5. If δ is type $2,4,6$, or 12 then $s v_{\delta}=v_{\delta}$.
Proof. By the proof of Theorem 3.3 p. 64 of [VZ], if $\mathfrak{q}=\ell+\mathfrak{u}$ corresponds to type δ, then $v_{\delta}=\alpha \wedge \beta$ for some $\beta \in \wedge^{R}(\mathfrak{u} \cap \mathfrak{p})$ and some $\alpha \in\left(\wedge^{19-R} \ell \cap \mathfrak{p}\right)^{\ell \cap \ell}$, where $R=\operatorname{dim} \mathfrak{u} \cap \mathfrak{p}$. Now $\left(\wedge^{*} \ell \cap \mathfrak{p}\right)^{\ell n t}$ is isomorphic to the space of L^{0} invariant differential forms on the symmetric space for L^{0}, which is in turn isomorphic to the cohomology of the compact dual. The latter is explicitly computed in [B].

We need only consider V contained in the K-span of Y, hence contained in ${ }^{0} \mathfrak{p}$. So we may assume $\alpha \in\left(\wedge^{d-R} \ell \cap{ }^{0} \mathfrak{p}\right)^{\ell n \mathfrak{k}}$. Of course $\beta \in \wedge^{R}\left(\mathfrak{u} \cap{ }^{0} \mathfrak{p}\right)=$ $\wedge^{R}(\mathfrak{u} \cap \mathfrak{p})$.

A case by case calculation based on [B] now shows that in the cases under consideration $s \alpha=(-1)^{m_{k}} \alpha$ and $s \beta=(-1)^{m_{k}} \beta$. Hence $s v_{\delta}=v_{\delta}$.

We omit the details, but sketch out one case as an example. Consider type 6. Then $k=2,\left(r_{1}, r_{2}\right)=(1,1), m_{k}=2, R=12$. In this case, $L \approx$ $\prod_{i=1}^{k} G L\left(r_{i}, \mathbb{C}\right) \times G L\left(8-2 m_{k}, \mathbb{R}\right) \approx \mathbb{C}^{\times} \times \mathbb{C}^{\times} \times G L(4, \mathbb{R})$ and

$$
L(\mathbb{C}) \approx\left\{\left.\left(\begin{array}{llll}
t_{1} & & & \\
& t_{2} & & \\
& & g & \\
& & & t_{3} \\
& & & t_{4}
\end{array}\right) \right\rvert\, \begin{array}{ll}
t_{1} \ldots t_{4} \in \mathbb{C}^{\times} \\
g \in G L(4, \mathbb{R})
\end{array}\right\}
$$

and s acts on L as conjugation by

$$
\left(\begin{array}{llll}
I_{3} & & & \\
& 0 & 1 & \\
& 1 & 0 & \\
& & & I_{3}
\end{array}\right) .
$$

The compact dual symmetric space for L is $\prod_{i=1}^{k} U\left(r_{i}\right) \times U\left(8-2 m_{k}\right) / S O(8-$ $\left.2 m_{k}\right)$. Since we consider only the traceless matrices in $\ell \cap^{0} \mathfrak{p}$ we have that $\left(\wedge^{d-R} \ell \cap{ }^{0} \mathfrak{p}\right)^{\ell \cap \ell}$ is isomorphic to the cohomology of

$$
Y=\prod_{i=1}^{k} U\left(r_{i}\right) \times S U\left(8-2 m_{k}\right) / S O\left(8-2 m_{k}\right)
$$

In our case $Y=U(1) \times U(1) \times S U(4) / S O(4)$ and s acts nontrivially only on the last factor, and there as conjugation by an element of determinant -1 in $O(4)$.

By [B] we know that $H^{*}(S U(4) / S O(4)) \approx E\left[x_{4}, x_{5}\right]$ where E stands for the exterior algebra generated by generators x_{i} in $\operatorname{deg} i$. Also s acts on x_{i} as multiplication by $(-1)^{i+1}$. We also know that $H^{*}(U(1))=E\left[y_{1}\right]$.

So $H^{*}(Y) \approx E\left[y_{1}, y_{1}^{\prime}, x_{4}, x_{5}\right]$ and $s y_{1}=y_{1}, s y_{1}^{\prime}=y_{1}^{\prime}, s x_{4}=-x_{4}, s x_{5}=x_{5}$. Now α corresponds to an element in $H^{19-R}(Y)=H^{7}(Y)$, so the only possibility is $y_{1} \wedge y_{1}^{\prime} \wedge x_{5}$. It follows that the K-type δ_{6} appears with multiplicity one in $\wedge^{19}{ }^{0} \mathfrak{p}$, and that $s \alpha=\alpha$. (The only case among $2,4,6,12$ with more than one linearly independent choice of α is case 12 , with multiplicity two. One simply checks that for all possible $\alpha, s \alpha=(-1)^{m_{k}} \alpha$.)

Next β is the wedge of 12 vectors in $\mathfrak{u} \cap \mathfrak{p}$, indicated schematically as

$$
\beta=\wedge^{\mathrm{top}}\left\{\left(\begin{array}{rrrrrr}
0 & a & b & c & d & e
\end{array}\right]\right.
$$

Now s switches c and d, and i and j. Hence s acts as +1 on β. So $s \alpha=$ $\alpha, s \beta=\beta$ and $s v_{\delta}=v_{\delta}$.

So by Lemma 2.6, since $s P_{\delta}=P_{\delta}, s v_{\delta}=v_{\delta}$ and $s Y=-Y$ for types 2, 4, 6,12 , they can't occur in the K-span of Y.

Finally, using $v_{\delta}=\alpha \wedge \beta$ and [B] again, one sees that types 1,5 and 10 can't occur in $\wedge^{19}{ }^{0} \mathfrak{p}$.

To prove (ii) we must exhibit v_{δ} in the K-span of Y for δ of type 8,11 and 16. First we treat cases 8 and 11. Setting $\delta=\Pi \chi_{i}^{e_{2}}$ we find that we must have $P_{\delta_{8}}=c_{8} P_{3}^{4} P_{4}^{2}$ and $P_{\delta_{11}}=c_{11} P_{3}^{4} P_{2}^{2}$ where c_{8} and c_{11} are constants.

Let's treat case 11; case 8 is similar. In the notation of Section 2, we have after specialization

$$
\operatorname{proj} w\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \cdot Y=c_{11} P_{3}^{4} P_{2}^{2}\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) v_{\delta}+\text { lower-weight-terms. }
$$

Set

$$
w_{0}=w\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Thus proj $w_{0} \cdot Y=c_{11} v_{\delta}+\ell . w . t$., and we must show $c_{11} \neq 0$.
Now Y is a wedge of 19 vectors in the 35 -dimensional space ${ }^{0} \mathfrak{p}$. Even with computer aided symbolic algebra it is not feasible just to ask for $w_{0} \cdot Y$ and pick out the v_{δ}-term.

Instead, we write $v_{\delta}=\alpha \wedge \beta$ as above. Writing Y as the wedge of 19 vectors taken from a basis of ${ }^{0} \mathfrak{p}$ which includes a basis of $\mathfrak{u} \cap \mathfrak{p}$, we then apply w_{0} to Y. We see that if, as we remove the parentheses and expand terms, we are to get a term of the form (something) $\wedge \beta$ then certain choices are forced. For a schematic example, if $Y=a \wedge b \wedge c \wedge \ldots$ and $w_{0} Y=$ $\left(w_{0} a\right) \wedge\left(w_{0} b\right) \wedge\left(w_{0} c\right) \wedge \cdots=(d+e+f) \wedge(g+h) \wedge(e+j+k+\ell) \wedge \ldots$ and if d is a basis vector appearing in the pure wedge β, and if d doesn't appear in the other 18 terms, then we must keep d from the first term and discard e and f. Now if e is also in β and appears only in the terms shown, we can't get e from the first term any more, so we must get it from the third term and discard $j+k+\ell$.

In this way, we can actually write down the exact formula $w_{0} Y=\psi \wedge \beta+$ other-weight-terms for an explicit $\psi_{\tilde{\sim}} \in \wedge^{60} \mathfrak{p}$. Moreover ψ is a weight zero wedge of vectors from $\tilde{\ell} \cap{ }^{0} \mathfrak{p}$ where $\tilde{\ell}$ is the Lie-subalgebra of \mathfrak{q}

$$
\tilde{\ell}=\left\{\left(\begin{array}{llll}
X_{1} & & & 3 \\
& 0 & & 2 \\
& & X_{2}
\end{array}\right\}\right.
$$

It follows that proj $w_{0} Y=c_{11} v_{\delta}+\ell . w . t$. and $c_{11} \neq 0$ only if the projection of ψ to $\left(\Lambda^{6}\left(\ell \cap^{0} \mathfrak{p}\right)\right)^{\ell \mathfrak{} \mathcal{t}}$ is nonzero.

Computing this projection of ψ is a problem in $G L(3)$. For convenience we apply the Hodge $*$ operator and work in \wedge^{3}. To see if our explicit form has a nonzero projection to the $\tilde{\ell} \cap \mathfrak{k}$-invariants we look instead (by duality) to see if it fails to lie in the linear span C of vectors of the form $\langle g v-v\rangle, g \in G L(3)$. We compute C and find that $* \psi$ is not in C.

The proof of (ii) in case 16 is similar but easier because we don't have to worry about invariant theory in $G L(3)$. We do have to pick judiciously an element $w \in W_{0}$ such that proj $w Y=c_{16} v_{\delta}+\ell . w . t$. In fact, we let

$$
w=w\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & 0 \\
y_{1} & y_{2} & 0 & y_{4}
\end{array}\right)
$$

and compute:

$$
\operatorname{proj} w Y=c f(x, y) v_{\delta}+\ell . w . t .
$$

for some $c \neq 0$ and

$$
f(x, y)=y_{1} x_{1} x_{3}+y_{1} x_{2} x_{3}-\frac{1}{2}\left(x_{3} y_{2}+y_{4} x_{1}\right)\left(x_{1}+\frac{y_{2} y_{3}}{y_{4}}\right)
$$

Clearly $f(x, y) \neq 0$ for some choice of x, y. Again this computation is performed completely by hand.
3.3. Case of $G L(6)$. Here H does not have as simple a form as in the $G L(2 n)$ cases with n even. We may take

$$
\left.\begin{array}{l}
\text { Lie } H \cap \mathfrak{p}=\left(\begin{array}{cccccc}
a & 0 & b & b & 0 & c \\
0 & d & e & -e & f & 0 \\
i & j & g & h & -e & b \\
i & -j & h & g & e & b \\
0 & k & -j & j & d & 0 \\
m & 0 & i & i & 0 & a
\end{array}\right) \\
\text { Lie } H \cap \mathfrak{k}
\end{array} \begin{array}{l}
\left(\begin{array}{cccccc}
t_{1} & 0 & y & y & 0 & 0 \\
0 & t_{2} & x & -x & 0 & 0 \\
y^{\prime} & x^{\prime} & t_{3} & 0 & x & -y \\
y^{\prime} & -x^{\prime} & 0 & -t_{3} & -x & -y \\
0 & 0 & x^{\prime} & -x^{\prime} & -t_{2} & 0 \\
0 & 0 & -y^{\prime} & -y^{\prime} & 0 & -t_{1}
\end{array}\right)
\end{array}\right\},
$$

Types $3,6,7$ are ruled out by Proposition 2.2. As in the $G L(8)$ case we use Lemma 2.6 to rule out types 1,2 and 5 . The invariant theory for finding P_{δ} reduces to finding weights, since L_{0} in the $G L(6)$ case is a torus. We get $s P_{\delta}=P_{\delta}$ in these cases. A twist occurs for $G L(6)$ because now $s Y=Y$. However computation of $\ell \cap k$ invariants in $\wedge^{*} \ell \cap{ }^{0} \mathfrak{p}$ using [B] gives that $s \alpha=(-1)^{m_{k}+1} \alpha$ in these three cases. We also see that $s \beta=(-1)^{m_{k}} \beta$ so that $s v_{\delta}=-v_{\delta}$.

We rule in types 4 and 8 by explicit computations similar to the $G L(8)$ case. Thus we prove:

Theorem.

(i) If $\alpha \in \operatorname{Hom}_{K_{\infty}}\left(\wedge^{11} \mathfrak{p}_{\infty}, \pi\right)$ and $\alpha(Y) \neq 0$ then π is type 4 or 8 .
(ii) Conversely if π is one of these two types, there exists α such that $\alpha(Y) \neq 0$.

Appendix. Periods and Liftings.
Several relationships between the existence of a nonzero period for an automorphic representation π and the fact that π is a lift from another group (in the sense of "Langlands' philosophy") are known, and more are conjectured. In particular, if π is a cuspidal irreducible automorphic representation for $G L(2 n) / F$ it is conjectured that π has a nonzero period over $G L(n) \times G L(n)$ if and only if π is a lift from $G O(2 n+1)$ (cf. the introduction to [AG]).

We can rephrase this locally at a place v in terms of L-groups by conjecturing that an irreducible admissible representation π_{v} of $G L\left(2 n, F_{v}\right)$ possesses a $G L\left(n, F_{v}\right) \times G L\left(n, F_{v}\right)$-invariant continuous functional if and only if the L-parameter classifying π_{v} factors through the symplectic group.

In this appendix we prove the following proposition which is a heuristic analog of this conjecture in the "geometric" setting for v a real place:

Proposition. Let π be an irreducible admissible representation for $G L(2 n, \mathbb{R})$ with nontrivial (\mathfrak{g}, K)-cohomology, and let V_{δ} be a representative of its cohomological K-type $(K=O(2 n, \mathbb{R}))$. Then V_{δ} contains a vector invariant under $S O(n) \times S O(n)$ if and only if the L-parameter corresponding to π

$$
\Phi: W_{\mathbb{R}} \rightarrow G L(2 n, \mathbb{C})
$$

factors through $\operatorname{GSp}(2 n, \mathbb{C})$.
Remark. The connection with a nonvanishing period for $H=G L(n) \times$ $G L(n)$ is given by Proposition 2.1.

Proof. Suppose π is given by the data $\left(r_{1}, \ldots r_{k}\right)$ as in Section 3.1. As in the proof of the theorem in Section 3.2, we apply Proposition 2.2 to show that V_{δ} contains an $S O(n) \times S O(n)$-invariant if and only (i) all the r_{s} have the same parity and (ii) if $m_{k}<n$ then that parity is odd. So we must show that Φ factors through $G S p(2 n, \mathbb{C})$ if and only if (i) and (ii) hold.

From the description of π as a Langlands' quotient in Section 3.1 it is easy to write down Φ (or more precisely a representative for Φ, which is only determined up to choice of a basis in $G L(2 n, \mathbb{C})$).

Recall that $W_{\mathbb{R}}=\mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$with $j^{2}=-1$ and $j z j^{-1}=\bar{z}$ for any $z \in \mathbb{C}^{\times}$. Let $a(z)=z /|z|$ and $t(z)=z \bar{z}$. For any integers M, r with $r>0$ let $A(M, r)$ denote the $2 r \times 2 r$ matrix:

$$
A(M, r)=\operatorname{diag}\left(a^{M} t^{\frac{r-1}{2}}, a^{-M} t^{\frac{r-1}{2}}, a^{M} t^{\frac{r-3}{2}}, a^{-M} t^{\frac{r-3}{2}}, \ldots a^{M} t^{\frac{1-r}{2}}, a^{-M} t^{\frac{1-r}{2}}\right)
$$

Also let $I(M, r)$ denote the $2 r \times 2 r$ matrix

$$
I(M, r)=\left(\begin{array}{cc}
0 & I_{r} \\
\left(-I_{r}\right)^{M} & 0
\end{array}\right)
$$

For $s=1, \ldots, k$, let $m_{s}=r_{1}+\cdots+r_{s}$ and $M_{s}=\left(2 n-m_{s-1}-m_{s}\right)$. Also $r_{0}=2 n-2 m_{k}$. Recall that $r_{s}>0$ for all s and $r_{1}+\cdots+r_{k} \leq n$. Hence $M_{1}>M_{2}>\cdots>M_{k}>0$.

Then we can give Φ in block diagonal form by

$$
\Phi(z)=\operatorname{diag}\left(A\left(M_{1}, r_{1}\right), \ldots A\left(M_{k}, r_{k}\right), A\left(0, r_{0}\right)\right)
$$

$$
\Phi(j)=\operatorname{diag}\left(I\left(M_{1}, r_{1}\right), \ldots I\left(M_{k}, r_{k}\right), I_{2 r_{0}}\right)
$$

Now suppose Φ factors through $G S p(2 n, \mathbb{C})$ up to conjugacy. That means there exists a skew symmetric $2 n \times 2 n$ matrix J and a character λ of $W_{\mathbb{R}}$ such that for any $w \in W_{\mathbb{R}}$,

$$
{ }^{t} \Phi(w) J \Phi(w)=\lambda(w) J
$$

Applying this to $\Phi(z)$, which has determinant 1 , we first see that $\lambda(z)^{2 n}=$ 1 and then (by taking a generic z) that $J_{i j}=0$ except for the entries of J along the non-main diagonal of each block. In other words $J=$ $\operatorname{diag}\left(J_{1}, \ldots J_{k}, J_{0}\right)$ with

$$
\begin{aligned}
& J_{i}=\left(\begin{array}{cc}
0 & B_{i} \\
-B_{i} & 0
\end{array}\right) \quad \text { where } \\
& B_{i}=\left(\ldots{ }^{\star}\right) \quad(r \times r) .
\end{aligned}
$$

Now apply the same formula to $\Phi(j)$. Since

$$
{ }^{t} I\left(M_{s}, r_{s}\right) J_{s} I\left(M_{s}, r_{s}\right)=(-1)^{M_{s}+1} J_{s}
$$

for $s=1, \ldots k$ and $I_{2 r_{0}} J_{0} I_{2 r_{0}}=J_{0}$, we see that $\lambda(j)=(-1)^{M_{s}+1}$ for all s and further that $\lambda(j)=1$ if $r_{0} \neq 0$, i.e. if $m_{k}<n$. Since $r_{s} \equiv M_{s}(\bmod 2)$ for all s, we are finished.

References

[A] A. Ash, Non-minimal modular symbols for $G L(n)$, Inv. Math., 91 (1988), 483-491.
[AG] A. Ash and D. Ginzburg, p-adic L-functions for $G L(2 n)$, Inv. Math., 116 (1994), 27-73.
[AGR] A. Ash, D. Ginzburg and S. Rallis, Vanishing periods of cusp forms over modular symbols, Math. Ann., 296 (1993), 709-723.
[B] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57(2) (1953), 115-207.
[H] S. Helgason, Groups and geometric analysis: integral geometry, invariant operators and spherical functions, Academic Press, Orlando, 1984.
[Hu] J. Humphreys, Introduction to Lie algebras and representation theory, Springer, New York, 1980.
[P-Sr] I. Piatetski-Shapiro and S. Rallis, Rankin Triple L-functions, Comp. Math., 51 (1984), 333-399.
[RS] J. Rohlfs and J. Schwermer, Intersection numbers of special cycles, J.A.M.S., 6 (1993), 755-778.
[S] B. Speh, Unitary representations of $G L(n, \mathbb{R})$ with nontrivial (\mathfrak{g}, K)-cohomology, Inv. Math., 71 (1983), 443-465.
[V] D. Vogan, Unitarizability of certain series of representations, Ann. Math., 120 (1984), 141-187.
[VZ] D. Vogan and G. Zuckerman, Unitary representations with non-zero cohomology, Comp. Math., 53 (1984), 51-90.
[W] N. Wallach, On the unitarizability of derived fuctor modules, Inv. Math., 78 (1984), 131-141.

Received December 15, 1994. Partially supported by NSA grant MDA-904-94-H-2030. This manuscript is submitted for publication with the understanding that the United States government is authorized to reproduce and distribute reprints.

The Ohio State University
Columbus, OH 43210-1174

AND
Tel Aviv University
Tel Aviv 69978, Israel

