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UNITARY REPRESENTATION INDUCED FROM MAXIMAL
PARABOLIC SUBGROUPS FOR SPLIT F4

CHENG CHON HU (CHEN ZHONGHU)

For the linear connected simple Lie group split F4, the
author determines which Langlands quotients J(MAN, σ, v) are
infinitesimally unitary under the condition that dim A — 1.

1. Introduction and Statement of Results.

It is known that the problem of classifying irreducible unitary representa-
tions of a linear connected semisimple Lie group G comes down to deciding
which Langlands quotients J(MAN, σ, v) are infinitesimally unitary. Here
MAN is any cuspidal parabolic subgroup of G, σ is any discrete series or
nondegenerate limit of discrete series representation of M, and v is any com-
plex valued functional on the Lie algebra of A satisfying Re v > 0 and certain
symmetry properties. Using Baldoni-Silva and Knapp [BK3], Baldoni-Silva
and Knapp [BK1] determined which Langlands quotients are infinitesimally
unitary under the conditions that G is simple, that dim A = 1 and that G
is neither split F4 nor split G2 Recently, the related problem was discussed
by D.A. Vogan [V3] for the simply-connected split G2 In this note, the au-
thor determines which Langlands quotients J(MAN, σ, v) are infinitesimally
unitary under the conditions that dim A = 1 and that G is split F4.

The author is deeply indebted to the referees and A.W. Knapp for their
valuable opinions and their help. It is a great pleasure to acknowledege
these.

Let G be the linear connected simple Lie group split F4. Let θ be a
Cartan involution, let K be the corresponding maximal compact subgroup,
and let MAN be the corresponding Langlands decomposition of a parabolic
subgroup. We shall assume that dim A — 1. We denote corresponding Lie
algebra by lower case Italy letters. Let σ be a discrete series representa-
tion of M or a nondegenerate limit of discrete series [KZ2], and let v be a
complex valued functional on the Lie algebra α of A. The standard induced
representation U{MAN,σ,v) is defined as in [BK1] (cf. p. 23 in [BK1]). If
Re v > 0 (with positive defined relative to JV) and v φ 0, then U(MAN, σ, v)
has a unique irreducible quotient J(MAN,σ,v), the Langlands quotient. If
v is imaginary ,then J(MAN, σ, v) is trivially unitary. If Re v > 0, then
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J(MAN, σ, v) cannot admit a nonzero invariant Hermitian form unless the
Weyl group W(A : G) has a nontrivial element w and w fixes the class [σ] of
σ, moreover, v must be real. Conversely, these conditions give the existence
of a nonzero invariant Hermitian form (see [KZ1]). Thus the problem is to
decide which real parameters v > 0 are such that this form is semi-definite.

Clearly, rankG = rank if. Let 6 be a compact Cartan subalgebra of the
Lie algebra g of G. We may assume that a is built by Cay ley transform
relative to some noncompact root a in Λ = A(gc,bc). Then b_ = kerα
is a compact Cartan subalgebra of the Lie algebra m of M and the root
system Λ_ = Λ(rac, i£) is given by the members of Λ orthogonal to α. Let
Aκ and Λn be the subsets of compact and noncompact members of Λ. It
will be convenient to identify a with its Cayley transform, so that we write
i^asa multiple of a. Clearly, σ is determined by χ and a Harish-Chandra
parameter (λo,Λΐ) for σ where χ has been defined in [BK1] (see p. 24 in
[BK1]). Here Λl is a positive system for Λ_ and λ0 is dominant relative to
Λί. We can introduce a positive system Λ+ for Λ containing At such that
λ0 is Λ+ dominant and a is simple. Let Λ£ = AKΠA+ and Λ+ = ΛnΠΛ+.
It is automatically true that the nontrivial element w of W(A : G) exists
and fixes [σ]. We can define σ to be a cotangent case or tangent case as in
[BK1] (see p. 25 in [BK1]). According to [K], J(MAN,σ,v) has one or
two minimal if-types with highest weights given by the formula

A = Xo + δ-2δκ--{l-μa)a.

Here δ and δκ are the half sums of positive roots for Λ+ and Λ£ and μa is 0
in a tangent case, and is equal to ±1 in a cotangent case. For a given Λ, let
Λ ^ i = {r e Aκ I (Λ,r) = 0}. The special basic case associated to λ0 is the
group or root system generated by α and all simple roots of Λ+ needed for
expansion of members in Λ^j_. This root system will be denoted by A$ and
the component of a in As will be denoted by Λ .̂ For a given α, let v£ and
VQ be the integers defined by (1.4a) and (1.4b) in [BK1] respectively (cf.
(1.2) below). By 2.1 in [BK1], we may assume henceforth that VQ > 0, that
I/Q > 0, and that the invariant Hermitian form on J(MAN, σ, v) is positive
for all v near 0. Evidently there is nothing to prove unless min^o",^) > 1
in the consideration.

Let Λ(5) denote the subsystem of Λ generated by a subset S in Λ. A
subalgebra I of g is called to be a standard subalgebra of g if there exists
S C Λ, a E S such that lc is the subalgebra of gc with root system Λ(5), S C
Λ (cf. Section 3). For convenience, let L denote the subgroup of G with Lie
algebra / and let ΛL denote the subsystem A(S). A subalgebra I of g is called
to be a fundamental of g if AL is a subsystem generated by some simple roots
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and containing α. Clearly, each fundamental subalgebra of g is a standard
subalgebra of g. If I is a standard (resp. fundamental) subalgebra of #,
then L is called to be a standard (resp. fundamental) subgroup of G. For
each standard subgroup L of G, let AL(U) = {β G Λ+ \ β £ AL}. For each
fundamental subgroup L, there is a simple root system UL of AL so that
a G ΠL C Π, and let Λ^s be the special case associated with λ^o, and let
Λ^ s be the component of a in Λĵ s. Here Â ,o is given by (3.1b) in [BK1].
For a fundamental subgroup L, let ξ(α, ε) be the sum of the simple roots
strictly between α and ε in UL for any α, ε G ΠL. Clearly, the simple root
system Π can be expressed in the form Π = {αi, a2i α3, α4} where c*i and α2

are long, and α3 and α4 are short, and α̂  is orthogonal to aj if |i — j \ > 1,
i, jί = 1,2,3,4. Let Γ be the subgroup of G with Λp = Λ(c*i, c*2)

In this note, we shall use the notations given by [BK1] directly. Now, we
shall state the main results of this note.

Theorem 1 (Main Theorem). For c > 0, then, J(MAN,σ,\ca) with
three exceptions is infinitesimally unitary exactly when

0 < c < min(ί/^, z/̂ ) = c0,

the exceptions occur when there exists a fundamental subgroup L of G which
is of one of the following form:

(A.I) L = SO(4,3) and Λ^ 5 = ΛΓ with a long, and there is a basic short
root ε in Πĵ .

(i) Suppose that vJL < 1. Then J(MAN.σ,^ca) is infinitesimally
unitary exactly when

0 < c < min(i/^L, v~L) = c0.

(ii) Suppose that v£L > 1. Then J(MAN,σ,^ca) is infinitesimally
unitary exactly when

0 < c < c'Q = min(ι/+L - d, v~L - d1), or c = co =

Here d = 0,d' = 1 and Ύ = — if ξ(a, ε) is noncompact, d — l,d' = 0
and T = + if ξ(a,ε) is compact or zero.

(A.2) L = SO(5,2) and ΛΓ C Λ^^ = AL with a long and a is the middle of
three simple root in ΠL. Suppose that there is a unique positive noncom-
pact root βo in Λ/, such that β0 is orthogonal to a and is conjugate to
—a (resp. a) by K within L. Then J(MAN,σ, \ca) is infinitesimally
unitary when

0 < c < Co = min(z/+L, i/~Γ + 1), (resp. c0 = min(z/^Γ + 1, v^L)).
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(B.I) L = Sp(2,1) and Λ$, s = KL with a short. Suppose that there is a long
compact root of TIL next a , and μa = 0. Then J(MAΛΓ, σ, \ca) is
infinitesimally unitary exactly when

0 < c < min(ι/^, VQ) — 2 = cό or c = Co =

Remark. For the case (A.I), (ii), or for the case (B.I), J(MA/V,σ, \CQOL)

is an isolated unitary representation and there is a gap (CQ, CQ) if c'o < CQ. The
situations for (A.I), (ii) (resp. (B.I)) is a similar fashion as in situations for
(iii) (resp. for (i)) in Theorem 1.1 of [BK1].

For each r G Λ, let g^ be the root space corresponding to r. Then gc has
the following decomposition:

Let θ denote the Cartan involution for the Lie algebra g of G. Then gu —
g+ + ig~,i = \/—ϊ is a compact Lie algebra where g± = {X G g \ Θ(X) =
±X}. For each r e A, let ur — \{er + e_r) and vr = ^ ( e r — e_ r). Here
β±r ^ 5±5 β ± r φ 0 with (e r, e_r) = 1. Then gu can be interpreted as a vector
space generated by {ur,vr \ r € Λ} over real number field R. Let θ denote
the extension of θ to gc also. Clearly, θ(e±r) — e±r if r G Λ^, ^(e-tr) = — e ± r

i fr GΛ n .

If g is n-dimensional vector space over R, then gc can be interpreted as
a 2n-dimensional vector space over R. If Z = X + ϊY G gc ,X,Y Gg then
we denote by Z the element X — %Y in gc.

L e m m a 1.1. For each r G Λ, e r = e_ r or e r = —e_ r.

Proof. If r G Λ#, then wr, vr E g+ C #, so e r = ur + ivr and e_ r = ur — ivr.
Thus for each r G Λ# we have er = e_ r. If r G Λn, then iuΓ,ivr E j _ C j ,
so, e r = ivr — i(iιt r) and —e_r = ivr 4- i(iur). Thus for each r G Λn, we have
er = - e _ r .

In order to describe the root system Λ,it is convenient to use an orthonor-
mal base ei ,e 2 ,e 3 ,e 4 of a Euclidean space ER of dimension 4. Clearly, we
have

Λ = I ±βi ± ej,±eu 1 < i, j < 4, i φ j , - ( ± β i ± e2 ± e3 ± e4) \

Let

Π = <c*i = e2 - e 3 , α 2 = e3 - e 4 , α 3 = e 4 , α 4 = ~-^\ + e2 + e3 + e4) > .
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Clearly, Π is a simple root system of Λ. For the simple root system Π, the
positive root system Λ+ can be expressed in the form:

Λ+ = | - e i ±euei±ej,ej,2 <i <j < 4 , - e i , - - ( e i ± e 2 ± e 3 ± e 4 ) | .

For convenience,the coordinate of the element x = Xχe± + x2e2 + x3es + #4β4

of ER can be written as

(1.1) (^1,^2,^3,^4).

It is clear that 2δ = (-11,5,3,1).
Hereafter, we shall fix the root system Λ, positive root system Λ+ and the

simple root system Π in the consideration. We shall assume that λ0 is Λ+

dominant, Λ£ C Λ+, and Q G Π . Let Π# be the simple root system of Λ#
associated with Λ£ and let Π^ =Π(Ί Λ£.

For two ordered elements (x,y) in ER ® ERi let (x,y) = 2(x1y)/(y,y).
A Dynkin diagram of Π is called an explicit diagram if every simple root

of Π is either white or black. For an explicit diagram of Π, let Πo be the set
of the white roots in the explicit diagram of Π, and let (Π,Π0) denote the
explicit diagram of Π. Clearly, the explicit diagrams are ones in Table 1.1
and Table 1.2. (See the end of this note.)

In [G], θc = (ci, c2, c3, e4), c< = 0, ±1, ±2, i — 1,2,3,4, denotes a canonical
involutive automorphism of gu for Λ given above. Let c be the element of
ER with coordinate (ci,C2,c3,c4) in (1.1). Then for any r G A, θc{er) = er

or = — er according to kCyr is even or odd where fcCjΓ = (c, r). The canonical
involution θc of gu determines a maximal compact subalgebra C of gu. Here
C = {X £ gu I ΘC(X) — X}. In fact, C is the subalgebra of gu generated
by the elements in the set {ur,vr,r G Λ | kCiΓ G 2Z}. Clearly, Ac = {r G
Λ I kCir G 2Z} is a root system of C. It is clear that Ac Π Λ+ = Λj is a
positive root system of Ac- Let Uc be the simple root system of C associated
with Λ£ and U°c = Π Π Aj. In fact, U°c = {r G Π | kc,r G 2Z}. Then, for
each involution θc, there is an explicit diagram (Π,Π0) such that Πo = Π^.
Conversely, for each explicit diagrqam (Π,Π0), there is an involution θc

corresponding to (Π,Π0) such that Π^ = Πo. Since the Lie algebra k = g+
of K is isomorphic to the semisimple Lie algebra Aλ + C3 by [G] (or by [Y]),
for any involution θc, the root system Ac of C is a compact root system
Λ# for G if and only if C = Aλ + C3. By [G], it is easily verified that for
every involutions θc corresponding to the explicit diagrams given by Table
1.1 (resp. Table 1.2), we have C = Ax + C3 (resp. C ψ Aλ + C3). D

Therefore, we have
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Lemma 1.2. There is a one to one correspondence between the explicit
diagrams (Π, Πo) given in Table 1.1 and the positive compact root systems
Λ^ satisfying Λj- C Λ+ such that Πo = Π^ = Π(Ί Λ^. Moreovery for each
explicit diagram (Π, Πo) in Table 1.1, there is an involution θc of gu such
that Πo = ΠQ = Π Π Λ% and Λ£ = Ac Π Λ+ is the positive compact root
system corresponding to the explicit diagram (Π, Πo) mentioned above.

For any finite set Yy let #(Y) denote the number of the elements of Y.
For a given α G Π ί l Λ j , let

Φf = {β e Φ± I \β\ < \a\,2(Λ,β)/(β,β) = (Λ,/J) = 1}.

We shall give an explicit formula for v£ and VQ :

(1.2) v± = 1 ± μa + 2#(ΦJ) + #(ΦJ=).

For convenience, function f(μa),μa — 0, ±1 will be expressed in the form

2. The proof of Theorem 1.

For given Λ,α and Λ£, (Λ + C«)V

5C = ± was defined in [BK1]. Clearly it
can be expressed in the form

where α/ is a root in Λ which can be expressed in the form uniquely

(2.1) ωζ — ζa + rriiri + m2r2 H + mqrq

where mi,m 2,...,m g G Z and r1^r2y..^rq G Π^.
Let Λ(ω,ζ") = {—mirl5 —m2r2,..., —rngrg}. Let δ+ and ί~ be the results

of making a and —α, respectively, dominant for A^j.. Clearly 5=*= = ω^1 if
and only if Λ ± δ± is Λj dominant (cf. p. 34 in [BK1]).

Lemma 2.1. Suppose that ζ2a is not a sum of some roots in A(ω,
Then (b) Λo/ds in Theorem 3.2 o/[BKl] i/C = +, in Theorem 3.2' o/[BKl]

i/C = -

Proo/. Assume that (b) dose not hold. Then by the properties of highest

weight and (2.1) we have.

ω± ± a = A ± ω± - (Λ =F a) = ^ krr,
r€Λ+
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ω* =F Oί = Λ ± ur — (Λ ± a) = 22 mrT'

Here kr are nonegative integer. Thus ζ2a is a sum of some roots in Λ(α;, ζ) U
Λ£. Hence, the lemma follows. D

2.1. The proof of Theorem 1. By similar methods used in Sections 3-7
of [BK1], we shall determine a least positive integer c0 such that J(MAN,
σ, \ca) is not infinitesimally unitary for c0 < c. By similar methods used
in Sections 8-11 of [BK1], we shall determine a greatest postive integer c'o
such that U(MAN, σ, | α ) is irreducible for 0 < c < c'o. It follows from a
general continuity argument (cf. [KS], Sect. 14) that J(MAN, σ, |cα) is
infinitesimally unitary exactly for 0 < c < c0 if c'Q = c0. If CQ < c0, then
by the methods mentioned above, we don't know whether J(MAN, σ, \ca)
is infinitesimally unitary for cf

0 < c < c0 and we say that there is a "gap"
(CQ,C0). If CQ < c0 and by the methods given by D.A. Vogan [VI] we can
finally show that J(MAN, σ, \ca) is infinitesimally unitary exactly for 0 <
c < CQ or c = c0, then the "gap" (CQ,C0) is a gap mentioned in the Remark
of Theorem 1.

In fact, for short α, integer c0 was determined by 6.1 of [BK1] (cf. pp.
45-49 in [BK1]), so, we shall only need to determine integer CQ for this case.

By Lemma 1.2, in order to prove Theorem 1, it is sufficient to prove
Theorem 1 for the cases (l)-(6) and (l)'-(6)' given in the Table 1.1. Now
we shall first determine the positive integers CQ and c0 case by case.

(1) θc = (1, —1,0,0): It is easy to see that

4, -βi ± e2, e3 ± e4, --(βi + e2 ± e3 ± e4) >,

- -(ei - e 2 ± e 3 ±

+ = I -β i , e2, - e i ± e3, -βi ± e4, e2 ± β3, e2 ± e4,

e 4 ) >,

, α3, α4, -ei + e2}, 25^ = -4eχ - 2e2 + 3e3 + e4.

(l.A) Let α = αχ Clearly, we have

Φ" = j e2, -ei - e3, e2 ± e4, - - (ei - e2 + e3 ± e4) | ,

φ α = |e3,-βi - e 2 , e 3 ± e 4 , - - ( e i + e 2 - e 3 ± e 4 ) | ;

φ+ = { ^ e i + e 3 } , φ j = { - e i + e 2 } .

By Table 2.1 of [BK1], the following formula are easily verified
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(2.1.1) (Λ, αi> > 5 + μα, (Λ, a{) > 0, i = 2,3,4.

(Equality holds if α«, z = 1,2,3,4 is basic.) It follows that

(Λ,e3) > 0,(Λ,~~(ei + e2 - e3 ± e 4)) > 0

(Λ, e3 ± e4) > 0, (Λ, -ex - e2) > 0;

(2.1.2) (Λ,-e 1 -fe 2 )>2(5 + μα).

It follows from (2.1.2) that

#(Φ0~) > [6,6,6] = 6, #(Φ") = [0,0,0] = 0;

#(Φ+) ==#(*+) = [0,0,0] =0.

Thus, min(^,i/0~) < [2,1,0]. (Equality holds if 0^,1=1,2,3,4, are basic.)
By (2.1.1), (Λ, — βi + e2) > 0, hence — eλ -fe2 $• AKiA_. Therefore, it is easily

shown that — a is Λ£ ± dominant, so δ~ — —a. Clearly, Λ' = (Λ—α)v = Λ—a
is dominant for Λj. For this case ω~ = δ~ — —a and Λ(ω, —) is empty.
Thus by the Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2; in [BK1].
By computing, it is easy to see that —2a is not a sum of some roots in
Λ(ω, - ) U Λ£, so, by Lemma 2.1, (b) holds in 3.2' of [BK1]. Since Λ; - Λ =
- α , (c) holds in 3.2' of [BK1]. Thus, by 3.2' in [BK1], J(MAN,σ, \ca) is
not infinitesimally unitary for c > min(ί/^, VQ) — c0.

We will consider the irreduciblility of U(MAN, σ, \ca).

(1) Suppose μa = —1. Let Λjr, = Λ(α l 5 α 2 ,α 3 ). Then L is a fundamental
subgroup of G and L =* SO(5,2).

Obviously, there is a unique positive noncompact root β0 — e2 + e3 in
AL such that βQ is conjugate to a by K within L. We shall consider the
condition:
(2.1.q): ΛΓ C K°LS = ΛL.
(i) Suppose that (2.1.q) does not hold. Then (Λ,α2) > 0. Therefore, it

follows that #(Φ^") = 0. Then we have min(z/o",̂ oΓ) — vt ^ l F° r

this case, ω+ = 5+ = —βi + e3 and A(α;,+) = {—α2, — α3, — α4}. A
similar argument shows that (a), (b) and (c) hold in 3.2 of [BK1],
Thus, by 3.2 of [BK1], J(MAN,σ, \ca) is not infinitesimally unitary
for c> c0 = vt = l % 8 3 o f lBK1l U{MAN,σ, \ca) is irreducible
for 0 < c < c'o = c0 = 1.

(ii) Suppose that (2.1.q) holds. Then min(z/^Γ + 1, v^L) — 2 since v^L — 2
and z/̂ Γ + 1 = 3. Thus by 11.2 in [BK1], UL{MLANL,σL,\ca) is
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irreducible for 0 < c < c'o,c'o = c0 = VQ = 2 . By Table 1.2 in [BK1],
we have

-α,αΛ > 1, ίλo + -a,a2) > --

(2.1-3) (\o + \a,a^>, ^λ0 + \a,a^ >

(Equality holds if au ΐ = 1,2,3,4, are basic.) By (2.1.3), (λo + |α,/3) >
0 for all β £ KL{u). Thus, by 8.2 in [BK1], U(MAN,σ, \ca) is irre-
ducible for 0 < c < c'o, c'0=c0< 2.

(2) Suppose μa φ - 1 . By 8.3 in [BK1], U(MAN,σ, \ca) is irreducible for
0 < c < c'o,c'o = c0 < 1.

Summarizing the results of (1) and (2), U(MAN, σ, \ca) is irreducible for
0 < c < c'o,c'o = c0. Therefore, by the continuity argument, (cf. [KS]), for
case (1), Theorem 1 is proved since ΠΠΛJ = {^i}

(2) θc = (0,1, -1,0). It is easy to see that

,-e1 ±e 4,e 2 ±e3,--(e1 + ze2 + ze3 ±e4),z = ±1>,

-ei ±e 2 , -e i ±e 3 ,e 2 ± e 4 , e 3 ± e 4 ,

-(ei +ze 2 -

2δκ = -5eχ + 2e2 + e4.

(2.A) Let α = α 2. Clearly, we have

Φ~ = S-ei + e 3 , e 2 - e 4 , e 3 , - - ( e i + e2 - e3 + e4) L

e i + ^ 4 , e 2 - e 3 , e 4 , - - ( β i + e2 + e3 - e4) >

Φ+ = | - β i - e 3 ? e 2 + e 4 , --(e x - e2 + e3 - e

Φj" = j - e i ~e 4,e 2 + e3,--(ei - e 2 - e 3 + e

By Table 1.2 in [BK1], the following formula are easily verified

0, (Λ,α 2 >>l+μ β ,
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(2.2.1) (Λ, α3) > \ μ* + \ (Λ, α4) > 0.

It follows from (2.2.1) that

) < [1,3,3], #(ΦΓ)< [2,0,0],

Thus, min(i/ί,i/i") < [2,1,0].
By (2.2.1), (Λ,e2 + e3) > 0. Therefore, e2 + e3 £ Λ*,± Therefore, it is

easily verified that — a is Λ£ ± dominant and Λ —α is Λ£ dominant. Thus, it
follows that ω~ — δ~ — —α. A similar argument used in case (1) shows that
J(MAN, σ, \ca) is not infinitesimally unitary for c> c0 = U )\

We shall consider the irreducibility of U(MAN,σ, \ca).
Let Λ^ = Λ(αi,α25<^3) Then L is a fundamental subgroup of G and

L = SO(4,3). Let ε = α3. So ε is short and f(α,ε) = 0. Then it is easy to
see that min(z^L — 1, v^L) < 2 since v^L < 3 and v^L < 2. We shall consider
the condition

(2.2.q): Λ°)S = ΛΓ.

(1) Suppose that μa = — 1.
(i) Suppose that (2.2.q) holds.

(a) Suppose that α 3 = e4 ^ Φ p Then we have v^L — 1 = 1 and
VQL = 2. Therefore J(MAN, σ, \ca) is infinitesimally unitary for
0 < c < c'Q = 1 and there is a gap (c'Q, c0) = (1,2). We shall show
that for this case, (A.2), (ii) holds in Theorem 1. By (iii) in The-
orem 1.1 of [BK1], it is easily shown that JL(MLANL,σL, \ca)
is infinitesimally unitary exactly when
(2.2.2)

0 < c < c'o = min(j^L, v~L - 1) = 1, c = min(ι/+L, v^L) = 2.

By Table 2.1 of [BK1], we have λo,6 = (-1,0,0,0) and

Λ6 = λ0)6 + δ - 2δκ - ^a = i(-3,1,1,1).

Clearly, (Λ6,α3) = 1. Clearly, if α3 0 Φf, then (Λ,α3) > 1, so it
follows that Λ 7̂  Λfc and λ0 7̂  λo,6 Hence, it is easy to see that if
(2.2.q) holds and α 3 0 ΦΓ, then λ0 must be

(2.2.3) λo,6 + i(-3,1,1,1) = ^(-5,1,1,1).



UNITARY REPRESENTATIONS 43

Clearly, (λo,α<) = (λo,&,α;) for i = 1,2,4 and (λ o ,α 3 ) = (λo,&,α3)
+ 1 . Set y(z) = λ0 + (1 - z)a, 0 < z < | . By (2.2.3) we have

(2.2.4) <γ(z) = ±(-5,1,3-2z,-l + 2z).

By (2.2.4), for all /3 G ΛL(tx) (η(z),β) > 0 if * >0, (j(z),β) > 0
Ίfz = 0.
Thus, by Theorem 1.3a of D.A. Vogan [VI] (or Theorem 5.11 of
D.A. Vogan [V3]), it follows from (2.2.2) that J(MA/V,σ, \ca) is
infinitesimally unitary exactly when 0 < c < l o r c = 2. Hence,
(A.I), (ii) holds in Theorem 1.

(b) Suppose that a3 = e4 G Φj~ Then it is easy to see that VQL — 1 = 2
and v~L = 2. Therefore, by 11.2 in [BK1], UL(MLANL\σL, \ca)
is irreducible for 0 < c < c'o = co,co = c0 < 2. By Table 1.2 in
[BK1], we have

λo + -a,on) > —z,
Z / Δ

(2.2.5)

It follows from (2.2.5) that (λ0 + |α,/3) > 0 for all β in ΛL(w).
Then by 8.2 in [BK1], U{MAN, σ, \ca) is irreducible for 0 < c <
c'o,c'o = c0 = 2. By continuity argument (cf. [KS]), Theorem 1
holds.

(ii) Suppose that (2.2.q) does not hold. Then aλ £ Λ^^. Therefore, it
is easy to see that (\o,oti) > 0. Let A/, = A(a 2 ,a 3 ,a 4 ). Then L is a
fundamental subgroup of G and L = Sp(3, R). It is easily verified that
min(z/+L, v~L) = min(i/^, z/0") since e4, - | ( β i + e2 + e3 - e4) G ΛL.

(a) Suppose that #(Φf) < 2. Then min(z/o

f,i/^") = v£ < 1. Then for
this case, we have ω+ = δ+ — — eλ + e2 and similar arguments as
used in the case (l.A),(l),(i) show that Theorem 1 holds with
c0 = c0 = vt = l

(b) Suppose that #(Φf) = 2. Then by 11.2 of [BK1], UL(MLANL,
σL^\coi) is irreducible for 0 < c < c0 = c0 = 2. Here c0 =
m i n ( ^ L , ^ L ) . Since (λo,c*i) > 0, it follows from (2.2.5) that
(λ 0+ |ά,/?)'> 0 for all β G ΛL(τx). Then by 8.2 of [BK1], it is easy
to see that U(MAN, σ, \ca) is irreducible for 0 < c < c'o = c0 < 2.
By contiunity argument (cf. [KS]), Theorem 1 holds.

(iii) Suppose μa φ - 1 . By 8.3 in [BK1], U{MAN, σ, \cά) is irreducible for
0 < c < c'o,c'o = c0 = 1. By continuity argument (cf. [KS]), Theorem
1 holds.
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Summarizing the results of (1) and (2), for case (2), Theorem 1 is proved
since Π(ΊΛJ = {̂ 2}-

(3) θc = (1,0,0, -1). It is easy to see that

&κ = je 2 ,e 3 ,-ei ± e 4 , e 2 ± e 3 , - - ( e i ± e2 ± e3 + e4) >

,-ei ± e 2 , - e i ± e 3 , e 2 ± e 4 , e 3 ± e 4 ,

- -(β! ± e 3 ± e 3 -e 4 ) j ;

Π :̂ = {αi, e3, α4, -βi + e4}, 2ίκ = -4eχ + 3e2 + e3 - 2e4.

(3.A) Let a = a2. It is clear that

Φ" = {-βi + e 3 , e 2 - e 4 } ,

Φ« = {-ei + e 4 , e 2 - e3};

Φ+ = je 4 ,-e i - e 3 , e 2 + e 4 , - - ( e i ± e2 + e3 - e4) j ,

φ ί = | e 3 , - e i - e 4 , e 2 + e 3 ) - - ( e 1 ± e 2 - e 3 + e 4 ) | .

By the Table 1.2 in [BK1], the following formulas are easily verified

(2.3.1)
(Λ,αi)>0, ( Λ , α 2 ) > - 3 + Mα,

2l- + 1(1 - μβ), (Λ,α4) > 0.(Λ,α3) > \

It follows from (2.3.1) that

#(*o) < 1, #(ΦΓ) = 0, #(Φί) < [5,5,0], #(Φ+) < [0,0,2].

Therefore, we have min^o",^) < [2,3,2].
Suppose μaφl. It is easy to see that ί+ = e2 — e4 and Λ' = (Λ + α ) v =

Λ + e2 — e4 is Λj dominant. For this case, we have ω+ = δ+ = e2 — e4 and

By Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is
clear that 2α is not a sum of some compact roots in Λ(α;, +) U Λj. Thus,
by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, Λ' - Λ = e2 - e4, so, (c)
holds in 3.2 of [BK1]. Therefore, 3.2 of [BK1] shows that J{MAN,σ, \ca)
is not infinitesimally unitary for c > v§ — c0.
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We shall consider the irreducibility of U(MAN, σ, \cά) for μa φ 1.

Let ΛL = Λ(αi ,α 2 ,α 3 ) . Then L is a fundamental subgroup of G and
L = SO(5,2). Clearly there is a unique positive noncompact root β0 = e3-f e4

such that β0 is conjugate to — a = e3 — e4 by K within L.
In the following, we shall consider the condition:

(2.3.q): ΛΓ C Λ°L>5 = ΛL.

Clearly, if (2.3.q) holds, then by (ii) in 11.2 of [BK1], UL{MLANL,σL,
| c α ) is irreducible for 0 < c < c'o = 2 since v^L — 2 and VQΓ = 2 if
μa = - 1 , ^ L = 3 and v~τ = 1 if μα = 0. Clearly, by Table 2.1 of [BK1], we
have

λ0 + - α ,
Δ

(2.3.2)
1] / Λ 1 \ 1

Thus (λ0 + | α , /3) > 0 for all β in ΛL(u), hence, by 8.2 of [BK1] it is easy to
see that U(MAN,σ, \ca) is irreducible for 0 < c < cf

0 = 2 if (3.2.q) holds.

(1) Suppose that μa = 0.
(i) Suppose that (2.3.q) does not holds. Then ax £ &K,L Thus, it is

easy to see that (Λ,αχ) > 0, it follows that a £ Φ^. Therefore, for
this case, #(ΦjJ") = 0. Hence min(ι/^", VQ) — VQ — c0 = 1. It is shown
that J(MAN,σ, \ca) is not infinitesimally unitary for c > c0 = 1. For
this case, by 8.3 of [BK1], U(MAN,σ, \a) is irreducible for 0 < c <
CQ = Co = 1, hence, Theorem 1 holds with c'o — c0 = 1 by continuity
argument (cf. [KS]).

(ii) Suppose that (2.3.q) holds. Then U(MAN, σ, \ca) is irreducible for
0 < c < cf

0 = 2. Clearly we have c'o — 2 and c0 = 3, so, there is
a "gap" (c(>,co) = (2,3) that is called the gap (A.2). But {c'0,c0) =
(2, 3) is not a true gap since we shall show that J(MAN, σ, \ca) is
infinitesimally unitary exactly when 0 < c < c'o = c0 < 2 in Section 4
(see Proposition 4.1). Thus for this case, (A.2) holds in Theorem 1 by
continuty argument (cf. [KS], Sect. 14).

(2) Suppose μa = — 1. If (3.2.q) does not hold, then a similar argument
as used in (1), (i) mentioned above shows that min(ι/^, VQ) = v$ — 1 and
Theorem 1 holds for this case with c'o = c0 = 1. If (3.2.q) holds, then
c'Q = c0 = 2, so, by contiunity argument (cf. [KS]), (A.2) holds in Theorem
1.

(3) Suppose μa = 1. Then min^^z/cΓ) = vό — %>
Clearly, Λ j ± = { a l 5 a 4 } . Thus, δ~ = —a is Λ j ± dominant but Λ — a

is not Λ£ dominant. Clearly, 7 = e3 is a short compact root satisfying the
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conditions for producing ω~ in Section 3 of [BK1]. It is easy to see that
—a + 7 = e4 is not Λ^ ± dominant since (e4,α4) < 0. Thus it is clear that
Λ' = (Λ — α ) v = Λ — ω~. Here ω~ = — |(βi + e2 + e3 — e4) is the image
of — a + 7 — e4 under the reflection in α4. For this case, ω~ φ δ~ and
Λ(ω,-) = {-α 4,-e 3}.

Since α4 is the only short simple root in Λ J ± but is not strongly orthog-
onal to β, 3.1 in [BK1] shows that (a) holds in 3.2' in [BK1].

It is clear that — 2α is not a sum of some compact roots in Λ(ω, —) U Λ^.
Thus by Lemma 2.1, (b) holds in 3.2' of [BK1].

Clearly Λ'—Λ = ω~ = α 4 + α 3 , hence, we can prove that (d) holds in 3.2' of
[BK1]. Therefore, by 3.2' in [BK1], J(MAN,σ, \cά) is not infinitesimally
unitary for c> CQ — min(ι/o~, v$) — I/Q < 2 since v$ > 2.

Let AL = Λ(α 2,α 3,α 4). Then L is a fundamental subgroup of G and
L = Sp(3,R). Clearly e^,-\{eλ + e2 - e3 + e4) G ΛL, so, i/^L = vό" < 2
and z/+L = i/̂  > 2. By 11.2 in [BK1], UL(MLANLlσL, \ά) is irreducible for
0<c<c'0,c'0 = v-L<2.

By (2.3.2) (λ0 + \θL,β) > 0 for all β in AL(u). It follows from 8.2 in
[BK1] that U(MAN, σ, \cά) is irreducible for 0 < c < cj,, cό = c0 = ̂ 0~ < 2.
Therefore, by continuity argument (cf. [KS]), Theorem 1 follows for this
case.

Summarizing the results of (1) and (2), Theorem 1 follows for a = α2 .

(3.B) Let a = α3. It is clear that

βi,e2 + e4,e3 +e 4 , -- (eχ ± e 2 ± e 3 - e 4 )

Φα = { ~ e i ~ e4, e2, e3, - - (ei ± e2 ± e3 + e4)

Φ+ = {-eu e2 - e4, e3 - e4},

Φί = {-ei +e 4 ,e 2 ,e 3 } .

By Table 1.2 in [BK1], the following formulas are easily verified

(A,ai)>0, (Λ,a2>> [-1,-1,-2],

(Λ,a3>> [|ι2,|], (Λ,a4)>0.

Thus it follows that #(Φό) = 1 and #(Φί) = 0. We have min(^,ι/0") =
c0 < [2,1,0]. By 6.1 of [BK1], J(MAN, σ, \ca) is not infinitesimally unitary
for c > co By 8.3 in [BK1], U(MAN,σ, \ca) is irreducible for 0 < c <
CQ , CQ = c0. Therefore, Theorem 1 follows for a = α 3.

It follows from (3.A) and (3.B) that Theorem 1 is proved for case (3)
since Π Π ΛJ = {α2,α3}.
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(4) θc = (0,1,0, -1). It is easy to see that

Λ£ = <-ei,e 3,-ei ± e 3 , e 2 ± e 4 , - - ( β i + ze2 ±e3 +zeA),z = ±1 >,

Λ+ = < e2, e4, - β ! ± e2, -βi ± e4, e2 ± e3, e3 ± e4 j

- -(ei + 2 e 2 ± e 3 - z e 4 ) , * = ± l | ;

Π^ = {e3, α4, e2 ± e4}, 2i# = -5ex + 2e2 + e3.

(4.A.a) Let a = aλ. It is clear that

Φ~ = je2,-e1 +e 2 ,--(ei - e 2 + e3 + e 4 ) | ,

φα = | e 3 , -βi +e 3 ,--(e i + e 2 - e 3 + e 4 ) | ;

Φ + = I e3 ± e 4, - β ! - e 2, - - (ex + e 2 - e 3 - e 4 ) > ,

Φ+ = | e 2 ± e4, - e i - e3, - - ( e x - e2 + e3 - e 4 ) | .

By Table 1.2 in [BK1], the following formulas are easily verified

(Λ, αi) > - 1 + μα, (Λ, α 2 ) > 1 - μα,

(2.4.1) (Λ,α3) > - , (Λ,α4) > 0.

It follows from (2.4.1) that

#(Φ0~) < 0, #(ΦΓ) < [0,0,2], # ( * + ) = 1, #(Φ+) = 0.

Therefore, we have min(i/o~,i/cΓ) ^ [0.1.2].

(1) Suppose that μa = 1.

Clearly, (Λ, e3), (Λ, e2 + e4) > 0. Thus, it is easy to see that δ~ = e3 — e4

and Λ; = (Λ — α ) v = Λ + e3 — e4 is Λ£ dominant. So, ω~ = δ~ = e3 — e4,

and Λ(ω, - ) = {-(e2 - e4)}.

Clearly, α 4 is orthogonal but not strongly to e3 — e4. Thus by 3.1 of [BK1],

(a) holds in 3.2'. It is easy to see that — 2a is not a sum of some compact

roots in Λ(ω, - ) U Λ£. Hence, by Lemma 2.1, (b) holds in 3.2, of [BK1].

Clearly, Λ' - Λ = e3 - e4 = α 2 , so, (c) holds in 3.2; of [BK1]. Therefore,

3.2' of [BK1] shows that J(MAN,σ, \cά) is not infinitesimally unitary for

c > co = v£ < 2.



48 CHENG CHON HU

Let AL = A(a1,Qf2,«3). Then L is a fundamental subgroup of G and
L = SO(4.3). Let ε = α3. Then ε is short and £(ε, a) = α2 is noncompact.
It is easy to see that v^L < 2 and v^L < 3. In the following, we shall consider
the condition:

(2.4.q): A£§s = ΛΓ.
(i) Suppose that (2.4.q) does not hold. Then α2 ^ Λ^i . Thus, it is easy

to see that (Λ,α2) > 0. Therefore, it follows that otχ + a2 & Ψo*. So,
#(Φj) = 0. Hence, we have min(z/o~,̂ o~) = Vo = Co = 1. It follows
that J(MAN, σ, ~cα) is infinitesimslly unitary exactly for 0 < c <
CQ = Co = 1. Consequently, Theorem 1 holds for this case.

(ii) Suppose that (2.4.q) holds. Clearly, VQ — ^ L = 2 since the root
e2 — e4 that is in Φj is also in Λjr,. Therefore, we have UQL — 1 = 1.
It has been shown that J(MAN, σ, |cα) is not infinitesimally unitary
for c > c0 = 2 and is infinitesimally unitary for 0 < c < cf

Q = 1 by
continuity argument (cf. [KS]).

Since CQ = 2 > c'o = 1, there is a gap (cό,c0) = (1,2), (cf. the Remark of
Theorem 1). Consequently, for this case, (A.I), (ii) holds in Theorem 1 by
Proposition 4.1. The gap (c'0,c0) = (1,2) is called the gap (A.I).

(2) Suppose that μaφl. Then min(ι/o", i/J") = z/jj".
By (2.4.1), (Λ,e3) > 0, and (Λ,e2 + e4) > 0. Thus, 5+ = α is Λ^ ±

dominant. It is easily verified that Λ; = (Λ + θί)v = Λ + a is dominant for
Λ£. For this case, ω+ = <5+ = α and Λ(α;+) is empty.

Clearly, by 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is easily
verified that 2a is not a sum of some compact roots in Λ(α;+) U ΛJ-, so,
by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, Λ; - Λ = α, hence, (c)
holds in 3.2 of [BK1]. Thus 3.2 in [BK1] shows that J{MAN, σ, \ca) is not
infinitesimally unitary for c > CQ where c0 = min(ι/o~, vo) — l

By 8.3 of [BK1], U{MAN,σ, \ca) is irreducible for 0 < c < c'Q = 1 = c0.
Thus by continuity argument (cf. [KS]) J(MAN,σ, \cά) is infinitesimally
unitary exactly for 0 < c < c'o = c0 = 1.

Summarizing the results of (1) and (2), Theorem 1 follows for a = ax.

(4.A.b) Let a = α2. It is clear that

Φ~ = | - e i - e 4 , e 2 -J-e3,--(e1 + e2 - e3 + e4) j ,

e 4 ,--(ei + e 2 + e3 - e 4 ) I,

- e4) >,= I e4, - e i + e4, e2 + e3, - - (ex 4- e2 + e3
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φ ί = j e 3,-e i + e 3 ) e 2 - e 4 , - - ( e i + e2 - e 3 + e 4 ) | .

By Table 1.2 of [BK1], the following formulas are easily verified

> [l,|,θ] , (Λ,α3) > [-l,-^θ] ,

(2.4.2) <Λ,α 3)>i[3,2,l], <Λ,α4) > [0,0,0].

It follows from (2.4.2) that

# ( Φ o ) < [0,0,0] = 0, #(ΦΓ)< [0,0,1],

#(Φ+) < [1,1,1] = 1, #(Φ+) < [0,0,2].

Thus min(i/o~, UQ) < [0,1,2]. In fact, under the reflection in α, then μa and
(0,1,0,-1) are replaced by — μa and (0,1,-1,0) respectively, moreover, 5+ and
δ~ are replaced by δ~ and δ+ respectively. Under the reflection in α, the
data of case (4.A.b) with a = a2 are replaced by the data of case (2.A)
with a = α2. For example, if min^o",^) = [m.^mcmi] for case (4.A.b),
then min(i/o~,z/cΓ) = [mi,mo,m_i] for case (2 A). Therefore, by a similar
argument used in (2.A), Theorem 1 can be shown for this case. Similarly,
if (2.2.q) holds, μa = 1 and e3 ^ Φί", then there is gap (CQ,C0) = (152) that
is the gap (A.I).

Remark. The details of the device, called reflection in a were given in

[BK1] and [BK3] (cf. pp. 31, 35, 39 in [BK1] and p. 190 in [BK3]).

(4.B) Let a = α3. It is easy to see that #(Φf) = [2,0,0] and #(ΦQ ) =
[1,1,2], hence min(^, ι/0") = c0 < [2,1,0]. By 6.1 of [BK1], J(MAN, σ, \ca)
is not infinitesimally unitary for c > c0. By 8.3 in [BK1], U(MAN,σ, \cά)
is irreducible for 0 < c < c'o = c0. Therefore, Theorem 1 follows for a = α3.

It follows from (4.A.a), (4.A.b) and (4.B) that Theorem is proved for
case (4) since ΠΠΛ+ = {aι^a2^a3}.

(5) θc = (1,0,-1,0).

(5.A.a) Let a — aλ. Under the reflection in α, then the data of the
case (δ.A.a) with a = aλ are replaced by the data of the case ( l A) with
a = αi Thus, a similar argument as in ( l A) shows that Theorem 1 holds
for this case.

(δ.A.b) Let a = α2. Under the reflection in α, then the data of case
(δ.A.b) with a = a2 are replace by the data of the case (3.A) with a = α2.
Thus, a similar argument as in (3.A) shows that Theorem 1 holds for this
case.
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It follows from (5.A.a) and (δ A.b) that for case (5), Theorem 1 follows
since ΠΠΛ^ = {α ,̂ α2}.

(6) 0c = (0,0,1,-1).

(6.A) Let α = αi. Under the reflection in α, then the data of case
(6.A) with a = aι are replaced by the data of the case of (4.A.a) with
a = αi. Therefore, by a similar argument used in (4.A.a), Theorem 1 can
be shown for this case. Similarly, if (2.4.q) holds and μa — — 1, then there
is a gap (C'0,CQ) — (1,2) that is the gap (A.I).

(6.B) Let a = α3. It is easy to see that

Λ* = | - e 1 , e 2 , - e 1 ± e 2 , e 3 ±e 4 , ---(e 1 ± e2 + 2e3 + ze4),z = ±1 >.

Λn = j e3, e4, -βi ± e3, —βi ± e4, e2 db e3, e2 ± e4,

- -(ei ± e 2 + 2 : e 3

e 4 ) , e 3 ± e 4 | , 2(5̂  = -

It is clear that

= < e3, —ex + e4, e2 + e4, —-(βi ± e2 + e3 — e4) >,

®a — \e3 - e 4 5 - e i , e 2 , ~ ~ ( e 1 ± e 2 + e3 + e4) >,
I 2 J

Φ + = < e 3 , —ei — e 4 , e 2 — e 4 , — ~(eχ ± e 2 — e 3 + e 4 ) >,

Γ ! 1
I 2 J

By Table 1.2 in [BK1], the following formulas are easily verified

(Λ,αχ)>2, (Λ,α 2)> [1,0,0],

(Λ,α3)> [-^0,i], (Λ,α4)>0.

It follows that #(Φό) < t ^ 2 . 2 ] a n d #(φo") < [2,2,0]. Therefore, we have
in(i/ί,i/0-)< [2,5,0].

(1) Suppose that μa φ 0. By a similar argument used in (3.B), Theorem 1
can be shown for this case.
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(2) Suppose that μa = 0. Let AL = Λ(α 2,α 3,α 4). Then L is a fundamental
subgroup of G, and L = Sp(2,1). Clearly, Φj C ΛL, so, we have v^L = VQ .
We shall consider the condition

(6.2.q): Λ£>5 = ΛL.
(i) Suppose that (2.6.q) does not hold. Then α2 £ Λ/cfj_. Thus, it is easy to

see that (Λ, α2) > 0. Then it is easily verified that rur2 £ Λ^j., hence,
ri,r 2 $* Φo". Here rx = e3 + e4 and r2 = — |(βi + e2 — e3 — e4). Thus,
it follows that #(Φj) = 0. Therefore, min^o", ẑ ") = v$ — c0 = 1.
By 6.1 of [BK1], J(MAN, σ, |cα) is not infinitesimally unitary for
c > c0 = 1. By 8.3 of [BK1], U(MAN,σ, \ca) is irreducible for 0 <
c < c'o — c0 = 1. Thus, for this case, Theorem 1 holds by continuity
argument (cf. [KS]).

(ii) Suppose that (2.6.q) holds. Then, by 6.1 in [BK1] J(MAN,σ, \ca) is
not infinitesimally unitary when c > v0 = c0 = 5 or min(z^, i/̂ ") — 2 =
CQ < c < c0. By 11.1 in [BK1], it is easy to see that UL(MLANL,σL,
\ca) is irreducible for 0 < c < c'o = z/̂ L — 2 = ô" — 2 = 3. By Table
1.2 in [BK1], we have

1 \ Λ /> 1 \
λ o + 2 « > « i ) > 0 , (λ o + - α , α 2 ) >

(2.6.1) ^λ0 + iα,α 3^ > | , ^λ0 + i α ,

Γ1 o

By (2.6.1), (λ0 + \a,β) > 0 for all β e AL(u). It follows from 8.2 and 8.3
of [BK1] that U(MAN, σ, \ca) is irreducible for 0 < c < c'o = 3. Therefore,
by continuity argument (cf. [KS]), it is easy to see that J(MAN,σ, \ca)
is infinitesimally unitary for 0 < c < dQ = 3. Moreover in Section 4, we
shall show that J(MAN, σ, \cά) is infinitesimally unitary for c = c0 = 5 (cf.
Lemma 4.3). Hence, (B.I) holds in Theorem 1 for this case. Clearly, for this
case there is a gap {c'0^c0) = (3,5) that is called the gap (B.I).

Summarizing the results of (1) and (2), Theorem 1 follows for a = a3.
It follows from (6.A) and (6.B) that Theorem 1 is proved for case (6)

since Π(ΊΛ+ = {aua3}.

(10 θc = (1,1,0,0).
(l'.A) Let a = αχ By similar methods used in case (1), it is easily

verified that min(^o",ι/J") = c0 = c'o < [2,1,0]. Therefore, for this case,
Theorem 1 can be shown by a similar argument used in case (1).

(l'.B) Let a = α4. By similar methods used in (3.B), it is easily verified
that min^o",i/()~) = Q) = c'o < [2,1,0]. Therefore, for this case, Theorem 1
can be shown by a similar argument used in (3.B).
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It follows from (l'.A) and (Γ.B) that Theorem 1 is proved for case (Γ)

since Π(ΊΛJ = {<*i,<24}.

(2') θc = (0,1,1,0). Set z = ± 1 . It is easy to see that

Λ% = I -β i , e4, - e i ± e4, e2 ± e3, - - ( e 1 + ze2 - ze3 ± e4) > ,

Λj = < e2, e3, —ei ± e2, —βi ± e3, e2 ± e4, e3 ± e4,

e4) L

4,--(eι +e2 ~ e3 + e4),αi,e2 + e3 L 5^ = -5βi + 2e2 + e4.

(2'.A) Let a = α2. Clearly, we have

, - e ! + e 3 , e 2 - e 4 , - - ( e i - e2 - e 3

? -ei + e4, e2 - e3, - - (ex - e2 + e3 - e4) L

Φ+ = |—ei - e 3 , e 2 + e 4 , - - ( β i + e 2 + e3 - e 4 ) j ,

Φί = |—ei - e 4 , e 2 + e 3 , - - ( e i + e 2 - e 3 + e

By Table 2.1 of [BK1], the following formulas are easily verified

0, (Λ,α 2)> [0,1,2],

(2.2M) <Λ,αs> > [|,O,θ] , (Λ,α4) > I[-3,-2,-l] .

It follows from (2.2'.1) that

# ( Φ o ) < [1,2,2], #(ΦΓ)< [2,1,0],

#(Φ+)< [2,0,0], #(ΦJ")< [0,1,0].

Let β = — |(ei + e2 - e3 - e4) and β' = — |(ei - e2 + e3 + e4). It is easy
to see that β and /?' are compact and strongly orthogonal to a. Thus, the
fact that (λo,s) = 0,5 = /?,/?' is in contradiction to nondegeneracy. So,
it follows that (λ0, — ex) > 0. Then we shall consider the case where λ0 =
(£,0,0,0),* e Z,ί > 1 for μa = - 1 . Let r3 = β = ej, r2 = e2 - e3 = e$ - ê
and n = α2 = ej — ej. Let ΛL = A(ri,r2,r3). Then L is a standard subgroup
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of G and L == SO(5,2). The restriction XQ of λ0 to L can be written as
XQ = | ί e 3 . Clearly, if μa = —1, then we have t G 2Z,£ > 0.

Under these conditions, it follows from (2.2M) that — eλ — e4, r 0 Φ^UΦί"
if μa = - 1 , r g Φf if μβ = 0. Here r = - | ( β i + e 2 - e 3 + e4). Thus by (2.2M)
we obtain min(^, v$) < [2,1,0].

Hence, similar arguments as used in case (2.A) show that Theorem 1
holds for this case. Similarly, if (2.2.q) holds, μa = — 1, and e4 ^ Φjf, then
there is a gap (C^Q,) = (1,2).

(2'.B) Let a = α4. By similar methods used in (3.B), it is easily verified
that min(̂ o~, VQ) = CQ = c'o < [2,1,0], therefore, by a similar argument used
in (3.B), Theorem 1 can be shown for a = α4.

It follows from (2'.A) and (2\B) that Theorem 1 is proved for case (2;)
since Π Π ΛJ = {α2, α4}.

(3') θc = (1,0,0,1). It is easy to see that

, - e , ±

Ϊ4,-βl

1

~ 2 ( β l

:e 4 ) e 2 d

± e 2 ) -

± e 2 ±

x + e 2 4

1

e3 +

- e 3 -

1

~ 2 ( e i

e 3 )e 2

e4)},

- e 4 ) , -

± β 2

±e 4 ,

± e 3

e 3 ±

- }

- e 4 ) | ,

e4,

25K = -4eχ + 3e2 + e3 + 2e4.

(3'.A) Let a = α 2. It is clear that

Φ" = | - e i + e 3 , e 2 -e4i--{e1 ± e 2 - e 3 + e

ei + e 4 , e 2 - e 3 , - - ( e i ± e2 + e3 - e

Φ+ = {e4, -ex - e3, e2 + e4},
φ ί = ίe3, -βi - e4, e2 + e3}.

By Table 1.2 in [BK1], the following formulas are easily verified

(2.3M) ( Λ | α , ) > [ θ , - 1 , - | ] , ( Λ , α 4 ) > |
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It follows from (2.3'. 1) that

# ( Φ ό ) < [1,1,2], #(ΦΓ)< [0,2,1],

#(Φ+)< [2,2,0], #(Φ+)< [0,0,1].

Let β = — j(ei + e2 — e3 — e4). It is clear that β is compact and strongly
orthogonal to α. Therefore, the fact that (λo,/3) = 0 is in contradiction
to nondegeneracy. Thus, it follows that (λo,/3) > 0. Therefore, we have
(λo,α3) > 0 or (λo,α4) > 0. Under these conditions, it follows from (2.3'.1)
that -\{ex ± e2 + e3 - e4) 0 #Γ if μ<* = 0. Hence, by (2.3M), we obtain
min(itf,i/0-)< [2,3,1].

Thus, similar arguments as used in case (3.A) show that Theorem 1 holds
for this case. Similarly, if (2.3.q) holds and μa = 0, then there is a "gap"
(cό, C0) = (2,3) that will be considered in Section 4.

(3'.B.a) Let a = α3. By similar methods used in (3.B), it is easily ver-
ified that min(ι/o~, VQ) = c0 = c'o < [0,1,2]. Therefore, by a simlar argument
used in (3.B), Theorem 1 can be proved for this case.

(3;.B.b) Let a = α4. By similar methods used in (3.B), it is easily ver-
ified that min(z/o", v^) = c0 = c'o < [0,1,2]. Therefore, by a similar argument
used in (3.B), Theorem 1 can be proved for this case.

It follows from (3'.A), (3;.B.a) and (3'.B.b) that Theorem 1 is proved for
case (3;) since Π(ΊΛJ = {α2, α3, α4}.

(4') θc = (0,1,0,1). It is easy to see that

e^e^-ex ± e3,e2 ± e 4 ,--(ei + ze2 ± e3 -

j = < e2, e4, -ei ± e2, -eλ ± e4, e2 ± e3, e3 ± e4,

- x(ei +ze2 ±e3 + zeA),z = ±1>.

, - - ( e ! + e 2 -f e3 -e 4 ) ,e 2 ± e4 L

(4;.A.a) Let a — aλ. It is clear that

+(

3,

--(ei - e2 + e3 - e<

1, , ,\
-(ei + e2 - e3 - e4) >



UNITARY REPRESENTATIONS 55

Φ+ = | e 3 ± e 4 , - e 1 -e 2 ,--(e i + e2 - e 3 + e4)J,

Φ+ = | e 2 ± e 4 , - e i - e 3 , - - ( e i - e 2 + e3 + e 4 ) | .

By Table 1.2 in [BK1], the following formulas are easily verified

(Λ, αi) > - 1 + μα, (Λ, α2) > 1 - μa,

(2.4U) ( Λ , α 3 ) > ^ ( Λ ,α 4 >>

It follows from (2.4', 1) that

) = O, #(ΦΓ)< [0,0,2],
#(Φί)<3,

Let /3 = ~j(βi + e2 + e3 - e4) and β' = \{eλ - e2 - e3 + e4). It is clear
that /3 and β1 are compact and strongly orthogonal to α. Then the fact
that (λo,s) = 0, s = /?, /?' is in contradiction to nondegeneracy. Hence, it
follows that (λ0,— βi) > 0. Under these conditions,it follows from (2.4M)
that - | ( β i + e2 - e3 - e4) £ Φf and -ex - e3, — §(βi - e2 + e3 + e4) 0 ΦQ~ ί f

μα = 1. Thus min(i/ί,i//) < [0,1,2].
Thus, similar arguments as used in cases (4.A.a) show that Theorem 1

holds. Similarly, if (2.2.q) holds and μa = 1, then there is a gap (CQ,C0) =
(1,2) that will be considered in Section 4.

(4;.A.b) Let a = α2. Under the reflection in α, then the data of the
case (4\A.b) with a = α2 are replaced by the data of the case (2, .A) with
a = α2. Hence, similar arguments as used in (2'.A) show that for this case
Theorem 1 holds. Similarly, if (2.2.q) holds, μa — 1 and e3 £• Φί~, then there
is a gap K,c 0 ) = (1,2).

(4' B.a) Let a = α3. By similar methods used in (4.B), it is easy to
see that min(̂ o",ι/J~) = c0 = CQ < [0,1, 2]. By a similar argument used in
(4.B), we can show that Theorem 1 holds for this case.

(4' B.b) Let α = α4. By similar methods used in (3.B), it is easy to
see that min(z/o~,i/<Γ) = c0 = c'o < [0,1,2]. By a similar argument used in
(3.B), Theorem 1 can be proved for this case.

Therefore, it follows from (4'.A), (4;.B.a) and (4'.B.b) that Theorem 1
is proved for case (4') since ΠΠA+ = {αi,α3,a 4}.

(50 θc = (1,0,1,0).

(5;.A.a) Let a = α x. Under the reflection in α, then the data of the
case (5.A.a) with a = ax are replaced by the data of the case (l.A) with
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a = αi. Therefore, by a similar argument used in case ( l A), Theorem 1
can be shown for this case.

(δ'.A.b) Let a = a2. Under the reflection in α, then the data of the
case (δ'.A.b) with a = α2 are replaced by the data of the case (3'.A) with
a = a2. Therefore, by a similar argument used in case (3'.A), Theorem 1
can be shown for this case.

(δ'.B.b) Let a = α4. By similar methods used in (3.B), it is easy to
see that min(i/o",i/(jΓ) = °o = c'o < [2,1,0]. By a similar argument used in
(3.B), Theorem 1 can be shown for this case.

It follows from (δ'.A.a), (δ'.A.b) and (δ'.B.b) that Theorem 1 is proved
for case (δ;) since ΠΠΛ^ = {θf2,Q?3,<Xι}.

(6') 0C = (0,0,1,1).

(6'.A) Let α = αχ Under the reflection in α, then the data of the
case (6'.A) with a = c*i are replaced by the data of the case (4'.A.a) with
a = α?i. Therefore, by similar argument as used in case (4'.A.a), Theorem
1 can be shown for this case. Similarly, if (2.4.q) holds and μα = — 1, then
there is a gap (CQ, C0) = (1,2) that will be considered in Section 4.

(β'.B.a) Let a = α 3. For this case, as in the case (6.B), it is easy to
see that min(ι/o~, VQ) = c0 < [0,5,2] and cf

0 < [0,3,2]. By a similar argument
used in case (6.B), we can show that for μa φ 0, Theorem 1 holds and, for
μa = 0, (B.I) holds in Theorem.

(β'.B.b) Let a = α4. By similar methods used in (3.B), it is easy to
see that min(^o*,ϊ/ "̂) = c0 = c'o < [0,1,2]. By a similar argument used in
(3.B), Theorem 1 can be shown for this case.

It follows from (6'.A), (β'.B.a) and (β'.B.b) that Theorem 1 is proved for
case (6') since Π(ΊΛJ = {^1,^3,^4}.

The proof of Theorem 1 is complete. D

3. The Reducibility for the Gaps.

The reducibility of the standard induced representations of G is important
in the study of unitary representations of G. B. Speh and D.A. Vogan [SV],
and Barbasch and D.A. Vogan [BV] gave an algorithm for computing com-
position series of the standard induced representations of G. Baldoni-Silva
and A.W. Knapp [BK2] use Vogan's algorithm mentioned above to deter-
mine some irreducibility questions that arise in [BK1]. In this section, we
shall use Vogan's algorithm to determine some reduciblility questions that
arise in the discussions for the gaps mentioned in Section 2.
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By the results of Section 2, it is clear that in the cases of (4.A.a),(l),(ii)

and of (3.A),(2),(ii), there are the gaps (A.I) and (A.2) respectively. The

case (4.A.a),(l),(ii) is called the case of gap (A.I), and for this case we have

(3.1)

λ0 = λo,6 = (-l,0,0,0),/*β = 1,Λ = -(-3,1,1,1),^ = ^c'o = l,c 0 = 2.

The case (3.A),(2),(ii) is called the case of gap (A.2) and for this case, we
have
(3.2)

λ0 = λo,6 = -(-3,1,0,0), μα = 0, Λ = (-3,0,0, 3), 1/ = -2α, c'o = 2, c0 = 3.

The data given by (3.1) and (3.2) are called the data of gap (A.I) and of
gap (A.2) respectively.

First we shall use some notations given by D. Barbasch and D.V. Vogan
[BV]

Let R(X0 ®v) = {r<EA\ 2(7, r)/(r, r) = (7, r) G Z}. Here 7 = (λ0 ® v) =
λ0 + v. It is clear that i?(λ0 ® v) has a decomposition

R(λ0 ® v) = R++ UR0U R~~

of the roots according to whether their inner products with 7 are positive,
zero, or negative. Let φ = a. Then i?(λo®^)α = i?(λ0®^). Choose a positive
root system R£ SO that
(a) R+DA±ΠR0.

(b) lΐreRo and (-θ)r e i?++, then r£R+.

(c) If r, {—θ)r G Ro,r φ (-θ)r, then both belong to i?J, or neither does.

Define Π^ be the simple root system of the positive root system i?+(λ0 ®

v) = i? + + U iζ{". If -θ does not preserve i?+(λ0 ® 1/), then

a = ^ n r r

with n r a nonegative rational number. We define

Let C(λ0 ® v)a be the span of Πcrit

Lemma 3.1. For the case of gap (A.I), (resp. of gap (A.2)), Πcrit is
given by (3.1.1) (resp. by (3.1.2)) below. It is isomorphic to a subset of
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Λ+ containing a and the isomorphism φ preserveing the additional structure
(1) - (5) described in [BV], (cf. p. 384 in [BV]).

Proof. It follows from the data of gap (A.I) given by (3.1) that

7 = (λ0 <g> v) = λ0 + ^a = ( - 1 , - , - - , o) .

It is easily verified that

= \ —ei,e2,—e3,e4,e2 ±e3,—βi ± e 4 , - - ( e i ± e 2 ± e 3 ± e 4 H .

It follows that

-(ei + e2 - e4),e4j.

It is easily shown that

(3.1.1) Πc r i t = {e2 + e3 = r*, - e 3 = r*}.

Here r{,r^ can be written as r{ = e\ — e^r^ = e .̂
It is easy to see that <^Πcrit = {e2 — e3,e3} where the isomorphism φ is

the reflection in the hyperplane orthogonal to the root e3. Clearly e3 E Λ^,
hence, y? preserves the additional structure (l)-(5) given by [BV], (cf. p.
384 in [BV]).

It follows from the data of gap (A.2) given by (3.2) that

7 = (λo ® u) = λ0 + a = »(-3,1,2, -2).

Set x = (a;i,a;2j£3j£4)j£t = ± l , i = 1,2,3,4. By computing, we have

R+ ί-(-3,1,2,-2)J = |-e1,e2,e3,-e4,-e1 ±e2,e3 ±eA,-γ-x\ .

Here ηx = — 1 if x = (1, —1,1, —1), (1,1,1, —1), ηx = 1 otherwise.

Hence, it is easy to see that

Π* = | - e 3 - e4, - 1 ( 1 , 1 , - 1 , -1) , 1(1,1,1, -1) , - 1 ( 1 , - 1 , 1 , 1 ) | .

Therefore, we obtain

(3.1.2) Πc r i t = j - β 8 - e4 = rl -1(1,1, - 1 , -1) = r2*, 1(1,1,1, -1) = rή .
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Here r*,7*2,7*3 can be written as r* = e\ — e^r^ = eί| — e\,r\ — 2e\.
Clearly, φΐlcήt = {α25α3,α4} where φ = ψ\ψ2. Here ψλ (resp. φ2) is

the reflection in the hyperplane orthogonal to α4 (resp. e3). Clearly, the
isomorphism φ preserves the additional structure (l)-(5) since α4 and e3 are
roots in Aκ.

The proof is complete. D

If x — xxe\ + x2e2

t in case (A.I) (resp. x = xλe\ 4- x2e*2 + x^l in case
(A.2)), then (£1,0:2)* (resp. {xι,x2,Xz)*) is called the coordinate of x for
Πcrft

We shall directly use some results given by B. Speh and D.A. Vogan
[SV] and D.A. Vogan [V2] and we shall introduce some notations given by
Baldoni-Silva and A.W. Knapp [BK2].

Let L be the standard subalgebra of g with AL = Λ(5), ί c Λ , and let L
denote the standard subgroup of G with Lie algebra L also.

Let us fix a compact Cart an subgroup BL of L with Lie algebra &£, = bΠL.
We shall be working with some Cart an subalgebras 6_^ + a where b-^ =
6_ Π &£, and a C j _ formed by Cayley transform relative to a succession of
noncompact roots in an ordered set {...} and we can write a =>{...} for a.
Let A be the subgroup of G with Lie algebra a. For subgroup A, there is
a standard cuspidal parabolic subgroup PL = MLANL of L. Let λo,L,Mα,L
and vL be the restriction of λo,μα and v to L which are defined by (3.1b)
of [BK1] respectively. Here λo,μα and v are the data given by the cases
of gap (A.I) or of gap (A.2). Let σ^ be the representation determined by
K,L,β*,L and vL. If j L = λo,z, + vL is singular, then there is regular j o ^ L

obtained by adding to 7^ a suitable parameter that is dominant integral
for Λ£ = AL Π Λ+ and adjusting μa,L compatible. Let σo,z, be the repre-
sentation determined by yOtL and μaiL. We denote by UL(MLANL, σo,L, vL)
and JL(MLANLiσQiL,uL) the induced representation for group L and its
Langlands quotient respectively. Let TΓ(71,;{...}) and TΓ(7L;{•••}) be the
global characters of UL(MLANL^σ0^L^uL) and of JL(MLANL,σOiL^L) re-
spectively. (Baldoni-Silva and Knapp's notations in [BK2] differs slightly
from this: they use π(7L,a <-» {...}) and π(7jr,,a «-» {...}) for rc(ηL\ {...}) and
TΓ(TL;{•••}) respectively.)

In the following, we shall directly use the notations given by [BK2]. For
each β € ΛL, let s^ denote the wall-crossing functor which acts on the
local expression for a global character by the reflection in the hyperplane
orthogonal to β (or the reflection in the hyperplane orthogonal to β on
ER) We say that β is in the r- invariant of π(jL; {...}) (denoted by β G
^(TΓ(7L; {•••}))) if 5^7r(7L; {...}) = 0. Let φ denote the empty set.



60 CHENG CHON HU

Lemma 3.2. Let AL = Λ(Π c r i t). Then UL(MLANL,σL,isL) is reducible.

Proof. First, we show the lemma for the case of the gap (A.I). By (3.1), we
have 7 = λ0 + v = | (—2,1, —1,0) (in system given by (1.1)). It is easy to
see that

Thus 7 L = |(1,1)* is dominant for Π c r i t . Clearly, a = (1,1)*, so, {ηL, a) = 1.
Since μa^ — l,α (or σ^) is a cotangent case. Hence a does not satisfy the
parity condition.

We number the simple roots of simple Lie algebra B2 (from left to right)
as 1 and 2 (2 is shorter).

Let Π v = {r* + 2r*,-r*} and β = r*2 = (0.1)*. For convenience, let s2

denote Sβ. Clearly, S 2 7L is dominant for Π v and the set of singular roots
in Π v for s2ηL = j ( l , —1)* is the set {(1,1)*} = {1}. It is easy to see that
a <£ s 2 I Γ = Πcrit.

Since a does not satisfy the parity condition and a is a simple root in Π v ,
moreover, s2jL is Π v dominant and is integral, by Theorem 1.2 of [BK2],
we have

(3.2.1) 7Γ(S27L; OL) = 7Γ(527L; a).

Since β is complex, it follows from Theorem 1.5 of [BK2] that

(3.2.2) s 2 π(s 2 7 L ; a) = 7Γ(S2S2JL\ α) = ^(ΊL\ <*).

By Theorem 1.6 of [BK2], we have

(3.2.3) s2π(7L; α) = π(s2jL; a) + π(jL; a) 4- Θo.

Here Θo must occur on the right side of (3.2.1) and must have the simple
root 2 in their r-invariants. Clearly, S2JL is dominant for Π v so it is easy
to see that 0((O, —1)*) = (15O)* is a positive root, hence, by Theorem 1.4 of
[BK2], we have r(π(7 L ;α)) = φ. Thus Θo = 0.

Clearly, ηL is dominant for s 2 Π v . By Theorem 1.4 of [BK2], r(π(7^; a)) =
{(0,1)*} = {2} since 0((O,1)*) = (-1,0)* is negative root (the number of
(0,1)* i s 2 i n 5 2 Π v ) .

Clearly, the set {2} is disjoint the singular root set {1}. Therefore, by The-
orem 1.3 of [BK2], it follows from (3.2.2) and (3.2.3) that UL(MLANL,σL,
\a) is reducible into two pieces for the case of gap (A.I).

Now we shall prove the lemma for the case of gap (A.2). By (3.2), we
have 7 = λ0 + v — | (—3, —1,2, —2) (in the system given by (1.1)). It is easy
to see that
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Thus ηL = (2,1,0)* that is dominant for Ucrit. Clearly, α = (2,0,0)*, so,
(jL,&) = 2. Since μa^ = 0,α (or σ&) is a tangent case. Hence a does not
satisfy the parity condition.

We number the simple roots of simple Lie algebra C3 from left to right as
1,2 and 3 (3 is longer).

Let Π v = {r% + 2rl + 2r* = 2e*, -r* = -e* + ej, -r£ = -e*. + e*J.
Let/?! = (-1,0,1)*, β2 = (-1,1,0)* and/32 = (0, -1,1)*. Let s{ = sβi,i =

1,2 and s2

 = 5 ^ It is easily verified that α = (2,0,0)* is a simple root in Π v .
Clearly, S2SIS27L

 = (0,1,2)* is dominant for Π v and is integral. The set of
singular roots in Π v for S2SIS'2ΊL is {3}. It is clear that a & s2SiS2Π

v = Πcrit
Since α G Π v and a does not satisfy the parity condition, by Theorem 1.2

of [BK2], we have

(3.2.4) T

Clearly, β2 is a complex root, thus by Theorem 1.5 of [BK2], we have

(3.2.5) θ 2π(5 25 15 27L; α) = π(θi527L; a).

By Theorem 1.6 of [BK2], it follows from (3.2.4) and (3.2.5) that

(3.2.6) π(5!S27;α) = 7f(s2SiS27L;o:) + τr(siS27L;α) + θτ.

By Theorem 1.4 of [BK2], we obtain

(3.2.7) r(7r(52 5 l47L; a)) = {1}, r(n(s1s
l

2jL', a)) = {2}.

Thus, by Theorem 1.6 of [BK2] it follows from (3.2.7) and (3.2.4) that
θi = 0. Clearly, βλ is complex, so, by Theorem 1.5 of [BK2], we have

(3.2.8)

By Theorem 1.6 of [BK2], it follows from (3.2.7) and (3.2.8) that

(3.2.9) π(s 2 7 L ; a) = - T Γ ^ ^ ^ ^ L ; OL) + π(sιs'2ηfL\ a) + π (s'2jL; a) + θ 2 .

By Theorem 1.4 of [BK2], we obtain

(3.2.10)

Clearly, we have θ 2 = c2π(s2SiS27 I /;α) by (3.2.6) and (3.2.7), where c2 is
a constant. Using similar methods used in [BK2], it is easily verified that
c2 = 1 by Theorem 1.7 of [BK2]. Therefore, by (3.2.9), we have

(3.2.11) π(s 2 7 L ; a) = π (si527L; a) + π(s'2-yL; a).
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It is easy to see that β'2 is a ra-compact root. Clearly, 2 G τ(π(siSf

2jL; a)) by
(3.2.7) and 2 G τ{π(s'2jL;a)) by (3.2.10). Thus, by Theorem 1.6 of [BK2],
it follows from (3.2.11) that

(3.2.12) -TΓ(7L; a) = - π ^ s ^ ; a) - π(^L; a).

It is easy to see that the sets {2} and {1,2} are disjoint from the set {3} of
the set of singular roots, hence, by Theorem 1.3 of [BK2], it follows from
(3.2.7), (3.2.10) and (3.2.12) that UL(MLANL,σL,a) is reducible into two
pieces for the case of gap (A.2). The proof is complete. D

Combining Lemma 3.1, Lemma 3.2 and Theorem of [BV], we obtain the
following lemma immediately.

Lemma 3.3. For gap (A.I) or gap (A.2), U(MAN,σ, \C'QQ) is reducible.

D.A. Vogan [VI], [V3] and Speh and Vogan [SV] used the 0-stable
parabolic subgroups of gc to study of unitary representations of semisimple
Lie groups. We shall not need their detailed construction. It is enough to
have the following result.

For each subset S* of Λ, let —S^ = {—r \ r G 5*}. Let 5 be a given subset
of Λ. A subset 5 f of Λ is said to be a supplement of S in Λ if S* satisfies the
following condition:

(s.l) S*nA(S) = φ,
(s.2) 5 tUΛ(5)U-5 t = A,
(s.3) st n - s f = φ,
(s.4) there exists a ζ in ib1 such that (ζ\r) > 0 for all r G 5*,
(s.5) there is a positive root system Aj in the root system Λo = {r E A |

(£, r) = 0} such that Λj Π S1" = Λo Π S*.

For fixed S C A and a fixed supplement S't of S in A, define

r€A(S) reS*

For convenience, let A/ and A(u) denote A(S) and 5 t respectively. Let

(3.e) q = lc + u.

It is easily verified that the following conditions are satisfied:

(a) #(q) = q, (since for any r G Λ,0(er) = ±e r ) .

(b) lc = qΠq, (by Lemma 1.1, (s.l) and (s.3)).

(c) gc = it + lc + u, (by Lemma 1.1, (s.2) and (s.3)).
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(d) (3.e) is Levi decompostion of q with Levi factor Z, (by (s.4), (s.5) and
(s.3)).

By (a), (b), (c), (d) and (3.e), we obtain the following Lemma immediately.

Lemma 3.4. With above notations, q is a θ-stable parabolic subalgebra of
gc and q is determined by the subset S and S* of A.

The subalgebra q defined by (3.e) is called to be the θ- stable parabolic
subalgebra determined by (5, S^). Let / = lc Πg and L be the normalizer of
q in G. Clearly, AL = A(S).

Lemma 3.5. With above notations, for gap (A.2), U(MAN, σ, |3α) is
irreducible.

Proof. We number the simple roots of simple Lie algebra B3 from left to
right as 1, 2 and 3 (3 is shorter).

Let S = {aua2,a3} and let Aι = AL = A(aua2,a3). Let

S* = < —βi ± e2, —βi ± e3, —βi ± e4, — βi, — τ r χ >χ — ( e i i β2 ± β3 ± 64) > .

Here ηx = — 1 if rr = (1,-1,1,-1) or rr = (1,1,1,-1), % = 1 otherwise,
(cf. the coordinates given by (1.1)). It is easily verified that the subset
S and £t of A safisfy the condition (s.l)-(s.5) (letting ζ = 7 = λo-l-^ =
|(—3,1,3, — 3)). Let q be the 0-stable parabolic subalgebra determined by
(5,5 f). Then lc is its Levi factor. Let Λj = AL Π Λ+ and Λ/+ = Λ£ U Λ(tx).
Define

r = Λ -2δ(

Here 5(IA) (resp. ί(ίi Πp)) is the half sum of the roots (resp. noncompact
roots) in A(u) = 5 f (cf. (3.1b) in [BK1]). Let χL be such that χL{Ί*) is
consistently with μα)£ Then (A0,L, Aj,χ^) leads to a well-defined standard
induced series of representations UL{MLANL.GL^ |3α). Here ML = M Π L
and NL = N Γ\L and AT is defined in G for Λ/+. Let ηL = λ0)L 4- |3α.

It is easily verified that δ(u) = |(—9,0,2, -2). By the data of gap (A.2)
given by (3.2), we have

KL = λo - ί ( u ) = ί[(-3,1,0,0,) - (-9,0,2,-2)] = ^(6,1,-2,2).

It follows that

ΊL - λo,L + \a = |[(6,1, -2,2) + (0,0,3, -3)] = 1(6,1,1, -1).

It is easy to see that (jL, a) = 1 is odd. Since μα)jC, = 0, a (or σx,) is a tangent
case. Therefore, α satisfies the parity condition. Let UL = {αiα2,α3} = Π^.
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Let β — a3 and s3 = Sβ. It is clear that S3JL = 5(6,1,1,1) is UL = Π^
dominant and the set of the singular roots in Π^ = Π^ for 5371, is {1,2}.
Therefore, since a satisfies the parity condition, by Theorem 1.1 of [BK2],
we have

(3.5.1) π(s3jL; Oί) = τf(s37L; α) + 7f(s37L; φ) + π(sas3jL] φ).

Clearly, β is a complex root, so, by Theorem 1.5 of [BK2], we have

(3.5.2) s3π(s37; a) = π(7; a).

By Theorem 1.4 of [BK2], we have

(3.5.3) τ(π(s3ΊL- a)) = {2}, τ(π( 5 3 7 L ; φ)) = {1}, τ(π(sassΊL] φ)) = {3}.

By Theorem 1.6 of [BK2], it follows from (3.5.1) and (3.5.2) that

(3.5.4) π(7L; α) = π(s37L; a) + π(7L; a) + Θι + τo.

Here

; φ) + 7f(s37L; β) + Θ2 - n(sas3yL; φ).

By Theorem 1.4 of [BK2], we obtain

(3.5.5) r (π( 7 L ; α)) = {3}, r(π ( 5 3 7 L ; β)) = {1,3}.

It follows from (3.5.1) and (3.5.3) that Θi = Cι(π(sas3jL]φ)) by Theorem
1.6 of [BK2]. Here Cγ is a constant. Using similar methods used in [BK2],
by Theorem 1.7 of [BK2], we obtain cx = 1.

Thus, by the results given above, we have

(3.5.6) π(7L; a) = .π(s37z,;a) + ̂ (ΊL, <*) + π(s3jL; φ) + π (s3-yL; β) + Θ2.

It is easily shown that if C(Θ2) is a irreducible character which occurs in
Θ2, then the r-invariant of C(Θ2) must contain 1 where 1 is the compact
root e2 - e3 = aλ in ΠL = Π^. Thus, by (3.5.3), (3.5.5) and (3.5.6), it is
easily verified that only the τ-invariant of the second term in the right side
of (3.5.6) that is π(yL; a) is disjoint from the set {1,2} of the singular roots,
so, by Theorem 1.3 of [BK2], UL(MLANL,σL, |3α) is irreducibe.

It is easily verified that (β, (λ0 + i/)> > 0 for all β e Λ(u) = SK Here
v = |3α. Hence, by 4.17 of [SV], U(MAN,σ, |3α) is irreducible. The proof
is complete. D
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4. The Gaps and the Isolated Representations.

In this section, the chief idea to prove the unitarity is to use the arguments
given by D.A. Vogan [VI] and D.A. Vogan and G.J. Zuckerman [VZ] as in
Baldoni-silva and A.W. Knapp [BK1].

Now we bring in intertwining operator. We shall use the notations of
[KS] and of [BK1] without redefining. According to [KZ1], the intertwining
operator that defines the Hermitian form at v is

(4.1) σ(w)AP(w, σ, v)

apart from normalization. Here w is a representative in K of the nontrivial

element of W(A : G). We may assume that this operator is positive definite

(on each if-type) relative to I/2(ϋΓ, Vσ) for v small and positive.
Let E be a finite-dimensional subspace of the domain of (4.1) equal to

the sum of number of if-types, and let T(z) : E -> E be the restriction to
E of σ(w)Ap(w,σ, |(CQ — z)a), for complex z with | z |< 1. Let Ek be the
subspace of E defined by (13.2) in [BK1]. We say that T(z) has only a
simple zero at z = 0 if E2 = 0.

Lemma 4.1. With the above notations, for the case of gap (A.I) or gap
(A.2)

Eo = E, Ex = E Π ker T(0) and E2 = 0.

Proof. First we shall consider the case of gap (A.2). Let A* be the subgroup
of G built from a — e3 - e4, a

1 = e3 + e4 and a" = -ex. (By [C] (or by [Su]),
it is easy to see that the Lie algebra of 4̂* is contained in a Cartan subalgebra
of g.) For A*, let P* = M+A+N* be the real rank three standard parabolic
subgroup of G. Clearly Am^ = {e2} where m* is the Lie algebra of M*. Let AQ
and σ* be the restriction of λ0 and σ to P* respectively. For restricted roots
relative to this parabolic subgroup, we can use a system of type Aλ 0 B2

with fx + f2 = cayley(α),/! - f2 = cayley(α') and / = cayley(α").

We can choose w in (4.1) to be a representative in K of the reflection
Sf1+f2 in W(A* : G), and the techniques of [KS] show that

(4.2) AP (w,σ, -ca\ C AP. (W,σ*, -c(/i + f2)J .

Actually since we can discard invertible operators in our analysis by Lemma
13.2 of [BK1], we can simply write s/1+/2 directly in place of w and Propo-
sition 7.8 of [KS] allows us to factor the right side of (4.2) according to a
cocycle relation as

(4.3) AP. ίtu,σ», -c(Λ + /2)J =
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,sh-hshσ*,--c{f1 -/2)J ,

APmt2 = APφ \sfl-f2,sf2σm, -c(/i - / 2 Π ,

APmtl = AP. ^ / a , σ . , -c(/i + /2)J

(cf. (13.5) of [BK1]). Let a* be the subspace generated by {/i,/2,/} over
R. It is easy to see that a* is a commutative subalgebra in #_

Let us examine AR^I here more closely. This operator depends only on
data in the subgroup of G given as the centralizer Zx = ZG(ker(/2)), and by
means of kind of identification in Proposition 7.5 of [KS], it can be identified
with a standard intertwining operator of Zι.

Clearly, ker/2 in a* is a subapace generated by {/i,/} over R. Thus
Zi = SO(3,2) and we can write the Dynkin diagram of Lie algebra zλ of Zλ

as
• =Φ> .

Here the left (resp. right) denotes e2 — e4 (resp. f2 = Cayley(e4)). Let a*}1

be the subspace generated by /2 over R. Clearly a*i C Zχ Let A*ti be the
subgroup of Zι with Lie algebra a*fi. For A*fi, there is a standard parabolic
subgroup P*tι = M^^A^^N^^ of Zγ.

Let m*^ denote the Lie algebra of M*^. Then Amm 1 = Λ(e2) and m#ji =
m+. Clearly M*^ C M and ΛΓ,,α c JV. Relative to this system, the restriction
of λ0 to M*fi can be write as (|,0) in coordinates (X2,XA) (cf. (1.1)). It is
easy to see that the restriction of σ to M*?1 (denoted by σ*^) is a tangent case.
Hence, since f2 is short in zi and c = 2 is even, by 8.3 of [BK1], the induced
representation /^(M^A^iiV^ uσ^i, |2/2) is irreducible. Therefore at z —
0,Ti(2) is invertible. Thus 13.2 of [BK1] allows to discard the opertor Tx

on the right side of (4.3) from our analysis, and in similar fashion we can
discard T3 in the right side of (4.3).

Let us examine more closely the operator AP^2 This operator depends
only on data in the subgroup Z2 = ZG(ker(f1 — f2)) and again can be iden-
tifitied with a standard intertwining operator for Z2. Here the relevant fact
about the identification is that if the operator for Z2 is diagonal with diag-
onal entries having at most a simple zero at z = 0, then the same thing is
ture of the operator in G.

Clearly, ker(/x — f2) in a* is the subspace generated by {/i + Λ,/} over
R. Thus Z2 = SL(2,R) ® SO(3) and we can write the Dynkin diagram of
Lie algebra z2 of Z2 as

o .
Here denotes /x — f2 corresponding to the subgroup Z'2,Z'2 = SL(2,R)
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and o denotes e2 corresponding to the subgroup Z2,Z2 = SO(3). Clearly,
Z2 = Z2®Z^. Let a*)2 be the subspace generated by /i — f2 over R. Clearly
&*,2 C z 2 and a*)2 is the Lie algebra of A1. Let ra*>2 denote the Lie algebra of
subgroup Z2. Then Λmφ 2 = Λ(e2) and ra*)2 = ra*. Let M*?2 = M* Π Z 2 and
N*,2 = N*C\ Z2. Then P* j 2 = M*)2A'iV*)2 is a standard parabolic subgroup
of Z 2 for A'. It is easy to see that M*,2 = Z% = M* ^ SO(3). By a similar
argument as in Section 13 of [BK1], (cf. p. 113 in [BK1]), it is easy to see
that only the subgroup Z2 of Z2 is important to the operator AP^2. As in
Section 13 of [BK1], thus we can regard the operator AP*,2 (on a (K Π Z2)-
type) as the tensor product of an identity operator by the restriction of this
operator to a if-type of Z'2, (Z'2 ^ SL(2, R)). The if-types for SL(2, R) have
multiplicity one, and, thus any standard intertwining operator for SL(2, R)
is scale for a given if-type and given v. Let T2(z) be the restriction of AP^2

on E. Using 13.3 and 13.4 of [BK1], by the analysis mentioned above, it is
easy to see that at z =• 0,T(z) has only simple zero. It follows that E2 = 0.
By Lemma 3.3 we have kerT(O) φ 0, hence, Eλ φ 0.

By s aimilar argument used above, we can prove the lemma for case (A.I).
(For case (A.I), let a = e2 — e3,(y = e2 + e3 and a" = e4.) The proof is
complete. D

The operator T{z) is Hermitian for real z, and we can use it as in Sec-
tion 3 of [VI] to define a nondegenerate Hermitian form on Ek/Ek+U say
with signature (pk >Qk) Lemma 4.1 says that pk = qk = 0 for k > 2 and the
positivity of T(z) for z > 0 says that q0 = q\ — 0. According to Theorem
7.10 and Corollary 7.11 of [VI], the signature on E of T(z) for small nega-
tive z is (ί>o,Pi) Here p0 = dim(JS0/£i) and pλ — dim(Eι/E2) = dim(£Ί).
Thus operator (4.1) is indefinite on any E large enough to contain the min-
imal if-type and a if-type that meets the (nontrivial) kernel of (4.1) at
v = |cόα. It follows from 8.3 of [BK1] and Lemma 3.5 that for gap (A.I)
U(MAN, σ, \cά) is irreducble when cό = l < c < C o = 2, and for the gap
(A.2), U(MAN,σ, | c α ) is irreducible when c'o = 2 < c < c0 = 3. Therefore,
by Lemma 4.1, we obtain the following lemma immediately.

L e m m a 4.2.

(1) For the case of gap (A.l) ; J(MAN,σ, \ca) is not infinitesίmally uni-

tary when c'Q = 1 < c < c0 = 2.

(2) For the case of gap (A.2), J(MAN,σ, ~cα) is no£ infinitesimally uni-

tary when CQ = 2 < c < Co = 3.

L e m m a 4.3.

(1) For £Λe case of gap (A.I), J(MAN, σ, | c α ) zs infinitesimally unitary

when c = c0 = 2.
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(2) For the case of gap (B.I), J(MA/V, σ, |cα) is infinitesimally unitary
when c = Co = 5.

Proof. Let px = pL denote the half sum of roots in the set

{rGΛz = Λ L | (r,a) > 0}.

First we shall show (1). Prom data of gap (A.I) given by (3.1) we have

λ0 = λ0)6 = (-1,0,0,0), Λ = -(-3,1,1,1), μa = 1.

Let S = {αi = α,α2} and AL = A(S). Clearly, a = c*i G AL and

Λ L = {±(βi -ej)\2<i<j< 4}.

Let ΛΛ = {—(ex ± e2 ± e3 ± e4)}. Then

AL(u) = {-ex ±ei,ei + ej,-eχ,eui = 2,3,4,j = 3,4,i <j}UΛΛ.

Let Λv = {-|(ei + ze2 ± e3 - ze4), z = ±1}. Then

AL{uΠpc) = {e2,e4,ei ±e2,-e1 ±e4,e2 + e3,e3 + e4}UΛv.

Thus we have 2δ(u Πpc) = (-6,2,2,2). It is clear that

ΊpL = (e2 - e3) + (e2 - e4) - (e3 - e4) = 2(e2 - e3) = 2α.

Let λ be the parameter defined by (12.4) of [BKl]. Then we have

It is easily verified that (λ,/3) = 0 for all β G AL. Clearly, ΛL has real rank
one, so, by Proposition 12.4 of [BKl], J(MAN, σ, \ca) is infinitesimally
unitary when c = CQ = 2.

Now, we shall show (2). Let AL = Λ(α 2,α 3,α 4). Clearly, a = α3 G Λi,. If
(2.6.q) holds, then by the results of case (6.B), we have

λo = I(-3,1,1,0), Λ = (2,-2,0,0).

By computing, we obtain

2pL = 5α, X = A-2δ(uΠpc) = (-2,2,0,0) -(-5,5,0,0) = (3,-3,0,0).

It is easily verified that (λ,/?) = 0 for all β G AL. Clearly AL has real rank
one, so, by Proposition 12.4 of [BKl], J(MAN,σ,\ca) is infinitesimally
unitary when c = c0 = 5.
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The proof is complete. •

In Section 2 for the cases (4.Aα),(l),(ii) and (3.A),(l),(ii) we give certain
statements for the gaps (A.I) and (A.2) respectively. By these statements,
we can summarize Lemma 4.2 and 4.3 in the following proposition.

Proposition 4.1.
(1) For the case of gap (A.I), J(MA/V, σ, |cα) is infinitesimally unitary

exactly when 0 < c < c'o = 1 or c — CQ = 2.
(J(MA/V, σ, α) is an isolated unitary representation.)

(2) For the case of gap (A.2), J(MAN, σ, \ca) is infinitesimally unitary

exactly when 0 < C < C Q = CQ = 2.

(From left to right, the circles in the Dynkin diagram of F4 correspond the simple roots

αi,c*2,c*3 and c*4 )

(1) θ
c
 = (1,-1,0,0) : . - o = * 0-0. (l')θ

c
 = (1,1,0,0)

(2) 0
C
 = (0,1,-1,0) : o - . = » o - o . (2') 0c = (0,1,1,0)

(3) θ
c
 = (1,0,0, -1) : o - =*• - o. (3') θ

c
 = (1,0,0,1)

(4) θ
c
 = (0,1,0, -1) : - => - o. (4') θ

c
 = (0,1,0,1)

(5) θ
c
 = (1,0, -1,0) : - => o - o. (5') θ

c
 = (1,0,1,0)

(6) 0
C
 = (0,0,1, -1) : - o =» . - o. (6') θ

c
 = (0,0,1,1)

Table 1.1

• — O =φ- O — .

o — => o — .

o — =£• — .

• — =$• — .

• — =$• o — .

• — O =φ — .

(1) θ
c
 = (0,0,0,0) : o - o =* o - o. (2) θ

c
 = (-1, -1, -1,1) : o - o =» - .

(3) θ
c
 = (1,1,1,1) : o - o =» - o. (4) 0

C
 = (2,0,0,0) : o - o =» o - .

Table 1.2
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