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GENERALIZED MODULAR SYMBOLS AND RELATIVE LIE
ALGEBRA COHOMOLOGY

AVNER ASH AND DAVID GINZBURG

In this paper we explore the limitations forced on the infin-
ity type of a cohomological automorphic representation given
the non-vanishing of an associated period over a generalized
modular symbol. After some general remarks, we discuss the
example of GL(2n) over a totally real field.

Let G be a reductive group defined over the number field F and TΓ « ®πυ a
V

cuspidal irreducible automorphic representation of G(A), where v runs over
all the places of F and A denotes the adeles of F. Write ω for the central
character of π. Let G^ — HGV where v runs over the archimedean places
of F and choose K^ to be a compact subgroup of G^ which contains the
connected component of the identity of a maximal compact subgroup of Goo.
Denote by X the symmetric space G^jK^Z^ where Z is the center of G.
We assume X is non-compact.

Set Gf = UGV where v runs over the non-archimedean places of F and
choose a compact open subgroup L of Gj. We let Γ be the arithmetic
subgroup of G(F) defined to be the projection of G(F) ΠGOQL into G^. We
assume Y\X is orientable. Let g = Lie G^/Z^ and J?oo = image of K^ in

We recall the well-known isomorphism of cohomology groups

#cusP(Γ\X,C) «®iί*( f l ,/? o o ;L c

2

u s p (G(F)\G(A),α;)) L . The latter contains

H*(g,Koo;πoo) ® πf as a summand (identifying π with its image in
L\ (G(F)\G(A),u;) but taking care to remember that the isomorphism
TΓ w %ΈV is an abstract one and doesn't "take place" inside L\ ). We let

V

d be a non-negative integer and choose [φ] £ fΓ^uβp(Γ\X, C) where φ is a
closed differential d-form on Γ\X representing the cohomology class [φ] -
we may even take φ harmonic. Under the isomorphism above, we suppose
φ goes over to α ® /?, with α 6 Hd(g,Koo;πoo) and β £ πf. Recall that
Hd(g,Koo;π<x>) « H o m ^ (Λdβ/fi, 7Γoo) and we view α as such a homomor-
phism. (Here t = Lie ΛΌo )

Now let H denote a reductive F-subgroup of G. We assume H^ is con-
nected and if (A) satisfies strong approximation. Choose e £ X fixed by IQQ
and set XH = H(Foo)e C l . We assume M = (#oo Π Γ)\XH is orientable,
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and we fix an orientation. Then the two propositions of Section 1 of [AGR]
imply that for some / in the space of π

ίφ= I ω'ι(h)f(h)dh.
H [Z(A)nH{A)]H(F)\H(A)

There is a canonical procedure for finding / given φ or vice versa. Fol-
lowing the argument in Section 5.2 of [AG], we take a basis Yι,...Yd of
Lie H^/iKoo Π HDZ^ and set YM = Y = Yx Λ Λ Yd. Then up to a
nonzero multiplicative constant we may take / = a(Y)β. In particular, if the
integral doesn't vanish then ot(Y) Φ 0, and of course d = dim XH = dim M.

We call / a cohomological vector for π. We call such an integral a period
(of the cuspform / or the cohomology class [φ]) over the (generalized) mod-
ular symbol M. In our terminology, a modular symbol is an oriented locally
finite cycle such as M arising as the projected orbit of a reductive group.

In [AGR] it is shown that these integrals are absolutely convergent. Com-
bining the topological methods of [RS] with the deRham theorem, it is easy
to construct modular symbols M that support non-vanishing periods. Here
the reductive group H underlying M will be the fixed points in G of some
finite group action.

The non-vanishing of periods seems to be connected with properties of π
and its L-functions, e.g. whether π is a lift from some other group, or whether
a certain L-function has a pole. This is being investigated by Jacquet, Rallis
and others. See [AG] for an example, and the references cited there.

On the local level, a non-vanishing period implies the existence of a non-
trivial jffoo- invariant functional on TΓ^, which should be related to whether
TΓco is a lift.

In this paper we begin to study the question: Does the non-vanishing of a
period put a constraint on the isomorphism type of TΓQO? The case of GL(A)
was studied already in [AG] and there led to a proof of the non-vanishing
of a p-adic L-function. This paper arose out of an attempt to extend those
results to GL(2n) for n > 2. We shall see that although many possibilities
for TΓoo are ruled out by the nonvanishing of the period, already for GL(6)
and GL(S) there are too many possibilities left to allow the use of the trick
in Section 5 of [AG] for n > 2 to prove the non-vanishing of a certain
archimedean integral and hence of the p-adic L-function.

In Section 1 we review the Vogan-Zuckerman classification of TΓ^ with
nontrivial (ρ, K^)-cohomology. In Section 2 we show how the nonvanishing
period enters the picture and prove some propositions that can be used in
practice to rule out certain π^s. In Section 3 we outline the example of
GL(8) with remarks applying to GL(m) for various ra, notably m = 2,4,6.
In the appendix we give a heuristic connection between the existence of a
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nontrivial K^ Π //oo-fixed vector in the cohomological AT-type of TΓ^ and a
nontrivial /foo-invariant continuous linear functional on TΓ^ in the case where
G = GL(2n) and H = GL{n) x GL(n).

We close this introduction by pointing out a comparison among the results
in [A], [AGR], and this paper. In [A] the existence of a non-vanishing period
for TΓ puts constraints on the local component πv of TΓ at a non-archimedean
place, for local reasons. In this paper, we have similarly locally effected
results at archimedean places. In [AGR], vanishing of certain periods was
derived from global considerations.

1. Classification of representations with nontrivial (g,K) -
cohomology.

For simplicity we assume in this section G is a semi-simple, real, connected
Lie group with finite center. Let g = Lie (G) ® C and K C G a max-
imal compact subgroup. The modifications needed when G is reductive
or non-connected are most easily performed on an ad hoc basis. In [VZ]
a finite list of irreducible admissible (g, K) - modules {TΓ} is given such
that ίf*(g, Jί; TΓ) / 0 and it is shown that every irreducible unitary G-
representation with nontrivial (g, K) - cohomology has its Harish-Chandra
module isomorphic to some π on the list. Later in [V] and [W] it was
shown that each TΓ on the list is the Harish-Chandra module of a unitary
G-representation. Hence the unitary nature of a TΓ^ arising from a coho-
mological cuspform places no restrictions on its isomorphism type. In [VZ]
twisting TΓ by a finite dimensional representation is also allowed, but we are
interested only in untwisted coefficients here. We summarize the properties
of the classification that we will use. See [VZ] for complete details.

Let I = Lie(ϋf )®C, θ be the corresponding Cartan involution, and g = tφp
the Cartan decomposition. A finite set {q} of 0-stable parabolic subalgebras
of g is defined. Write q = ί + u, where £ is a Levi-factor and u the radical
of q. One chooses a Cartan subalgebra t of t which is contained in ί and let
μ = μ(q) = irreducible representation of K with highest weight 2p(uΓ\p).
Here ρ(uΠp) is one-half the sum of the t weights on u Π p.

We shall call the isomorphism class of μ a cohomological AT-type. It
appears in Λ*p. There is a unique irreducible admissible (g, A')-module Λ^
such that H*(g,K; Aq) = Homχ(Λ*p,Λq) φ 0 and the only AT-type shared
by Λ*p and Aq is μ(q). Moreover for different q's the μ(q)'s (and hence
the Aq's) are distinct. Every irreducible admissible (g, Jί)-module TΓ with
7/*(g, K; TΓ) φ 0 is isomorphic to one of the Aq's.
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2. Enter the nonvanishing period.

We maintain all the preceeding notation.

Now suppose TΓ^ is isomorphic to Aq for some q and that the period of
a cohomological vector for π over H(A) doesn't vanish. In this case we
shall say that π has a nontrivial iϊ-period. Let d be the dimension of the
corresponding modular symbol M, with YM € Λ^p.

Proposition 2.1. Suppose π has a nontrivial H-period, and π^ « Aq.
Then

(1) μ(q) appears in Λdp;

(2) μ(q) contains a nontrivial vector invariant under H^ Π K;

(3) The K-submodule of Λdp generated by YM projected onto the μ(q)-

isotypic component of Λrfp is non-vanishing.

Remark. Although (1) and (2) immediately follow from (3) since YM

is clearly HOQ Π /^-invariant, we stated the three items in order of ease of
checking in any given example.

Proof. As stated we need only prove (3). From the hypothesis, there exists
a £ Homχ(Λ<ip, Aq) such that Oi(YM) φ 0. Since μ(p) is the only A'-type
shared by Λ̂ p and Λq, (3) follows. D

Proposition 2.2. Under the hypotheses of the previous proposition, sup-
pose in addition there exists a connected noncompact semi-simple Lie group
G\ with Iwasawa decomposition G\ = KχAιNι such that (Lie Gι) ® C is
isomorphic to (Lie K) <g> C by an isomorphism that takes (Lie Kλ) (g)C onto
Lie(ϋΓ

oo Π Kι) ® C. Extend LΊeAi to a maximal abelian subalgebra to of g,
so that to = to Π Lie K\ φ Lie Aγ is a Cartan subalgebra of Lie G\. Let λ be
the highest weight o/μ(q) with respect to to. Then

(1) λ ( 7 = 1 ( ^ 0 Lie K1))= 0;

(2) ^eZ+forallaeΣ+

where Σ + is the set of positive restricted roots on Lie A\ with respect to the
ordering induced by the choice of Nλ.

Proof. This follows from Proposition 2.1 (2) and Helgason's criterion The-
orem 4.1 p. 535 of [H] after complexifying the Lie algebras and taking the
hypotheses into account. D

In the following, with a view to our examples in the next section, we
go back to the notation of Section 1 and allow G to be reductive and not
necessarily connected. Thus g = Lie G^/Z^fi = Lie 7?^, etc.
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The group of components Koo/K^ acts on the set of cohomological K-
types {μ(q)} in the obvious way. If O is an orbit, there is an obvious way
to make φ Aq into an irreducible (q, A'oo)-module. We will denote it by

μ(q)eθ

Bq for any q such that μ(q) G O. Every irreducible (q, A'oo)-module with
nontrivial cohomology is isomorphic to Bq for some q.

Now let K denote the algebraic R-group such that K(R) = Koo, so
Lie K(C) = t. Given q = I + u, we have the Cartan subalgebra t of I
contained in t and we choose a Borel subalgebra b = t + n of t such that
u C n . We use capital Roman letters to denote subgroups of K(C) whose Lie-
algebra equals the corresponding small Gothic letter. Thus Q is a parabolic
subgroup of K = K(C) with Levi decomposition Q — LU. Also, B is a
Borel subgroup of K with Levi decomposition B = TN. We let H stand for
H(C).

We now make the following additional hypothesis. For an illustration of
it, see Section 3.

Hypothesis 2.3. There exists a parabolic subgroup Po of K with Levi de-

composition Po = LQUQ such that

(i) P0D B and hence Uo C N;

(ϋ) TcL0;

(iii) Uo contains a subgroup Wo such that Lie TV = Lie N Π H φ Wo;

(iv) Lo C H and Lo stabilizes Wo under conjugation.

Now choose an order on t* so that B corresponds to the positive roots Φ+
and for each a 6 Φ+ fix ua : C-^C/α C N. Order the positive roots α 1 ? . . . α r

and write Uj = uat. We assume the ordering chosen so that Uι,.. ,um gen-
erate Wo and um+ι,.. .ur generate N Π H. Let # i , . . .xr be indeterminates
and view them as coordinates on N by x = ( # i , . . .xr) = ^i(^i) .. .ur(xr) —
u(xu ...xr) = u(x). Let x1 = (xu . . .xm) = uλ(xι) . . .um(xm) = u(x'). We
have an induced action of Lo on P £ C[x'] = C[xι,...xm] = C[W0] by

Fix an irreducible K-submodule V of Λdβ/t with highest weight δ (all
weights with respect to t) and let proj denote the 7ί"-equivariant projection
onto V. Let Y be a generator of the line Λd Lie H/ Lie H Π t in Adg/t It
has weight zero. For any T-module M and weight λ write M\ for the λ-
isotypic component of M. For each weight μ in V choose a C-basis {vμi :
i = 1, . . . j μ } of F μ . Since V̂  is one-dimensional we write vs in place of υstι.

Lemma 2.4. Define {Pμ,i(x) G C[ar]} 6y proj u(x) y = Σ, P μ ) ί (x)υμ ) ί.

(i) -Pμ,i(^) i5 independent of a?m + i,. . .x r /or α// μ, i.

(ii) P^ Z5 a maximal vector for Lo Π Bopp of weight -δ and generates an
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L^-module contragredient to a quotient o/Resfo V.

(iii) V is contained in the K-span ofY if and only if Ps φ 0.

Proof. Since for i > m Ui(xi) £ H Π N and H° fixes Y, statement (i) is
true. To prove (ii) reindex the {vμti} as {vk}. Let g £ L® C If, so gY = Y.
Then

proj u(g - x')Y = proj gu(x')g~ιgY = ΣPk(x')gυk.

On the other hand

proj u(0 ^ ) Y - Σ P Λ ( j x')υk = Σg-'P^x^v,.

Comparing the right hand sides, we see that the matrix representation of g
on the span of {Pk} is a quotient of the contragredient V* of V. Thus Pδ

generates an L®- module isomorphic to a quotient of Res^o V*.

View δ as a character on T and extend it to B by making it trivial on
N. If g £ B o p p , since υδ is a maximal vector in V, we have gυk has no
^-component unless vk = v$ and then gv$ = δ(g)υs. Comparing the right
hand sides again we get

Statement (iii) follows from Lemma 5.5.1 of [AG] except we use V in
place of the whole isotypic component of type δ, D

L e m m a 2.5. If δ is the cohomological K-type of Bq and Q — LU is the

Leυi decomposition, then as L Π K-module, V = V$ Θ

Proof. From the proof of Proposition 3.6 of [VZ] we see that L Π K fixes the

line V$. Therefore, if a is any root of L Π A", the α-string of weights of V in

δ + Za is just {δ}. (Incidentally this proves that < £, a >= 0 in the notation

of Section 21.3 of [Hu].) So if μ is a weight of V, μ φ 5, the α-string through

μ can't reach to δ. Hence Σμ^δ Vμ ι s a ^ s o ̂  ^ ^-invariant. D

L e m m a 2.6. Suppose s £ LΠL0 such that s-Ps — aP$j sΎ = 6Y, s-v$ = cv$
with a,b,c £ C. Then if abc φ 1, V is not contained in the K-span ofY in

Proof As in the proof of (ii) of Lemma 2.4 we obtain bΈPksυk — Σs~λ -Pkυk.
From Lemma 2.5 we can equate the terms involving υ$ to get bPδsvs =
s~1Pδυδ or abcPδ = Pδ. If α6c / 1, Pδ — 0 and the conclusion follows from
(iii) of Lemma 2.4. D



MODULAR SYMBOLS AND LIE ALGEBRA COHOMOLOGY 343

3. Examples: GL(2n).

In this section we apply the foregoing to the example whose interest stems
from [AG]. We refer the reader to the introduction of that paper for moti-
vation.

We let G = GL(2n)/Q for n > 1. Choose K^ = O(2n,R) and H =
GL{n) X GL(n). Although H doesn't satisfy all the hypotheses made in
Section 1, in this particular example all the conclusions there and in Section
2 remain true, as comparison with Section 5 of [AG] will show.

We found in [AG] that for n = 2, the nonvanishing of the iϊ-period
determined π^ uniquely up to isomorphism. The same is easily seen to be
the case for n = 1. Here we will investigate n = 3 and n = 4.

Of particular interest in the following calculations is the invariant theory
that comes in.

We will present the GL(8) case in detail and summarize our results for
the GL(6) case. The methods in both cases are basically the same, but since
GL(6) is smaller that GL(8), less variety appears.

3.1. Case of GL(N). First we present the list of irreducible (g, Jί)-modules
π with non-trivial cohomology. We thank J.S. Li for providing us with this,
which may be derived either from Speh's original article [S] or from the
general theory of Vogan and Zuckermann [VZ].

In this subsection, let G = GL(N,R),K = O(N), 0 = Lie G, t = Lie /ί,
g = ! + p a Cartan decomposition. Let €j, 1 < j < [N/2\ be the usual basis
for the dual of a Cartan subalgebra of t.

Let Γi,.. .rk be positive integers with m = Γi + + rk < N/2. We allow
the case k = 0. There corresponds a 0-stable parabolic subalgebra q = ί + u
whose corresponding Levi subgroup is

L = GL{ruC) x •• x G % , C ) x GL{N - 2m,R).

In the notation of Section 2 the (g, K)- module Bq is irreducible, unita-
rizable and ϋf* (g, ϋΓ; Bq) φ 0. Any such π is isomorphic to Bq for some
q = q(r 1 ?.. .rk) arising this way.

Set ms = Γi + h rs, 1 < s < k. Then the cohomological A'-type of Bq

has highest weight

m8-ι<i<m8

This is the unique K-tγpe of A(q) that occurs in Λ*(fl/C).
Let P be the standard parabolic subgroup of G with Levi component

M = GL(2ri, R) x x GL(2r*, E) x GL(Λ̂  - 2m, R).
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Let πs be the Speh representation of GL(2rs,K) which is the Langlands
quotient of

Ind

where σs is the discrete series representation of GL(2,R) given by σs =

π(μ 5, — μs) with μs = |(7V — m5_χ — ra5). We also let 1 denote the trivial

representation of GL(N - 2ra, E). Then Bq « Indp^x <g> <g> τrA <g> 1).

For N — 6 and 8 we record this information in tabular form. The case

N — 4 is already treated in [AG]. We give each representation an identifying

number for later reference.

Table for GL(6)

#
1
2

3
4

5
6
7

8

k

0
1

2

3

ru...rk

-
1
2

3

1,1
1,2

2,1

1,1,1

mi,.. .,mk

—

1

2

3
1,2

1,3
2,3

1,2,3

δ(c- basis)

0,0,0

6,0,0
5,5,0
4,4,4
6,4,0

6,3,3
5,5,2
6,4,2

δ(f- basis)

0,0,0

0,6,0
5,0,5

8,0,0
4,2,4

6,3,0
7,0,3
6,2,2

In these tables, δ refers to the cohomological A'-type. The e-basis was
defined above; (a}..., b, c) stands for aeλ + 6en_i + cen, N = 2n. The
/-basis refers to the parametrization of if-types in terms of fundamental
weights; draw the Dynkin diagram so that the all but two of the nodes lie
along a horizontal line, and the outer automorphism switches the two nodes
on the far right; then (ay..., 6, c) in that basis stands for a times the leftmost
weight plus ... plus b times the upper rightmost weight plus c times the lower
rightmost weight.

The last entry in each table is the unique representation on the list
which could occur as the infinity type of a global cuspidal representation
on GL(N)/Q.

If π is isomorphic to Bq for the q from the i-th line on the list, write
7Γ = 7Γj = πs where δ is the corresponding cohomological /ί-type.

3.2. Case of GL(8). Resume of notations: <

#oo = GL(4,E) x GL(4,R), 0 O O = *„ Θ poo
^ - GL(8,R),#oo - 0 ( 8 ) ,
where ftoo can be viewed as

8 x 8 symmetric matrices. Let Opoo denote the traceless matrices in

Identify

Lie fΓoo

with poo and let Y £ Λ19pco be the wedge of a fixed basis of
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Table for GL(S)

#
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

k
0

1

2

3

4

r
u
...r

k

—

1

2

3

4

1,1
1,2

1,3

2,1

2,2

3,1
1,1,1

1,1,2

1,2,1

2,1,1

1,1,1,1

m
1
,...,m

k

—

1

2

3

4

1,2

1,3

1,4

2,3

2,4

3,4

1,2,3

1,2,4

1,3,4

2,3,4

1,2,3,4

δ(e- basis)

0000

8000

7700

6660

5550

8600

8550

8444

7740

7733

6662

8640

8633

8552

7742

8642

<£(/- basis)

0000

8000

0700

0066

00010

2600

3055

4008

0344

0406

0048

2244

2306

3037

0326

2226

Theorem.
(i) If a e Hom^Λ^poo,?!-) and a(Y) φ 0 then π is type 8, 11 or 16.

(ii) Conversely, if π is one of those three types, there exists a such that
α(Y) φ 0.

Proof. We do part (i) by eliminating possibilities.
Because Y is invariant under 50(4) x SO (4) we can apply Proposition

2.2: π$ contains a nontrivial K^ Π i/oo-fixed vector if and only if

(S\β)

(β\β)
ΊΛ for all roots β of t0

In the e-basis we have (c<|€j) = δij. Since (β\β) = 2 for all /?, the criterion
becomes (δ\β) £ 2Z. Write δ = Ecfe,-. Each β has the form ef ± Cj for i φ j .
Thus (δ\β) £ 2Z <£=> all ct 's have same parity <ί=> either all r5 's have
same parity or mk < n and all r5 's are odd. This eliminates types 3, 7, 9,
13, 14, 15.

The other cases require a more detailed analysis. It will be convenient
to complexify and work with a split version of K^. We let K — O(2n,C),
P = poo ® C, °p = °poo ® C. However we have to keep track of Hoo when
we do this. Let θ be the standard Cartan involution g -> tg~1 and σ be the
involution ( / n _7 ) so that H is the fixed-points of σ. Then we conjugate θ
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and σ by the same complex 2n x 2n matrix to get a split form of K and the
new H. Let

A = ± Jn In)
y/2 \-iIn iJn) '

Then AJ*A — I and A~ισA = AdJ, so conjugation by A takes O(2n) to
O(J) and σ to AdJ. We can then conjugate further by g € O(J) such that

gjg — I -/„ ) = ξ assuming n is even. (The odd n case is a little

more complicated - see the section on GL(6).)
From now on, assume n even and set K — O(J)(C), H = Ad(£)-fixed

points in GL(2n,C):

ί
/*0*\ n/2'

0*0 n
\*0*)n/2.

If X G M2 n, let X τ denote the transpose of X about the non-main diagonal.
Then

y = generator of Λtop (°p Π Lie H).

Now define some groups that will satisfy Hypothesis 2.3. First let

B = {upper triangular matrices in 7ί'},

N = {unipotent matrices in .B},

T — {diagonal matrices in B}.

Then set

* A n/2
Po = { I 0 * * n \rιK,

,0 0*/ n/
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Po = L0Uo with Uo = Ru{Po) and

Lo =

Finally set

Wo = exp ΠK

We make the choices prescribed after Hypothesis 2.3 so that we are in a
position to apply the rest of Section 2.

Now set n = 4. Fix a cohomological K-type δ = (^1,^2^3,^4) in the e-
coordinates. Put coordinates on T and Wo as follows:

M

t =

dτι

• 7 - 1

w(X,Y) = w =

so c, (ί) = d, . If

01 γx y2 y3 YA * *
1 0 0 0 -y 4 -x4

1 0 0 - y 3 - * 3

1 0 -γ2 -x2

1 -Yi-Xi

1 0
0 /

ew0

4 - 1
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then I acts by conjugation on WQ via M —> AMB~ι where

D

Lemma 3.4. The space of polynomials P(X, Y) fixed under the induced
action by Lo Π Ru(Bopp) is the Cspan of the 6 polynomials Pι,...P6 in
the table. Each of these is an eigenpolynomial for the action of T. The
right hand column of the table gives the character χ, such that Pi(t w) =
Xi(t)Pi(w).

Table of semi-invariants for Lo Π B o p p in Sym*(W0):

Pi = X\ Xi = dιd3

p2 = χ2γ4 - γ2χ4 X2 = d^

Ps = X3Y4 ~ Y3X4 Xs = dxrfa

F 4 = X1X4 + X2-^3 X4 = d\

P 5 = y i X | - X1X4Y4 + X2Y3X4 + Y2X3X4 - 2X2X3Y4 Xs = d\d3

Proof It is easily checked each F2 is semi-invariant with the designated char-
acter. To show these span the space of semi-invariants one can use a result
from [P-SR]. The local unramified computation in that paper induces a de-
composition of the symmetric algebra of GL(2, C)3 w GL(2, Cj x GO(4, C).
Using this decomposition one gets the desired assertion. •

Now consider types 2, 4, 6, 12. They all have δ4 = 0. Writing Pδ - UPt

e\
as we may by Lemma 2.4 (iii), we see that necessarily e2 = e3, since δ = ΓIχ^.
Set

Then s induces the permutation (23) on the indices of X and Y. Since
s(Pί) = fj for i ^ 2,3 and s(P2) = P 3 , s(P3) = P 2 , we have sP* = Ptf in the
case where δ4 = 0.

Also, 5 acts on °p by conjugation and preserves if, hence Y. It's easy to
see sY = -Y.
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Now let V be an irreducible A'-submodule of Λ19p of type <5, with highest
weight vector vδ. Since δ4 = 0, s preserves δ and hence svδ — ±υδ.

Lemma 3.5. If δ is type 2, 4, 6, or 12 then svδ = υδ.

Proof. By the proof of Theorem 3.3 p. 64 of [VZ], if q = £+u corresponds to
type δ, then υδ = aΛβfoτ some β G ΛΛ(uΠp) and some α G (Λ19"Λ^Πp)/n*,
where # = dimu Π p. Now (Λ*£ Π p)*nc is isomorphic to the space of L°-
invariant differential forms on the symmetric space for 2>°, which is in turn
isomorphic to the cohomology of the compact dual. The latter is explicitly
computed in [B],

We need only consider V contained in the if-span of Y, hence contained
in °p. So we may assume a G (Ad~R£Π °p)tnt. Of course β G Λβ(uΠ °p) =
ΛΛ(uΠp).

A case by case calculation based on [B] now shows that in the cases under
consideration sa = (-l) m *α and sβ = {-l)mkβ. Hence svδ = vδ.

We omit the details, but sketch out one case as an example. Consider
type 6. Then k = 2, (rur2) = (1,1), ra* = 2,β = 12. In this case, L «

, C) x GL{8 - 2mk,R) « C x x C x x
.

< \ ut

tχ...t4 € Cx

geGL(4,R)

and s acts on L as conjugation by

0 1
1 0

The compact dual symmetric space for L is Π E/(r, ) X U(8 - 2mk)/SO(8 -

2mk). Since we consider only the traceless matrices in £Π °p we have that
(Λd~~R£ Π °ρ)^ne is isomorphic to the cohomology of

Y = Π Ufa) x SU(8 - 2mk)/SO(8 - 2mk).

In our case Y = [/(I) x U(l) X SU(4)/SO(4) and s acts nontrivially only
on the last factor, and there as conjugation by an element of determinant
- 1 in 0(4).
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— Λ t oP

By [B] we know that H*(SU(4)/SO(4)) « E[x4,Xs] where E stands for
the exterior algebra generated by generators a?, in deg i. Also s acts on Xi
as multiplication by ( - l ) i + 1 . We also know that H*(U(1)) = E[yτ].

So H*(Y) « £?[j/!, t/J, a?4, s5] and st/x = j/i, sy^ = t/J, sz 4 = - z 4 , 5X5 = x5.
Now α corresponds to an element in H19~R(Y) = i ϊ 7 (Y), so the only possi-
bility is 2/1 Λ yj Λ £5. It follows that the if-type £6 appears with multiplicity
one in Λ19 °p, and that sa = α. (The only case among 2, 4, 6, 12 with more
than one linearly independent choice of a is case 12, with multiplicity two.
One simply checks that for all possible α, sa = (-l)m*α?.)

Next β is the wedge of 12 vectors in u Π p , indicated schematically as

a b c d e f g\
OhijkIf

0 0 0 0 k e
0 0 0 0 j d
0 0 0 0 i c
0 0 0 0 Λ 6

0 a
0

Now s switches c and d, and i and j . Hence s acts as + 1 on /3. So sa =
a,sβ = β and sυ<$ = u^.

So by Lemma 2.6, since sP^ = ft? sυs = £><* and sY = - Y for types 2, 4,
6, 12, they can't occur in the if-span of Y.

Finally, using ^ = α Λ /? and [B] again, one sees that types 1, 5 and 10
can't occur in Λ 1 9 0 p.

To prove (ii) we must exhibit vδ in the K-span of Y for δ of type 8, 11 and
16. First we treat cases 8 and 11. Setting δ = ΠχJ we find that we must
have F^8 = csP%Pl and Pδlι = cλιP£P% where c8 and cn are constants.

Let's treat case 11; case 8 is similar. In the notation of Section 2, we have
after specialization

proj w
Ό O O Γ
, 0 1 1 0 , • Y = + lower-weight-terms.

Set

W0 = W

Thus proj w0 Ύ = cuvs + i.w.t., and we must show cn φ 0.
Now Y is a wedge of 19 vectors in the 35-dimensional space °p. Even with

computer aided symbolic algebra it is not feasible just to ask for w0 Y and
pick out the u^-term.
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Instead, we write υδ — a A β as above. Writing Y as the wedge of 19
vectors taken from a basis of °p which includes a basis of uΠ p, we then
apply w0 to Y. We see that if, as we remove the parentheses and expand
terms, we are to get a term of the form (something) Aβ then certain choices
are forced. For a schematic example, if Y = a A b A c A . . . and w0Y =
(wQa) A (wQb) A (wQc) A = (d + e + f) A (g + h) A (e + j + k + ί ) A . . . and
if d is a basis vector appearing in the pure wedge /3, and if d doesn't appear
in the other 18 terms, then we must keep d from the first term and discard
e and /. Now if e is also in β and appears only in the terms shown, we can't
get e from the first term any more, so we must get it from the third term
and discard j + k + ί.

In this way, we can actually write down the exact formula w0Y = φ A β +
other-weight-terms for an explicit φ £ Λ 6 0 p. Moreover φ is a weight zero
wedge of vectors from ί Π °p where ί is the Lie-subalgebra of q

It follows that proj w0Y = cnυs + ί.w.t. and c n φ 0 only if the projection

of φ to (Λ6 (£Π °p)) n is nonzero.

Computing this projection of φ is a problem in GL(3). For convenience we
apply the Hodge * operator and work in Λ3. To see if our explicit form has a
nonzero projection to the ί Π ϊ-invariants we look instead (by duality) to see
if it fails to lie in the linear span C of vectors of the form (gv — υ),g £ GL(3).
We compute C and find that *φ is not in C.

The proof of (ii) in case 16 is similar but easier because we don't have to
worry about invariant theory in GL(3). We do have to pick judiciously an
element w £ VF0 such that proj wY = Ci6v$ + ί.w.t. In fact, we let

\yi 2/2 0 yA)

and compute:

proj wY — cf(x, y)vδ + ί.w.t.

for s o m e c ^ O a n d

f(x, y) = yiXiXz + yix2xs - ^{XSVΪ + V^i) (x\ + - ^ )
^ v y$ J

Clearly f(x,y) φ 0 for some choice of x, y. Again this computation is per-
formed completely by hand. D
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3.3. Case of GL(6).Here H does not have as simple a form as in the
GL(2n) cases with n even. We may take

Lie H Π p =

Lie H Π t = <

- I

( a 0 b
O d e

i 3 9

i —j h
0 k -j

\m 0 i

0 ί 2

^ _^7

0 0

Λo o
/ r N(I

O 1
1 0

b
—e

h

g
j
i

y
X

ts

0
x'

-y'

\.

0
/

— e

e
d
0

— £

0

-X1

-y1

c\
0

b

b
0
a)

0 0 ^
0 0
x -y

—X — V

t2 o
0 -tj

Types 3, 6, 7 are ruled out by Proposition 2.2. As in the GL(8) case we
use Lemma 2.6 to rule out types 1, 2 and 5. The invariant theory for finding
Ps reduces to finding weights, since Lo in the GL(6) case is a torus. We get
sPs — Ps in these cases. A twist occurs for GL(6) because now sY = Y.
However computation of £ Π k invariants in Λ*l Π °p using [B] gives that
sa = (-l) m f c + 1 α in these three cases. We also see that sβ - (-l)mkβ so
that sυs = —vs.

We rule in types 4 and 8 by explicit computations similar to the GL(8)
case. Thus we prove:

Theorem.
(i) If a £ Hom i ί o o(Λ 1 1p 0 0, TΓ) and a(Y) φ 0 then π is type 4 or 8.

(ii) Conversely if π is one of these two types, there exists a such that

a(Y) φ 0.

Appendix. Periods and Liftings.

Several relationships between the existence of a nonzero period for an au-
tomorphic representation π and the fact that π is a lift from another group (in
the sense of "Langlands' philosophy") are known, and more are conjectured.
In particular, if π is a cuspidal irreducible automorphic representation for
GL(2n)/F it is conjectured that π has a nonzero period over GL(n) x GL(n)
if and only if π is a lift from GO(2n + 1) (cf. the introduction to [AG]).
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We can rephrase this locally at a place υ in terms of L-groups by conjectur-
ing that an irreducible admissible representation πv of GL(2n, Fv) possesses
a GL(n,Fυ) x C?L(n,Fv)-invariant continuous functional if and only if the
L-parameter classifying πv factors through the symplectic group.

In this appendix we prove the following proposition which is a heuristic
analog of this conjecture in the "geometric" setting for υ a real place:

Proposition. Let π be an irreducible admissible representation for
GL(2n,R) with nontriυial (g, K)-cohomology, and let V$ be a representa-
tive of its cohomological K-type (K = 0(2n,R)). Then V$ contains a vector
invariant under SO(n) X SO (n) if and only if the L-parameter corresponding
to π

Φ : WR-ϊGL(2n,Q

factors through GSp(2n,C).

Remark. The connection with a nonvanishing period for H = GL(n) x

GL(n) is given by Proposition 2.1.

Proof Suppose π is given by the data (r i , . . .rk) as in Section 3.1. As in the
proof of the theorem in Section 3.2, we apply Proposition 2.2 to show that
Vs contains an SO(n) x 50(n)-invariant if and only (i) all the rs have the
same parity and (ii) if mk < n then that parity is odd. So we must show
that Φ factors through GSp(2n,C) if and only if (i) and (ii) hold.

From the description of TΓ as a Langlands' quotient in Section 3.1 it is
easy to write down Φ (or more precisely a representative for Φ, which is only
determined up to choice of a basis in GL(2n, Q ) .

Recall that Wm = C x U j C x with p = - 1 and jzj'1 = z for any z e Cx.
Let a(z) = z/\z\ and t(z) = zz. For any integers M, r with r > 0 let A(M, r)
denote the 2r x 2r matrix:

A(M, r) = diag (α

Also let I(M, r) denote the 2r x 2r matrix

For s = 1,..., k, let ms = rλ H \-rs and Ms = (2n - ra5_i - ms). Also
r0 = 2n - 2mk. Recall that rs > 0 for all 8 and ri + V rk < n. Hence

Mi > M2 > > Mk > 0.
Then we can give Φ in block diagonal form by



354 AVNER ASH AND DAVID GINZBURG

Φ(j) = diag (/(Mi, rO,.. .I(Mk, rk), I2J.

Now suppose Φ factors through GSp(2n, C) up to conjugacy. That means
there exists a skew symmetric 2n x 2n matrix J and a character λ of W&
such that for any w G WK,

tΦ(w)JΦ(w) = X(w)J.

Applying this to Φ(z), which has determinant 1, we first see that X(z)2n =
1 and then (by taking a generic z) that J^ = 0 except for the entries
of J along the non-main diagonal of each block. In other words J =
diag(Ji,... Jfc, Jo) with

where

Bi=\ J (rxr).

Now apply the same formula to Φ(j). Since

for s — 1,.. .k and hr0JohrQ — Jo, we see that λ(j) = (-1)M*+ 1 for all 5
and further that λ(j) = 1 if r0 ^ 0, i.e. if mk < n. Since rs = M5 (mod 2)
for all 5, we are finished.
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