# UNITARY REPRESENTATION INDUCED FROM MAXIMAL PARABOLIC SUBGROUPS FOR SPLIT $F_{4}$ 

Cheng Chon Hu (Chen Zhonghu)

For the linear connected simple Lie group split $F_{4}$, the author determines which Langlands quotients $J(M A N, \sigma, \nu)$ are infinitesimally unitary under the condition that $\operatorname{dim} A=1$.

## 1. Introduction and Statement of Results.

It is known that the problem of classifying irreducible unitary representations of a linear connected semisimple Lie group $G$ comes down to deciding which Langlands quotients $J(M A N, \sigma, \nu)$ are infinitesimally unitary. Here $M A N$ is any cuspidal parabolic subgroup of $G, \sigma$ is any discrete series or nondegenerate limit of discrete series representation of $M$, and $\nu$ is any complex valued functional on the Lie algebra of $A$ satisfying $\operatorname{Re} \nu>0$ and certain symmetry properties. Using Baldoni-Silva and Knapp [BK3], Baldoni-Silva and Knapp [BK1] determined which Langlands quotients are infinitesimally unitary under the conditions that $G$ is simple, that $\operatorname{dim} A=1$ and that $G$ is neither split $F_{4}$ nor split $G_{2}$. Recently, the related problem was discussed by D.A. Vogan [V3] for the simply-connected split $G_{2}$. In this note, the author determines which Langlands quotients $J(M A N, \sigma, \nu)$ are infinitesimally unitary under the conditions that $\operatorname{dim} A=1$ and that $G$ is split $F_{4}$.

The author is deeply indebted to the referees and A.W. Knapp for their valuable opinions and their help. It is a great pleasure to acknowledege these.

Let $G$ be the linear connected simple Lie group split $F_{4}$. Let $\theta$ be a Cartan involution, let $K$ be the corresponding maximal compact subgroup, and let $M A N$ be the corresponding Langlands decomposition of a parabolic subgroup. We shall assume that $\operatorname{dim} A=1$. We denote corresponding Lie algebra by lower case Italy letters. Let $\sigma$ be a discrete series representation of $M$ or a nondegenerate limit of discrete series [KZ2], and let $\nu$ be a complex valued functional on the Lie algebra $a$ of $A$. The standard induced representation $U(M A N, \sigma, \nu)$ is defined as in [BK1] (cf. p. 23 in [BK1]). If $\operatorname{Re} \nu \geq 0$ (with positive defined relative to $N$ ) and $\nu \neq 0$, then $U(M A N, \sigma, \nu)$ has a unique irreducible quotient $J(M A N, \sigma, \nu)$, the Langlands quotient. If $\nu$ is imaginary, then $J(M A N, \sigma, \nu)$ is trivially unitary. If $\operatorname{Re} \nu>0$, then
$J(M A N, \sigma, \nu)$ cannot admit a nonzero invariant Hermitian form unless the Weyl group $W(A: G)$ has a nontrivial element $w$ and $w$ fixes the class $[\sigma]$ of $\sigma$, moreover, $\nu$ must be real. Conversely, these conditions give the existence of a nonzero invariant Hermitian form (see [KZ1]). Thus the problem is to decide which real parameters $\nu \geq 0$ are such that this form is semi-definite.

Clearly, $\operatorname{rank} G=\operatorname{rank} K$. Let $b$ be a compact Cartan subalgebra of the Lie algebra $g$ of $G$. We may assume that $a$ is built by Cayley transform relative to some noncompact root $\alpha$ in $\Lambda=\Lambda\left(g^{C}, b^{C}\right)$. Then $b_{-}=\operatorname{ker} \alpha$ is a compact Cartan subalgebra of the Lie algebra $m$ of $M$ and the root system $\Lambda_{-}=\Lambda\left(m^{C}, b_{-}^{C}\right)$ is given by the members of $\Lambda$ orthogonal to $\alpha$. Let $\Lambda_{K}$ and $\Lambda_{n}$ be the subsets of compact and noncompact members of $\Lambda$. It will be convenient to identify $\alpha$ with its Cayley transform, so that we write $\nu$ as a multiple of $\alpha$. Clearly, $\sigma$ is determined by $\chi$ and a Harish-Chandra parameter $\left(\lambda_{0}, \Lambda_{-}^{+}\right)$for $\sigma$ where $\chi$ has been defined in [BK1] (see p. 24 in [BK1]). Here $\Lambda_{-}^{+}$is a positive system for $\Lambda_{-}$and $\lambda_{0}$ is dominant relative to $\Lambda_{-}^{+}$. We can introduce a positive system $\Lambda^{+}$for $\Lambda$ containing $\Lambda_{-}^{+}$such that $\lambda_{0}$ is $\Lambda^{+}$dominant and $\alpha$ is simple. Let $\Lambda_{K}^{+}=\Lambda_{K} \cap \Lambda^{+}$and $\Lambda_{n}^{+}=\Lambda_{n} \cap \Lambda^{+}$. It is automatically true that the nontrivial element $w$ of $W(A: G)$ exists and fixes $[\sigma]$. We can define $\sigma$ to be a cotangent case or tangent case as in [BK1] (see p. 25 in [BK1]). According to [K], $J(M A N, \sigma, \nu)$ has one or two minimal $K$-types with highest weights given by the formula

$$
\wedge=\lambda_{0}+\delta-2 \delta_{K}-\frac{1}{2}\left(1-\mu_{\alpha}\right) \alpha
$$

Here $\delta$ and $\delta_{K}$ are the half sums of positive roots for $\Lambda^{+}$and $\Lambda_{K}^{+}$and $\mu_{\alpha}$ is 0 in a tangent case, and is equal to $\pm 1$ in a cotangent case. For a given $\Lambda$, let $\Lambda_{K, \perp}=\left\{r \in \Lambda_{K} \mid\langle\wedge, r\rangle=0\right\}$. The special basic case associated to $\lambda_{0}$ is the group or root system generated by $\alpha$ and all simple roots of $\Lambda^{+}$needed for expansion of members in $\Lambda_{K, \perp}$. This root system will be denoted by $\Lambda_{S}$ and the component of $\alpha$ in $\Lambda_{S}$ will be denoted by $\Lambda_{S}^{0}$. For a given $\alpha$, let $\nu_{0}^{+}$and $\nu_{0}^{-}$be the integers defined by (1.4a) and (1.4b) in [BK1] respectively (cf. (1.2) below). By 2.1 in [BK1], we may assume henceforth that $\nu_{0}^{+}>0$, that $\nu_{0}^{-}>0$, and that the invariant Hermitian form on $J(M A N, \sigma, \nu)$ is positive for all $\nu$ near 0 . Evidently there is nothing to prove unless $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)>1$ in the consideration.

Let $\Lambda(S)$ denote the subsystem of $\Lambda$ generated by a subset $S$ in $\Lambda$. A subalgebra $l$ of $g$ is called to be a standard subalgebra of $g$ if there exists $S \subset \Lambda, \alpha \in S$ such that $l^{C}$ is the subalgebra of $g^{C}$ with root system $\Lambda(S), S \subset$ $\Lambda$ (cf. Section 3). For convenience, let $L$ denote the subgroup of $G$ with Lie algebra $l$ and let $\Lambda_{L}$ denote the subsystem $\Lambda(S)$. A subalgebra $l$ of $g$ is called to be a fundamental of $g$ if $\Lambda_{L}$ is a subsystem generated by some simple roots
and containing $\alpha$. Clearly, each fundamental subalgebra of $g$ is a standard subalgebra of $g$. If $l$ is a standard (resp. fundamental) subalgebra of $g$, then $L$ is called to be a standard (resp. fundamental) subgroup of $G$. For each standard subgroup $L$ of $G$, let $\Lambda_{L}(u)=\left\{\beta \in \Lambda^{+} \mid \beta \notin \Lambda_{L}\right\}$. For each fundamental subgroup $L$, there is a simple root system $\Pi_{L}$ of $\Lambda_{L}$ so that $\alpha \in \Pi_{L} \subset \Pi$, and let $\Lambda_{L, S}$ be the special case associated with $\lambda_{L, 0}$, and let $\Lambda_{L, S}^{0}$ be the component of $\alpha$ in $\Lambda_{L, S}$. Here $\lambda_{L, 0}$ is given by (3.1b) in [BK1]. For a fundamental subgroup $L$, let $\xi(\alpha, \varepsilon)$ be the sum of the simple roots strictly between $\alpha$ and $\varepsilon$ in $\Pi_{L}$ for any $\alpha, \varepsilon \in \Pi_{L}$. Clearly, the simple root system $\Pi$ can be expressed in the form $\Pi=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ where $\alpha_{1}$ and $\alpha_{2}$ are long, and $\alpha_{3}$ and $\alpha_{4}$ are short, and $\alpha_{i}$ is orthogonal to $\alpha_{j}$ if $|i-j|>1$, $i, j=1,2,3,4$. Let $\Gamma$ be the subgroup of $G$ with $\Lambda_{\Gamma}=\Lambda\left(\alpha_{1}, \alpha_{2}\right)$.

In this note, we shall use the notations given by [BK1] directly. Now, we shall state the main results of this note.

Theorem 1 (Main Theorem). For $c>0$, then, $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ with three exceptions is infinitesimally unitary exactly when

$$
0<c \leq \min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0},
$$

the exceptions occur when there exists a fundamental subgroup $L$ of $G$ which is of one of the following form:
(A.1) $L \cong \operatorname{SO}(4,3)$ and $\Lambda_{L, S}^{0}=\Lambda_{\Gamma}$ with $\alpha$ long, and there is a basic short root $\varepsilon$ in $\Pi_{L}$.
(i) Suppose that $\nu_{0, L}^{\Upsilon} \leq 1$. Then $J\left(\right.$ MAN. $\left.\sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when

$$
0<c \leq \min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}\right)=c_{0} .
$$

(ii) Suppose that $\nu_{0, L}^{\Upsilon}>1$. Then $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when

$$
0<c \leq c_{0}^{\prime}=\min \left(\nu_{0, L}^{+}-d, \nu_{0, L}^{-}-d^{\prime}\right), \text { or } c=c_{0}=\min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}\right)
$$

Here $d=0, d^{\prime}=1$ and $\Upsilon=-$ if $\xi(\alpha, \varepsilon)$ is noncompact, $d=1, d^{\prime}=0$ and $\Upsilon=+$ if $\xi(\alpha, \varepsilon)$ is compact or zero.
(A.2) $L \cong \operatorname{SO}(5,2)$ and $\Lambda_{\Gamma} \subset \Lambda_{L, S}^{0}=\Lambda_{L}$ with $\alpha$ long and $\alpha$ is the middle of three simple root in $\Pi_{L}$. Suppose that there is a unique positive noncompact root $\beta_{0}$ in $\Lambda_{L}$ such that $\beta_{0}$ is orthogonal to $\alpha$ and is conjugate to $-\alpha$ (resp. $\alpha$ ) by $K$ within $L$. Then $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary when

$$
0<c \leq c_{0}=\min \left(\nu_{0, L}^{+}, \nu_{0, \Gamma}^{-}+1\right),\left(\text { resp. } c_{0}=\min \left(\nu_{0, \Gamma}^{+}+1, \nu_{0, L}^{-}\right)\right)
$$

(B.1) $L \cong \operatorname{Sp}(2,1)$ and $\Lambda_{L, S}^{0}=\Lambda_{L}$ with $\alpha$ short. Suppose that there is a long compact root of $\Pi_{L}$ next $\alpha$, and $\mu_{\alpha}=0$. Then $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when

$$
0<c \leq \min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)-2=c_{0}^{\prime} \quad \text { or } c=c_{0}=\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)
$$

Remark. For the case (A.1), (ii), or for the case (B.1), $J\left(M A N, \sigma, \frac{1}{2} c_{0} \alpha\right)$ is an isolated unitary representation and there is a gap $\left(c_{0}^{\prime}, c_{0}\right)$ if $c_{0}^{\prime}<c_{0}$. The situations for (A.1), (ii) (resp. (B.1)) is a similar fashion as in situations for (iii) (resp. for (i)) in Theorem 1.1 of [BK1].

For each $r \in \Lambda$, let $g_{r}^{C}$ be the root space corresponding to $r$. Then $g^{C}$ has the following decomposition:

$$
g^{C}=b^{C}+\sum_{r \in \Lambda} g_{r}^{C}
$$

Let $\theta$ denote the Cartan involution for the Lie algebra $g$ of $G$. Then $g_{u}=$ $g_{+}+i g_{-}, i=\sqrt{-1}$ is a compact Lie algebra where $g_{ \pm}=\{X \in g \mid \theta(X)=$ $\pm X\}$. For each $r \in \Lambda$, let $u_{r}=\frac{1}{2}\left(e_{r}+e_{-r}\right)$ and $v_{r}=\frac{1}{2 i}\left(e_{r}-e_{-r}\right)$. Here $e_{ \pm r} \in g_{ \pm}^{C}, e_{ \pm r} \neq 0$ with $\left(e_{r}, e_{-r}\right)=1$. Then $g_{u}$ can be interpreted as a vector space generated by $\left\{u_{r}, v_{r} \mid r \in \Lambda\right\}$ over real number field $\mathbf{R}$. Let $\theta$ denote the extension of $\theta$ to $g^{C}$ also. Clearly, $\theta\left(e_{ \pm r}\right)=e_{ \pm r}$ if $r \in \Lambda_{K}, \theta\left(e_{ \pm r}\right)=-e_{ \pm r}$ if $r \in \Lambda_{n}$.

If $g$ is n-dimensional vector space over $\mathbf{R}$, then $g^{C}$ can be interpreted as a 2 n-dimensional vector space over $\mathbf{R}$. If $Z=X+i Y \in g^{C}, X, Y \in g$ then we denote by $\bar{Z}$ the element $X-i Y$ in $g^{C}$.

Lemma 1.1. For each $r \in \Lambda, \bar{e}_{r}=e_{-r}$ or $\bar{e}_{r}=-e_{-r}$.
Proof. If $r \in \Lambda_{K}$, then $u_{r}, v_{r} \in g_{+} \subset g$, so $e_{r}=u_{r}+i v_{r}$ and $e_{-r}=u_{r}-i v_{r}$. Thus for each $r \in \Lambda_{K}$ we have $\bar{e}_{r}=e_{-r}$. If $r \in \Lambda_{n}$, then $i u_{r}, i v_{r} \in g_{-} \subset g$, so, $e_{r}=i v_{r}-i\left(i u_{r}\right)$ and $-e_{-r}=i v_{r}+i\left(i u_{r}\right)$. Thus for each $r \in \Lambda_{n}$, we have $\bar{e}_{r}=-e_{-r}$.

In order to describe the root system $\Lambda$,it is convenient to use an orthonormal base $e_{1}, e_{2}, e_{3}, e_{4}$ of a Euclidean space $E_{R}$ of dimension 4. Clearly, we have

$$
\Lambda=\left\{ \pm e_{i} \pm e_{j}, \pm e_{i}, 1 \leq i, j \leq 4, i \neq j, \frac{1}{2}\left( \pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
$$

Let

$$
\Pi=\left\{\alpha_{1}=e_{2}-e_{3}, \alpha_{2}=e_{3}-e_{4}, \alpha_{3}=e_{4}, \alpha_{4}=-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)\right\}
$$

Clearly, $\Pi$ is a simple root system of $\Lambda$. For the simple root system $\Pi$, the positive root system $\Lambda^{+}$can be expressed in the form:

$$
\Lambda^{+}=\left\{-e_{1} \pm e_{i}, e_{i} \pm e_{j}, e_{j}, 2 \leq i<j \leq 4,-e_{1},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
$$

For convenience,the coordinate of the element $x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}$ of $E_{R}$ can be written as

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) . \tag{1.1}
\end{equation*}
$$

It is clear that $2 \delta=(-11,5,3,1)$.
Hereafter, we shall fix the root system $\Lambda$, positive root system $\Lambda^{+}$and the simple root system $\Pi$ in the consideration. We shall assume that $\lambda_{0}$ is $\Lambda^{+}$ dominant, $\Lambda_{K}^{+} \subset \Lambda^{+}$, and $\alpha \in \Pi$. Let $\Pi_{K}$ be the simple root system of $\Lambda_{K}$ associated with $\Lambda_{K}^{+}$and let $\Pi_{K}^{0}=\Pi \cap \Lambda_{K}^{+}$.

For two ordered elements $(x, y)$ in $E_{R} \otimes E_{R}$, let $(x, y)=2\langle x, y\rangle /\langle y, y\rangle$.
A Dynkin diagram of $\Pi$ is called an explicit diagram if every simple root of $\Pi$ is either white or black. For an explicit diagram of $\Pi$, let $\Pi_{0}$ be the set of the white roots in the explicit diagram of $\Pi$, and let $\left(\Pi, \Pi_{0}\right)$ denote the explicit diagram of $\Pi$. Clearly, the explicit diagrams are ones in Table 1.1 and Table 1.2. (See the end of this note.)
$\operatorname{In}[\mathbf{G}], \theta_{C}=\left(c_{1}, c_{2}, c_{3}, c_{4}\right), c_{i}=0, \pm 1, \pm 2, i=1,2,3,4$, denotes a canonical involutive automorphism of $g_{u}$ for $\Lambda$ given above. Let $c$ be the element of $E_{R}$ with coordinate $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ in (1.1). Then for any $r \in \Lambda, \theta_{C}\left(e_{r}\right)=e_{r}$ or $=-e_{r}$ according to $k_{c, r}$ is even or odd where $k_{c, r}=\langle c, r\rangle$. The canonical involution $\theta_{C}$ of $g_{u}$ determines a maximal compact subalgebra $C$ of $g_{u}$. Here $C=\left\{X \in g_{u} \mid \theta_{C}(X)=X\right\}$. In fact, $C$ is the subalgebra of $g_{u}$ generated by the elements in the set $\left\{u_{r}, v_{r}, r \in \Lambda \mid k_{c, r} \in 2 \mathbf{Z}\right\}$. Clearly, $\Lambda_{C}=\{r \in$ $\left.\Lambda \mid k_{c, r} \in 2 \mathbf{Z}\right\}$ is a root system of $C$. It is clear that $\Lambda_{C} \cap \Lambda^{+}=\Lambda_{C}^{+}$is a positive root system of $\Lambda_{C}$. Let $\Pi_{C}$ be the simple root system of $C$ associated with $\Lambda_{C}^{+}$and $\Pi_{C}^{0}=\Pi \cap \Lambda_{C}^{+}$. In fact, $\Pi_{C}^{0}=\left\{r \in \Pi \mid k_{c, r} \in 2 \mathbf{Z}\right\}$. Then, for each involution $\theta_{C}$, there is an explicit diagram $\left(\Pi, \Pi_{0}\right)$ such that $\Pi_{0}=\Pi_{C}^{0}$. Conversely, for each explicit diagrqam ( $\Pi, \Pi_{0}$ ), there is an involution $\theta_{C}$ corresponding to $\left(\Pi, \Pi_{0}\right)$ such that $\Pi_{C}^{0}=\Pi_{0}$. Since the Lie algebra $k=g_{+}$ of K is isomorphic to the semisimple Lie algebra $A_{1}+C_{3}$ by [ $\left.\mathbf{G}\right]$ (or by $[\mathbf{Y}]$ ), for any involution $\theta_{C}$, the root system $\Lambda_{C}$ of $C$ is a compact root system $\Lambda_{K}$ for $G$ if and only if $C \cong A_{1}+C_{3}$. By [ $\mathbf{G}$ ], it is easily verified that for every involutions $\theta_{C}$ corresponding to the explicit diagrams given by Table 1.1 (resp. Table 1.2), we have $C \cong A_{1}+C_{3}$ (resp. $C \not \equiv A_{1}+C_{3}$ ).

Therefore, we have

Lemma 1.2. There is a one to one correspondence between the explicit diagrams $\left(\Pi, \Pi_{0}\right)$ given in Table 1.1 and the positive compact root systems $\Lambda_{K}^{+}$satisfying $\Lambda_{K}^{+} \subset \Lambda^{+}$such that $\Pi_{0}=\Pi_{K}^{0}=\Pi \cap \Lambda_{K}^{+}$. Moreover, for each explicit diagram $\left(\Pi, \Pi_{0}\right)$ in Table 1.1, there is an involution $\theta_{C}$ of $g_{u}$ such that $\Pi_{0}=\Pi_{C}^{0}=\Pi \cap \Lambda_{C}^{+}$and $\Lambda_{C}^{+}=\Lambda_{C} \cap \Lambda^{+}$is the positive compact root system corresponding to the explicit diagram $\left(\Pi, \Pi_{0}\right)$ mentioned above.

For any finite set $Y$, let $\#(Y)$ denote the number of the elements of $Y$. For a given $\alpha \in \Pi \cap \Lambda_{n}^{+}$, let

$$
\begin{aligned}
& \Phi^{ \pm}=\left\{\beta \in \Lambda_{n}^{+} \mid \beta \pm \alpha \in \Lambda\right\} \\
& \Phi_{\alpha}^{ \pm}=\left\{\beta \pm \alpha \mid \beta \in \Phi^{ \pm}\right\} \\
& \Psi_{0}^{ \pm}=\left\{\beta \in \Phi_{\alpha}^{ \pm} \mid 2\langle\wedge, \beta\rangle=0\right\} \\
& \Psi_{1}^{ \pm}=\left\{\beta \in \Phi_{\alpha}^{ \pm}| | \beta|<|\alpha|, 2\langle\wedge, \beta\rangle /\langle\beta, \beta\rangle=(\wedge, \beta)=1\}\right.
\end{aligned}
$$

We shall give an explicit formula for $\nu_{0}^{+}$and $\nu_{0}^{-}$:

$$
\begin{equation*}
\nu_{0}^{ \pm}=1 \pm \mu_{\alpha}+2 \#\left(\Psi_{0}^{\mp}\right)+\#\left(\Psi_{1}^{\mp}\right) \tag{1.2}
\end{equation*}
$$

For convenience, function $f\left(\mu_{\alpha}\right), \mu_{\alpha}=0, \pm 1$ will be expressed in the form $f=[f(-1), f(0), f(1)]$.

## 2. The proof of Theorem 1.

For given $\wedge, \alpha$ and $\Lambda_{K}^{+},(\wedge+\zeta \alpha)^{\vee}, \zeta= \pm$ was defined in [BK1]. Clearly it can be expressed in the form

$$
(\wedge+\zeta \alpha)^{\vee}=\wedge+\omega^{\zeta}
$$

where $\omega^{\zeta}$ is a root in $\Lambda$ which can be expressed in the form uniquely

$$
\begin{equation*}
\omega^{\zeta}=\zeta \alpha+m_{1} r_{1}+m_{2} r_{2}+\cdots+m_{q} r_{q} \tag{2.1}
\end{equation*}
$$

where $m_{1}, m_{2}, \ldots, m_{q} \in \mathbf{Z}$ and $r_{1}, r_{2}, \ldots, r_{q} \in \Pi_{K}$.
Let $\Lambda(\omega, \zeta)=\left\{-m_{1} r_{1},-m_{2} r_{2}, \ldots,-m_{q} r_{q}\right\}$. Let $\delta^{+}$and $\delta^{-}$be the results of making $\alpha$ and $-\alpha$, respectively, dominant for $\Lambda_{K, \perp}$. Clearly $\delta^{ \pm}=\omega^{ \pm}$if and only if $\wedge \pm \delta^{ \pm}$is $\Lambda_{K}^{+}$dominant (cf. p. 34 in [BK1]).
Lemma 2.1. Suppose that $\zeta 2 \alpha$ is not a sum of some roots in $\Lambda(\omega, \zeta) \cup \Lambda_{K}^{+}$. Then (b) holds in Theorem 3.2 of [BK1] if $\zeta=+$, in Theorem 3.2' of [BK1] if $\zeta=-$.

Proof. Assume that (b) dose not hold. Then by the properties of highest weight and (2.1) we have.

$$
\omega^{ \pm} \pm \alpha=\wedge \pm \omega^{ \pm}-(\wedge \mp \alpha)=\sum_{r \in \Lambda_{K}^{+}} k_{r} r
$$

$$
\omega^{ \pm} \mp \alpha=\wedge \pm \omega^{ \pm}-(\wedge \pm \alpha)=\sum_{r \in \Lambda(\omega, \pm)} m_{r} r
$$

Here $k_{r}$ are nonegative integer. Thus $\zeta 2 \alpha$ is a sum of some roots in $\Lambda(\omega, \zeta) \cup$ $\Lambda_{K}^{+}$. Hence, the lemma follows.
2.1. The proof of Theorem 1. By similar methods used in Sections 3-7 of [BK1], we shall determine a least positive integer $c_{0}$ such that $J(M A N$, $\sigma, \frac{1}{2} c \alpha$ ) is not infinitesimally unitary for $c_{0}<c$. By similar methods used in Sections 8-11 of [BK1], we shall determine a greatest postive integer $c_{0}^{\prime}$ such that $U\left(M A N, \sigma, \frac{1}{2} \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}$. It follows from a general continuity argument (cf. [KS], Sect. 14) that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right.$ ) is infinitesimally unitary exactly for $0<c \leq c_{0}$ if $c_{0}^{\prime}=c_{0}$. If $c_{0}^{\prime}<c_{0}$, then by the methods mentioned above, we don't know whether $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary for $c_{0}^{\prime}<c \leq c_{0}$ and we say that there is a "gap" $\left(c_{0}^{\prime}, c_{0}\right)$. If $c_{0}^{\prime}<c_{0}$ and by the methods given by D.A. Vogan [V1] we can finally show that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly for $0<$ $c \leq c_{0}^{\prime}$ or $c=c_{0}$, then the "gap" $\left(c_{0}^{\prime}, c_{0}\right)$ is a gap mentioned in the Remark of Theorem 1 .

In fact, for short $\alpha$, integer $c_{0}$ was determined by 6.1 of [BK1] (cf. pp. 45-49 in [BK1]), so, we shall only need to determine integer $c_{0}^{\prime}$ for this case.

By Lemma 1.2, in order to prove Theorem 1, it is sufficient to prove Theorem 1 for the cases (1)-(6) and (1)'-(6)' given in the Table 1.1. Now we shall first determine the positive integers $c_{0}^{\prime}$ and $c_{0}$ case by case.
(1) $\quad \theta_{C}=(1,-1,0,0)$ : It is easy to see that

$$
\begin{aligned}
\Lambda_{K}^{+}= & \left\{e_{3}, e_{4},-e_{1} \pm e_{2}, e_{3} \pm e_{4},-\frac{1}{2}\left(e_{1}+e_{2} \pm e_{3} \pm e_{4}\right)\right\} \\
\Lambda_{n}^{+}= & \left\{-e_{1}, e_{2},-e_{1} \pm e_{3},-e_{1} \pm e_{4}, e_{2} \pm e_{3}, e_{2} \pm e_{4}\right. \\
& \left.\quad-\frac{1}{2}\left(e_{1}-e_{2} \pm e_{3} \pm e_{4}\right)\right\} \\
& \Pi_{K}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4},-e_{1}+e_{2}\right\}, \quad 2 \delta_{K}=-4 e_{1}-2 e_{2}+3 e_{3}+e_{4}
\end{aligned}
$$

(1.A) Let $\alpha=\alpha_{1}$. Clearly, we have

$$
\begin{aligned}
& \Phi^{-}=\left\{e_{2},-e_{1}-e_{3}, e_{2} \pm e_{4},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3} \pm e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{e_{3},-e_{1}-e_{2}, e_{3} \pm e_{4},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3} \pm e_{4}\right)\right\} \\
& \Phi^{+}=\left\{-e_{1}+e_{3}\right\}, \quad \Phi_{\alpha}^{+}=\left\{-e_{1}+e_{2}\right\} .
\end{aligned}
$$

By Table 2.1 of [BK1], the following formula are easily verified

$$
\begin{equation*}
\left\langle\wedge, \alpha_{1}\right\rangle \geq 5+\mu_{\alpha},\left\langle\wedge, \alpha_{i}\right\rangle \geq 0, \quad i=2,3,4 \tag{2.1.1}
\end{equation*}
$$

(Equality holds if $\alpha_{i}, i=1,2,3,4$ is basic.) It follows that

$$
\begin{align*}
& \left\langle\wedge, e_{3}\right\rangle \geq 0,\left\langle\wedge,-\frac{1}{2}\left(e_{1}+e_{2}-e_{3} \pm e_{4}\right)\right\rangle \geq 0 \\
& \left\langle\wedge, e_{3} \pm e_{4}\right\rangle \geq 0,\left\langle\wedge,-e_{1}-e_{2}\right\rangle \geq 0 \\
& \left\langle\wedge,-e_{1}+e_{2}\right\rangle \geq 2\left(5+\mu_{\alpha}\right) \tag{2.1.2}
\end{align*}
$$

It follows from (2.1.2) that

$$
\begin{aligned}
& \#\left(\Psi_{0}^{-}\right) \geq[6,6,6]=6, \quad \#\left(\Psi_{1}^{-}\right)=[0,0,0]=0 \\
& \#\left(\Psi_{0}^{+}\right)=\#\left(\Psi_{1}^{+}\right)=[0,0,0]=0
\end{aligned}
$$

Thus, $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,1,0]$. (Equality holds if $\alpha_{i}, 1=1,2,3,4$, are basic.)
$\operatorname{By}(2.1 .1),\left\langle\wedge,-e_{1}+e_{2}\right\rangle>0$, hence $-e_{1}+e_{2} \notin \Lambda_{K, \perp}$. Therefore, it is easily shown that $-\alpha$ is $\Lambda_{K, \perp}^{+}$dominant, so $\delta^{-}=-\alpha$. Clearly, $\wedge^{\prime}=(\wedge-\alpha)^{\vee}=\wedge-\alpha$ is dominant for $\Lambda_{K}^{+}$. For this case $\omega^{-}=\delta^{-}=-\alpha$ and $\Lambda(\omega,-)$ is empty. Thus by the Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2' in [BK1]. By computing, it is easy to see that $-2 \alpha$ is not a sum of some roots in $\Lambda(\omega,-) \cup \Lambda_{K}^{+}$, so, by Lemma 2.1, (b) holds in $3.2^{\prime}$ of [BK1]. Since $\wedge^{\prime}-\wedge=$ $-\alpha$, (c) holds in $3.2^{\prime}$ of [BK1]. Thus, by $3.2^{\prime}$ in [BK1], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}$.

We will consider the irreduciblility of $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$.
(1) Suppose $\mu_{\alpha}=-1$. Let $\Lambda_{L}=\Lambda\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Then $L$ is a fundamental subgroup of $G$ and $L \cong \operatorname{SO}(5,2)$.

Obviously, there is a unique positive noncompact root $\beta_{0}=e_{2}+e_{3}$ in $\Lambda_{L}$ such that $\beta_{0}$ is conjugate to $\alpha$ by $K$ within $L$. We shall consider the condition:
(2.1.q): $\quad \Lambda_{\Gamma} \subset \Lambda_{L, S}^{0}=\Lambda_{L}$.
(i) Suppose that (2.1.q) does not hold. Then $\left\langle\wedge, \alpha_{2}\right\rangle>0$. Therefore, it follows that $\#\left(\Psi_{0}^{-}\right)=0$. Then we have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{+} \leq 1$. For this case, $\omega^{+}=\delta^{+}=-e_{1}+e_{3}$ and $\Lambda(\omega,+)=\left\{-\alpha_{2},-\alpha_{3},-\alpha_{4}\right\}$. A similar argument shows that (a), (b) and (c) hold in 3.2 of [ $\mathbf{B K 1}$ ]. Thus, by 3.2 of [ $\mathbf{B K} 1], J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=\nu_{0}^{+}=1$. By 8.3 of [ $\left.\mathbf{B K} 1\right], U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=c_{0}=1$.
(ii) Suppose that (2.1.q) holds. Then $\min \left(\nu_{0, \Gamma}^{+}+1, \nu_{0, L}^{-}\right)=2$ since $\nu_{0, L}^{-}=2$ and $\nu_{0, \Gamma}^{+}+1=3$. Thus by 11.2 in $[\mathbf{B K} 1], U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \frac{1}{2} c \alpha\right)$ is
irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0}=\nu_{0}^{-}=2$. By Table 1.2 in [ $\mathbf{B K 1} 1$, we have

$$
\begin{align*}
\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{1}\right\rangle & \geq 1, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{2}\right\rangle
\end{align*} \frac{1}{2}, ~=\frac{1}{2}, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{4}\right\rangle \geq \frac{1}{2} .
$$

(Equality holds if $\alpha_{i}, i=1,2,3,4$, are basic.) By (2.1.3), $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq$ 0 for all $\beta \in \Lambda_{L}(u)$. Thus, by 8.2 in [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0} \leq 2$.
(2) Suppose $\mu_{\alpha} \neq-1$. By 8.3 in [ $\left.\mathbf{B K} 1\right], U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0} \leq 1$.

Summarizing the results of (1) and (2), $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0}$. Therefore, by the continuity argument, (cf. [KS]), for case (1), Theorem 1 is proved since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}\right\}$.
(2) $\quad \theta_{C}=(0,1,-1,0)$. It is easy to see that

$$
\begin{aligned}
\Lambda_{K}^{+}= & \left\{-e_{1}, e_{4},-e_{1} \pm e_{4}, e_{2} \pm e_{3},-\frac{1}{2}\left(e_{1}+z e_{2}+z e_{3} \pm e_{4}\right), z= \pm 1\right\} \\
\Lambda_{n}^{+}= & \left\{e_{2}, e_{3},-e_{1} \pm e_{2},-e_{1} \pm e_{3}, e_{2} \pm e_{4}, e_{3} \pm e_{4}\right. \\
& \left.\quad-\frac{1}{2}\left(e_{1}+z e_{2}-z e_{3} \pm e_{4}\right), z= \pm 1\right\} \\
& \Pi_{K}=\left\{\alpha_{3}, \alpha_{4}, e_{2}+e_{3}, \alpha_{1}\right\}, \quad 2 \delta_{K}=-5 e_{1}+2 e_{2}+e_{4}
\end{aligned}
$$

(2.A) Let $\alpha=\alpha_{2}$. Clearly, we have

$$
\begin{aligned}
& \Phi^{-}=\left\{-e_{1}+e_{3}, e_{2}-e_{4}, e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{-e_{1}+e_{4}, e_{2}-e_{3}, e_{4},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)\right\} \\
& \Phi^{+}=\left\{-e_{1}-e_{3}, e_{2}+e_{4},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)\right\} \\
& \Phi_{\alpha}^{+}=\left\{-e_{1}-e_{4}, e_{2}+e_{3},-\frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}\right)\right\}
\end{aligned}
$$

By Table 1.2 in [ $\mathbf{B K 1}$ ], the following formula are easily verified

$$
\left\langle\wedge, \alpha_{1}\right\rangle \geq 0, \quad\left\langle\wedge, \alpha_{2}\right\rangle \geq 1+\mu_{\alpha}
$$

$$
\begin{equation*}
\left\langle\wedge, \alpha_{3}\right\rangle \geq \frac{1}{2}\left(\left|\mu_{\alpha}+\frac{1}{2}\right|-\frac{1}{2}\right)-\frac{1}{2} \mu_{\alpha}, \quad\left\langle\wedge, \alpha_{4}\right\rangle \geq 0 \tag{2.2.1}
\end{equation*}
$$

It follows from (2.2.1) that

$$
\begin{aligned}
& \#\left(\Psi_{0}^{-}\right) \leq[1,3,3], \quad \#\left(\Psi_{1}^{-}\right) \leq[2,0,0] \\
& \#\left(\Psi_{0}^{+}\right)=\#\left(\Psi_{1}^{+}\right)=0
\end{aligned}
$$

Thus, $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,1,0]$.
By (2.2.1), $\left\langle\wedge, e_{2}+e_{3}\right\rangle>0$. Therefore, $e_{2}+e_{3} \notin \Lambda_{K, \perp}$. Therefore, it is easily verified that $-\alpha$ is $\Lambda_{K, \perp}^{+}$dominant and $\wedge-\alpha$ is $\Lambda_{K}^{+}$dominant. Thus, it follows that $\omega^{-}=\delta^{-}=-\alpha$. A similar argument used in case (1) shows that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)$.

We shall consider the irreducibility of $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$.
Let $\Lambda_{L}=\Lambda\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Then $L$ is a fundamental subgroup of $G$ and $L \cong \operatorname{SO}(4,3)$. Let $\varepsilon=\alpha_{3}$. So $\varepsilon$ is short and $\xi(\alpha, \varepsilon)=0$. Then it is easy to see that $\min \left(\nu_{0, L}^{+}-1, \nu_{0, L}^{-}\right) \leq 2$ since $\nu_{0, L}^{+} \leq 3$ and $\nu_{0, L}^{-} \leq 2$. We shall consider the condition
(2.2.q): $\quad \Lambda_{L, S}^{0}=\Lambda_{\Gamma}$.
(1) Suppose that $\mu_{\alpha}=-1$.
(i) Suppose that (2.2.q) holds.
(a) Suppose that $\alpha_{3}=e_{4} \notin \Psi_{1}^{-}$. Then we have $\nu_{0, L}^{+}-1=1$ and $\nu_{0, L}^{-}=2$. Therefore $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary for $0<c \leq c_{0}^{\prime}=1$ and there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$. We shall show that for this case, (A.2), (ii) holds in Theorem 1. By (iii) in Theorem 1.1 of [BK1], it is easily shown that $J^{L}\left(M_{L} A N_{L}, \sigma_{L}, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when

$$
\begin{equation*}
0<c \leq c_{0}^{\prime}=\min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}-1\right)=1, \quad c=\min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}\right)=2 \tag{2.2.2}
\end{equation*}
$$

By Table 2.1 of [BK1], we have $\lambda_{0, b}=(-1,0,0,0)$ and

$$
\Lambda_{b}=\lambda_{0, b}+\delta-2 \delta_{K}-\frac{2}{2} \alpha=\frac{1}{2}(-3,1,1,1)
$$

Clearly, $\left(\wedge_{b}, \alpha_{3}\right)=1$. Clearly, if $\alpha_{3} \notin \Psi_{1}^{-}$, then $\left(\wedge, \alpha_{3}\right)>1$, so it follows that $\wedge \neq \wedge_{b}$ and $\lambda_{0} \neq \lambda_{0, b}$. Hence, it is easy to see that if (2.2.q) holds and $\alpha_{3} \notin \Psi_{1}^{-}$, then $\lambda_{0}$ must be

$$
\begin{equation*}
\lambda_{0, b}+\frac{1}{2}(-3,1,1,1)=\frac{1}{2}(-5,1,1,1) . \tag{2.2.3}
\end{equation*}
$$

Clearly, $\left(\lambda_{0}, \alpha_{i}\right)=\left(\lambda_{0, b}, \alpha_{i}\right)$ for $i=1,2,4$ and $\left(\lambda_{0}, \alpha_{3}\right)=\left(\lambda_{0, b}, \alpha_{3}\right)$ +1 . Set $\gamma(z)=\lambda_{0}+(1-z) \alpha, 0 \leq z<\frac{1}{2}$. By (2.2.3) we have

$$
\begin{equation*}
\gamma(z)=\frac{1}{2}(-5,1,3-2 z,-1+2 z) \tag{2.2.4}
\end{equation*}
$$

By (2.2.4), for all $\beta \in \Lambda_{L}(u)\langle\gamma(z), \beta\rangle>0$ if $z>0,\langle\gamma(z), \beta\rangle \geq 0$ if $z=0$.
Thus, by Theorem 1.3a of D.A. Vogan [V1] (or Theorem 5.11 of D.A. Vogan [V3]), it follows from (2.2.2) that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when $0<c \leq 1$ or $c=2$. Hence, (A.1), (ii) holds in Theorem 1.
(b) Suppose that $\alpha_{3}=e_{4} \in \Psi_{1}^{-}$. Then it is easy to see that $\nu_{0, L}^{+}-1=2$ and $\nu_{0, L}^{-}=2$. Therefore, by 11.2 in [BK1], $U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=c_{0}, c_{0}^{\prime}=c_{0} \leq 2$. By Table 1.2 in [BK1], we have

$$
\begin{align*}
& \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{1}\right\rangle \geq-\frac{1}{2}, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{2}\right\rangle \geq 1 \\
& \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{3}\right\rangle \geq-\frac{1}{2}, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{4}\right\rangle \geq \frac{1}{2} \tag{2.2.5}
\end{align*}
$$

It follows from (2.2.5) that $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq 0$ for all $\beta$ in $\Lambda_{L}(u)$. Then by 8.2 in [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<$ $c_{0}^{\prime}, c_{0}^{\prime}=c_{0}=2$. By continuity argument (cf. [KS]), Theorem 1 holds.
(ii) Suppose that (2.2.q) does not hold. Then $\alpha_{1} \notin \Lambda_{L, \perp}$. Therefore, it is easy to see that $\left\langle\lambda_{0}, \alpha_{1}\right\rangle>0$. Let $\Lambda_{L}=\Lambda\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Then $L$ is a fundamental subgroup of $G$ and $L \cong \operatorname{Sp}(3, \mathbf{R})$. It is easily verified that $\min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}\right)=\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)$since $e_{4},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right) \in \Lambda_{L}$.
(a) Suppose that $\#\left(\Psi_{1}^{-}\right)<2$. Then $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{+} \leq 1$. Then for this case, we have $\omega^{+}=\delta^{+}=-e_{1}+e_{2}$ and similar arguments as used in the case (1.A),(1),(i) show that Theorem 1 holds with $c_{0}^{\prime}=c_{0}=\nu_{0}^{+}=1$.
(b) Suppose that $\#\left(\Psi_{1}^{-}\right)=2$. Then by 11.2 of [BK1], $U^{L}\left(M_{L} A N_{L}\right.$, $\left.\sigma_{L}, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=c_{0}=2$. Here $c_{0}=$ $\min \left(\nu_{0, L}^{+}, \nu_{0, L}^{-}\right)$. Since $\left\langle\lambda_{0}, \alpha_{1}\right\rangle>0$, it follows from (2.2.5) that $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq 0$ for all $\beta \in \Lambda_{L}(u)$. Then by 8.2 of $[\mathbf{B K 1}]$, it is easy to see that $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=c_{0} \leq 2$. By contiunity argument (cf. [KS]), Theorem 1 holds.
(iii) Suppose $\mu_{\alpha} \neq-1$. By 8.3 in [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0}=1$. By continuity argument (cf. [KS]), Theorem 1 holds.

Summarizing the results of (1) and (2), for case (2), Theorem 1 is proved since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{2}\right\}$.
(3) $\theta_{C}=(1,0,0,-1)$. It is easy to see that

$$
\begin{aligned}
& \Lambda_{K}^{+}=\left\{e_{2}, e_{3},-e_{1} \pm e_{4}, e_{2} \pm e_{3},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3}+e_{4}\right)\right\} \\
& \Lambda_{n}^{+}=\left\{-e_{1}, e_{4},-e_{1} \pm e_{2},-e_{1} \pm e_{3}, e_{2} \pm e_{4}, e_{3} \pm e_{4}\right. \\
& \left.\quad-\frac{1}{2}\left(e_{1} \pm e_{3} \pm e_{3}-e_{4}\right)\right\} \\
& \Pi_{K}=\left\{\alpha_{1}, e_{3}, \alpha_{4},-e_{1}+e_{4}\right\}, \quad 2 \delta_{K}=-4 e_{1}+3 e_{2}+e_{3}-2 e_{4} .
\end{aligned}
$$

(3.A) Let $\alpha=\alpha_{2}$. It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{-e_{1}+e_{3}, e_{2}-e_{4}\right\}, \\
& \Phi_{\alpha}^{-}=\left\{-e_{1}+e_{4}, e_{2}-e_{3}\right\} ; \\
& \Phi^{+}=\left\{e_{4},-e_{1}-e_{3}, e_{2}+e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2}+e_{3}-e_{4}\right)\right\}, \\
& \Phi_{\alpha}^{+}=\left\{e_{3},-e_{1}-e_{4}, e_{2}+e_{3},-\frac{1}{2}\left(e_{1} \pm e_{2}-e_{3}+e_{4}\right)\right\} .
\end{aligned}
$$

By the Table 1.2 in [BK1], the following formulas are easily verified

$$
\begin{align*}
& \left\langle\wedge, \alpha_{1}\right\rangle \geq 0, \quad\left\langle\wedge, \alpha_{2}\right\rangle \geq-3+\mu_{\alpha}  \tag{2.3.1}\\
& \left\langle\wedge, \alpha_{3}\right\rangle \geq \frac{1}{2}\left(\left|\mu_{\alpha}-\frac{1}{2}\right|-\frac{1}{2}\right)+2 \frac{1}{2}+\frac{1}{2}\left(1-\mu_{\alpha}\right), \quad\left\langle\wedge, \alpha_{4}\right\rangle \geq 0 .
\end{align*}
$$

It follows from (2.3.1) that

$$
\#\left(\Psi_{0}^{-}\right) \leq 1, \#\left(\Psi_{1}^{-}\right)=0, \#\left(\Psi_{0}^{+}\right) \leq[5,5,0], \#\left(\Psi_{1}^{+}\right) \leq[0,0,2] .
$$

Therefore, we have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,3,2]$.
Suppose $\mu_{\alpha} \neq 1$. It is easy to see that $\delta^{+}=e_{2}-e_{4}$ and $\wedge^{\prime}=(\wedge+\alpha)^{\vee}=$ $\Lambda+e_{2}-e_{4}$ is $\Lambda_{K}^{+}$dominant. For this case, we have $\omega^{+}=\delta^{+}=e_{2}-e_{4}$ and $\Lambda(\omega,+)=\left\{-\left(e_{2}-e_{3}\right)\right\}$.

By Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is clear that $2 \alpha$ is not a sum of some compact roots in $\Lambda(\omega,+) \cup \Lambda_{K}^{+}$. Thus, by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, $\wedge^{\prime}-\wedge=e_{2}-e_{4}$, so, (c) holds in 3.2 of [BK1]. Therefore, 3.2 of [BK1] shows that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>\nu_{0}^{+}=c_{0}$.

We shall consider the irreducibility of $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ for $\mu_{\alpha} \neq 1$.
Let $\Lambda_{L}=\Lambda\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Then $L$ is a fundamental subgroup of $G$ and $L \cong \operatorname{SO}(5,2)$. Clearly there is a unique positive noncompact root $\beta_{0}=e_{3}+e_{4}$ such that $\beta_{0}$ is conjugate to $-\alpha=e_{3}-e_{4}$ by $K$ within L .

In the following, we shall consider the condition:
(2.3.q): $\quad \Lambda_{\Gamma} \subset \Lambda_{L, S}^{0}=\Lambda_{L}$.

Clearly, if (2.3.q) holds, then by (ii) in 11.2 of [BK1], $U^{L}\left(M_{L} A N_{L}, \sigma_{L}\right.$, $\left.\frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=2$ since $\nu_{0, L}^{+}=2$ and $\nu_{0, \Gamma}^{-}=2$ if $\mu_{\alpha}=-1, \nu_{0, L}^{+}=3$ and $\nu_{0, \Gamma}^{-}=1$ if $\mu_{\alpha}=0$. Clearly, by Table 2.1 of [BK1], we have

$$
\begin{array}{ll}
\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{1}\right\rangle \geq\left[-\frac{1}{2}, 0, \frac{1}{2}\right], & \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{2}\right\rangle \geq 1 \\
\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{3}\right\rangle \geq\left[0,-\frac{1}{2},-\frac{1}{2}\right], & \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{4}\right\rangle \geq \frac{1}{2} \tag{2.3.2}
\end{array}
$$

Thus $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq 0$ for all $\beta$ in $\Lambda_{L}(u)$, hence, by 8.2 of $[\mathbf{B K 1}]$ it is easy to see that $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=2$ if (3.2.q) holds.
(1) Suppose that $\mu_{\alpha}=0$.
(i) Suppose that (2.3.q) does not holds. Then $\alpha_{1} \notin \Lambda_{K, \perp}$. Thus, it is easy to see that $\left\langle\wedge, \alpha_{1}\right\rangle>0$, it follows that $\alpha \notin \Psi_{0}^{-}$. Therefore, for this case, $\#\left(\Psi_{0}^{-}\right)=0$. Hence $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{+}=c_{0}=1$. It is shown that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=1$. For this case, by 8.3 of [BK1], $U\left(M A N, \sigma, \frac{1}{2} \alpha\right)$ is irreducible for $0<c<$ $c_{0}^{\prime}=c_{0}=1$, hence, Theorem 1 holds with $c_{0}^{\prime}=c_{0}=1$ by continuity argument (cf. [KS]).
(ii) Suppose that (2.3.q) holds. Then $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=2$. Clearly we have $c_{0}^{\prime}=2$ and $c_{0}=3$, so, there is a "gap" $\left(c_{0}^{\prime}, c_{0}\right)=(2,3)$ that is called the gap (A.2). But $\left(c_{0}^{\prime}, c_{0}\right)=$ $(2,3)$ is not a true gap since we shall show that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when $0<c<c_{0}^{\prime}=c_{0} \leq 2$ in Section 4 (see Proposition 4.1). Thus for this case, (A.2) holds in Theorem 1 by continuty argument (cf. [KS], Sect. 14).
(2) Suppose $\mu_{\alpha}=-1$. If (3.2.q) does not hold, then a similar argument as used in (1), (i) mentioned above shows that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{+}=1$ and Theorem 1 holds for this case with $c_{0}^{\prime}=c_{0}=1$. If (3.2.q) holds, then $c_{0}^{\prime}=c_{0}=2$, so, by contiunity argument (cf. [KS]), (A.2) holds in Theorem 1.
(3) Suppose $\mu_{\alpha}=1$. Then $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{-} \leq 2$.

Clearly, $\Lambda_{K, \perp}^{+}=\left\{\alpha_{1}, \alpha_{4}\right\}$. Thus, $\delta^{-}=-\alpha$ is $\Lambda_{K, \perp}^{+}$dominant but $\wedge-\alpha$ is not $\Lambda_{K}^{+}$dominant. Clearly, $\gamma=e_{3}$ is a short compact root satisfying the
conditions for producing $\omega^{-}$in Section 3 of [BK1]. It is easy to see that $-\alpha+\gamma=e_{4}$ is not $\Lambda_{K, \perp}^{+}$dominant since $\left\langle e_{4}, \alpha_{4}\right\rangle<0$. Thus it is clear that $\wedge^{\prime}=(\wedge-\alpha)^{\vee}=\wedge-\omega^{-}$. Here $\omega^{-}=-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)$ is the image of $-\alpha+\gamma=e_{4}$ under the reflection in $\alpha_{4}$. For this case, $\omega^{-} \neq \delta^{-}$and $\Lambda(\omega,-)=\left\{-\alpha_{4},-e_{3}\right\}$.

Since $\alpha_{4}$ is the only short simple root in $\Lambda_{K, \perp}^{+}$but is not strongly orthogonal to $\beta, 3.1$ in [BK1] shows that (a) holds in $3.2^{\prime}$ in [ $\mathbf{B K 1}$ ].

It is clear that $-2 \alpha$ is not a sum of some compact roots in $\Lambda(\omega,-) \cup \Lambda_{K}^{+}$. Thus by Lemma 2.1, (b) holds in 3.2' of [BK1].

Clearly $\wedge^{\prime}-\wedge=\omega^{-}=\alpha_{4}+\alpha_{3}$, hence, we can prove that ( $c^{\prime}$ ) holds in $3.2^{\prime}$ of [BK1]. Therefore, by $3.2^{\prime}$ in [BK1], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{-} \leq 2$ since $\nu_{0}^{+} \geq 2$.

Let $\Lambda_{L}=\Lambda\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Then L is a fundamental subgroup of $G$ and $L \cong \operatorname{Sp}(3, \mathbf{R})$. Clearly $e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right) \in \Lambda_{L}$, so, $\nu_{0, L}^{-}=\nu_{0}^{-} \leq 2$ and $\nu_{0, L}^{+}=\nu_{0}^{+} \geq 2$. By 11.2 in [BK1], $U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \frac{1}{2} \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=\nu_{0, L}^{-} \leq 2$.

By (2.3.2) $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq 0$ for all $\beta$ in $\Lambda_{L}(u)$. It follows from 8.2 in [BK1] that $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}, c_{0}^{\prime}=c_{0}=\nu_{0}^{-} \leq 2$. Therefore, by continuity argument (cf. [KS]), Theorem 1 follows for this case.

Summarizing the results of (1) and (2), Theorem 1 follows for $\alpha=\alpha_{2}$.
(3.B) Let $\alpha=\alpha_{3}$. It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{-e_{1}, e_{2}+e_{4}, e_{3}+e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3}-e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{-e_{1}-e_{4}, e_{2}, e_{3},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3}+e_{4}\right)\right\} \\
& \Phi^{+}=\left\{-e_{1}, e_{2}-e_{4}, e_{3}-e_{4}\right\} \\
& \Phi_{\alpha}^{+}=\left\{-e_{1}+e_{4}, e_{2}, e_{3}\right\}
\end{aligned}
$$

By Table 1.2 in [ $\mathbf{B K} 1]$, the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq 0, & \left\langle\wedge, \alpha_{2}\right\rangle \geq[-1,-1,-2] \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq\left[\frac{3}{2}, 2, \frac{5}{2}\right], & \left\langle\wedge, \alpha_{4}\right\rangle \geq 0
\end{array}
$$

Thus it follows that $\#\left(\Psi_{0}^{-}\right)=1$ and $\#\left(\Psi_{0}^{+}\right)=0$. We have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=$ $c_{0} \leq[2,1,0]$. By 6.1 of [BK1], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}$. By 8.3 in [ $\mathbf{B K 1}$ ], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<$ $c_{0}^{\prime}, c_{0}^{\prime}=c_{0}$. Therefore, Theorem 1 follows for $\alpha=\alpha_{3}$.

It follows from (3.A) and (3.B) that Theorem 1 is proved for case (3) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{2}, \alpha_{3}\right\}$.
(4) $\theta_{C}=(0,1,0,-1)$. It is easy to see that

$$
\begin{aligned}
& \Lambda_{K}^{+}=\left\{-e_{1}, e_{3},-e_{1} \pm e_{3}, e_{2} \pm e_{4},-\frac{1}{2}\left(e_{1}+z e_{2} \pm e_{3}+z e_{4}\right), z= \pm 1\right\}, \\
& \Lambda_{n}^{+}=\left\{e_{2}, e_{4},-e_{1} \pm e_{2},-e_{1} \pm e_{4}, e_{2} \pm e_{3}, e_{3} \pm e_{4},\right. \\
& \left.\quad-\frac{1}{2}\left(e_{1}+z e_{2} \pm e_{3}-z e_{4}\right), z= \pm 1\right\} \\
& \quad \Pi_{K}=\left\{e_{3}, \alpha_{4}, e_{2} \pm e_{4}\right\}, \quad 2 \delta_{K}=-5 e_{1}+2 e_{2}+e_{3} .
\end{aligned}
$$

(4.A.a) Let $\alpha=\alpha_{1}$. It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{e_{2},-e_{1}+e_{2},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)\right\}, \\
& \Phi_{\alpha}^{-}=\left\{e_{3},-e_{1}+e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\} ; \\
& \Phi^{+}=\left\{e_{3} \pm e_{4},-e_{1}-e_{2},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)\right\}, \\
& \Phi_{\alpha}^{+}=\left\{e_{2} \pm e_{4},-e_{1}-e_{3},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)\right\} .
\end{aligned}
$$

By Table 1.2 in [BK1], the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq-1+\mu_{\alpha}, & \left\langle\Lambda, \alpha_{2}\right\rangle \geq 1-\mu_{\alpha} \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq \frac{1}{2}, & \left\langle\Lambda, \alpha_{4}\right\rangle \geq 0 \tag{2.4.1}
\end{array}
$$

It follows from (2.4.1) that

$$
\#\left(\Psi_{0}^{-}\right) \leq 0, \quad \#\left(\Psi_{1}^{-}\right) \leq[0,0,2], \quad \#\left(\Psi_{0}^{+}\right)=1, \quad \#\left(\Psi_{1}^{+}\right)=0 .
$$

Therefore, we have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[0.1 .2]$.
(1) Suppose that $\mu_{\alpha}=1$.

Clearly, $\left\langle\Lambda, e_{3}\right\rangle,\left\langle\Lambda, e_{2}+e_{4}\right\rangle>0$. Thus, it is easy to see that $\delta^{-}=e_{3}-e_{4}$ and $\wedge^{\prime}=(\wedge-\alpha)^{\vee}=\wedge+e_{3}-e_{4}$ is $\Lambda_{K}^{+}$dominant. So, $\omega^{-}=\delta^{-}=e_{3}-e_{4}$, and $\Lambda(\omega,-)=\left\{-\left(e_{2}-e_{4}\right)\right\}$.

Clearly, $\alpha_{4}$ is orthogonal but not strongly to $e_{3}-e_{4}$. Thus by 3.1 of [BK1], (a) holds in $3.2^{\prime}$. It is easy to see that $-2 \alpha$ is not a sum of some compact roots in $\Lambda(\omega,-) \cup \Lambda_{K}^{+}$. Hence, by Lemma 2.1, (b) holds in 3.2, of [BK1]. Clearly, $\wedge^{\prime}-\wedge=e_{3}-e_{4}=\alpha_{2}$, so, (c) holds in 3.2' of [BK1]. Therefore, $3.2^{\prime}$ of [BK1] shows that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=\nu_{0}^{+} \leq 2$.

Let $\Lambda_{L}=\Lambda\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Then $L$ is a fundamental subgroup of $G$ and $L \cong \operatorname{SO}(4.3)$. Let $\varepsilon=\alpha_{3}$. Then $\varepsilon$ is short and $\xi(\varepsilon, \alpha)=\alpha_{2}$ is noncompact. It is easy to see that $\nu_{0, L}^{-} \leq 2$ and $\nu_{0, L}^{+} \leq 3$. In the following, we shall consider the condition:
(2.4.q): $\quad \Lambda_{L, S}^{0}=\Lambda_{\Gamma}$.
(i) Suppose that (2.4.q) does not hold. Then $\alpha_{2} \notin \Lambda_{K, \perp}$. Thus, it is easy to see that $\left\langle\wedge, \alpha_{2}\right\rangle>0$. Therefore, it follows that $\alpha_{1}+\alpha_{2} \notin \Psi_{0}^{+}$. So, $\#\left(\Psi_{0}^{+}\right)=0$. Hence, we have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{-}=c_{0}=1$. It follows that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimslly unitary exactly for $0<c \leq$ $c_{0}^{\prime}=c_{0}=1$. Consequently, Theorem 1 holds for this case.
(ii) Suppose that (2.4.q) holds. Clearly, $\nu_{0}^{-}=\nu_{0, L}^{-}=2$ since the root $e_{2}-e_{4}$ that is in $\Psi_{0}^{+}$is also in $\Lambda_{L}$. Therefore, we have $\nu_{0, L}^{-}-1=1$. It has been shown that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=2$ and is infinitesimally unitary for $0<c \leq c_{0}^{\prime}=1$ by continuity argument (cf. [KS]).
Since $c_{0}=2>c_{0}^{\prime}=1$, there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2),(c f$. the Remark of Theorem 1). Consequently, for this case, (A.1), (ii) holds in Theorem 1 by Proposition 4.1. The gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$ is called the gap (A.1).
(2) Suppose that $\mu_{\alpha} \neq 1$. Then $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{+}$.

By (2.4.1), $\left\langle\wedge, e_{3}\right\rangle>0$, and $\left\langle\wedge, e_{2}+e_{4}\right\rangle>0$. Thus, $\delta^{+}=\alpha$ is $\Lambda_{K, \perp}^{+}$ dominant. It is easily verified that $\wedge^{\prime}=(\wedge+\alpha)^{\vee}=\wedge+\alpha$ is dominant for $\Lambda_{K}^{+}$. For this case, $\omega^{+}=\delta^{+}=\alpha$ and $\Lambda\left(\omega^{+}\right)$is empty.

Clearly, by 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is easily verified that $2 \alpha$ is not a sum of some compact roots in $\Lambda\left(\omega^{+}\right) \cup \Lambda_{K}^{+}$, so, by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, $\wedge^{\prime}-\wedge=\alpha$, hence, (c) holds in 3.2 of [BK1]. Thus 3.2 in [BK1] shows that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}$ where $c_{0}=\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=1$.

By 8.3 of [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=1=c_{0}$. Thus by continuity argument (cf. [KS]) $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right.$ ) is infinitesimally unitary exactly for $0<c \leq c_{0}^{\prime}=c_{0}=1$.

Summarizing the results of (1) and (2), Theorem 1 follows for $\alpha=\alpha_{1}$.
(4.A.b) Let $\alpha=\alpha_{2}$. It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{-e_{1}-e_{4}, e_{2}+e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{-e_{1}-e_{3}, e_{2}+e_{4},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)\right\} \\
& \Phi^{+}=\left\{e_{4},-e_{1}+e_{4}, e_{2}+e_{3},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)\right\}
\end{aligned}
$$

$$
\Phi_{\alpha}^{+}=\left\{e_{3},-e_{1}+e_{3}, e_{2}-e_{4},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\}
$$

By Table 1.2 of [BK1], the following formulas are easily verified

$$
\begin{align*}
& \left\langle\wedge, \alpha_{1}\right\rangle \geq\left[1, \frac{1}{2}, 0\right], \quad\left\langle\wedge, \alpha_{2}\right\rangle \geq\left[-1,-\frac{1}{2}, 0\right] \\
& \left\langle\wedge, \alpha_{3}\right\rangle \geq \frac{1}{2}[3,2,1], \quad\left\langle\wedge, \alpha_{4}\right\rangle \geq[0,0,0] \tag{2.4.2}
\end{align*}
$$

It follows from (2.4.2) that

$$
\begin{array}{ll}
\#\left(\Psi_{0}^{-}\right) \leq[0,0,0]=0, & \#\left(\Psi_{1}^{-}\right) \leq[0,0,1] \\
\#\left(\Psi_{0}^{+}\right) \leq[1,1,1]=1, & \#\left(\Psi_{1}^{+}\right) \leq[0,0,2]
\end{array}
$$

Thus $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[0,1,2]$. In fact, under the reflection in $\alpha$, then $\mu_{\alpha}$ and $(0,1,0,-1)$ are replaced by $-\mu_{\alpha}$ and ( $0,1,-1,0$ ) respectively, moreover, $\delta^{+}$and $\delta^{-}$are replaced by $\delta^{-}$and $\delta^{+}$respectively. Under the reflection in $\alpha$, the data of case (4.A.b) with $\alpha=\alpha_{2}$ are replaced by the data of case (2.A) with $\alpha=\alpha_{2}$. For example, if $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\left[m_{-1}, m_{0}, m_{1}\right]$ for case (4.A.b), then $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\left[m_{1}, m_{0}, m_{-1}\right]$ for case (2.A). Therefore, by a similar argument used in (2.A), Theorem 1 can be shown for this case. Similarly, if (2.2.q) holds, $\mu_{\alpha}=1$ and $e_{3} \notin \Psi_{1}^{+}$, then there is gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$ that is the gap (A.1).
Remark. The details of the device, called reflection in $\alpha$ were given in [BK1] and [BK3] (cf. pp. 31, 35, 39 in [BK1] and p. 190 in [BK3]).
(4.B) Let $\alpha=\alpha_{3}$. It is easy to see that $\#\left(\Psi_{0}^{+}\right)=[2,0,0]$ and $\#\left(\Psi_{0}^{-}\right)=$ $[1,1,2]$, hence $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0} \leq[2,1,0]$. By 6.1 of $[\mathbf{B K} 1], J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}$. By 8.3 in [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=c_{0}$. Therefore, Theorem 1 follows for $\alpha=\alpha_{3}$.

It follows from (4.A.a), (4.A.b) and (4.B) that Theorem is proved for case (4) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.
(5) $\quad \theta_{C}=(1,0,-1,0)$.
(5.A.a) Let $\alpha=\alpha_{1}$. Under the reflection in $\alpha$, then the data of the case (5.A.a) with $\alpha=\alpha_{1}$ are replaced by the data of the case (1.A) with $\alpha=\alpha_{1}$. Thus, a similar argument as in (1.A) shows that Theorem 1 holds for this case.
(5.A.b) Let $\alpha=\alpha_{2}$. Under the reflection in $\alpha$, then the data of case (5.A.b) with $\alpha=\alpha_{2}$ are replace by the data of the case (3.A) with $\alpha=\alpha_{2}$. Thus, a similar argument as in (3.A) shows that Theorem 1 holds for this case.

It follows from (5.A.a) and (5.A.b) that for case (5), Theorem 1 follows since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{2}\right\}$.
(6) $\quad \theta_{C}=(0,0,1,-1)$.
(6.A) Let $\alpha=\alpha_{1}$. Under the reflection in $\alpha$, then the data of case (6.A) with $\alpha=\alpha_{1}$ are replaced by the data of the case of (4.A.a) with $\alpha=\alpha_{1}$. Therefore, by a similar argument used in (4.A.a), Theorem 1 can be shown for this case. Similarly, if (2.4.q) holds and $\mu_{\alpha}=-1$, then there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$ that is the gap (A.1).
(6.B) Let $\alpha=\alpha_{3}$. It is easy to see that

$$
\begin{aligned}
\Lambda_{K}= & \left\{-e_{1}, e_{2},-e_{1} \pm e_{2}, e_{3} \pm e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2}+z e_{3}+z e_{4}\right), z= \pm 1\right\} \\
\Lambda_{n}= & \left\{e_{3}, e_{4},-e_{1} \pm e_{3},-e_{1} \pm e_{4}, e_{2} \pm e_{3}, e_{2} \pm e_{4}\right. \\
& \left.\quad-\frac{1}{2}\left(e_{1} \pm e_{2}+z e_{3}-z e_{4}\right), z= \pm 1\right\} \\
\Pi_{K}= & \left\{e_{2},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right), e_{3} \pm e_{4}\right\}, \quad 2 \delta_{K}=-5 e_{1}+e_{2}+2 e_{3}
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{e_{3},-e_{1}+e_{4}, e_{2}+e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2}+e_{3}-e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{e_{3}-e_{4},-e_{1}, e_{2},-\frac{1}{2}\left(e_{1} \pm e_{2}+e_{3}+e_{4}\right)\right\} \\
& \Phi^{+}=\left\{e_{3},-e_{1}-e_{4}, e_{2}-e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2}-e_{3}+e_{4}\right)\right\} \\
& \Phi_{\alpha}^{+}=\left\{e_{3}+e_{4},-e_{1}, e_{2},-\frac{1}{2}\left(e_{1} \pm e_{2}-e_{3}-e_{4}\right)\right\}
\end{aligned}
$$

By Table 1.2 in [ $\mathbf{B K 1}$ ], the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq 2, & \left\langle\wedge, \alpha_{2}\right\rangle \geq[1,0,0] \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq\left[-\frac{1}{2}, 0, \frac{1}{2}\right], & \left\langle\wedge, \alpha_{4}\right\rangle \geq 0
\end{array}
$$

It follows that $\#\left(\Psi_{0}^{-}\right) \leq[1,2,2]$ and $\#\left(\Psi_{0}^{+}\right) \leq[2,2,0]$. Therefore, we have $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,5,0]$.
(1) Suppose that $\mu_{\alpha} \neq 0$. By a similar argument used in (3.B), Theorem 1 can be shown for this case.
(2) Suppose that $\mu_{\alpha}=0$. Let $\Lambda_{L}=\Lambda\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Then $L$ is a fundamental subgroup of $G$, and $L \cong \operatorname{Sp}(2,1)$. Clearly, $\Psi_{0}^{+} \subset \Lambda_{L}$, so, we have $\nu_{0, L}^{-}=\nu_{0}^{-}$. We shall consider the condition
(6.2.q): $\quad \Lambda_{L, S}^{0}=\Lambda_{L}$.
(i) Suppose that (2.6.q) does not hold. Then $\alpha_{2} \notin \Lambda_{K, \perp}$. Thus, it is easy to see that $\left\langle\wedge, \alpha_{2}\right\rangle>0$. Then it is easily verified that $r_{1}, r_{2} \notin \Lambda_{K, \perp}$, hence, $r_{1}, r_{2} \notin \Psi_{0}^{+}$. Here $r_{1}=e_{3}+e_{4}$ and $r_{2}=-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)$. Thus, it follows that $\#\left(\Psi_{0}^{+}\right)=0$. Therefore, $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=\nu_{0}^{-}=c_{0}=1$. By 6.1 of [ $\mathbf{B K 1}$ ], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary for $c>c_{0}=1$. By 8.3 of [BK1], $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<$ $c<c_{0}^{\prime}=c_{0}=1$. Thus, for this case, Theorem 1 holds by continuity argument (cf. [KS]).
(ii) Suppose that (2.6.q) holds. Then, by 6.1 in [BK1] $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary when $c>\nu_{0}=c_{0}=5$ or $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)-2=$ $c_{0}^{\prime}<c<c_{0}$. By 11.1 in [BK1], it is easy to see that $U^{L}\left(M_{L} A N_{L}, \sigma_{L}\right.$, $\frac{1}{2} c \alpha$ ) is irreducible for $0<c<c_{0}^{\prime}=\nu_{0, L}^{-}-2=\nu_{0}^{-}-2=3$. By Table 1.2 in [BK1], we have

$$
\begin{align*}
& \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{1}\right\rangle \geq 0, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{2}\right\rangle \geq\left[\frac{1}{2}, 0, \frac{1}{2}\right] \\
& \left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{3}\right\rangle \geq \frac{1}{2}, \quad\left\langle\lambda_{0}+\frac{1}{2} \alpha, \alpha_{4}\right\rangle \geq\left[\frac{-1}{4}, 0, \frac{1}{4}\right] \tag{2.6.1}
\end{align*}
$$

By (2.6.1), $\left\langle\lambda_{0}+\frac{1}{2} \alpha, \beta\right\rangle \geq 0$ for all $\beta \in \Lambda_{L}(u)$. It follows from 8.2 and 8.3 of [BK1] that $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible for $0<c<c_{0}^{\prime}=3$. Therefore, by continuity argument (cf. [KS]), it is easy to see that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right.$ ) is infinitesimally unitary for $0<c \leq c_{0}^{\prime}=3$. Moreover in Section 4, we shall show that $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary for $c=c_{0}=5$ (cf. Lemma 4.3). Hence, (B.1) holds in Theorem 1 for this case. Clearly, for this case there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(3,5)$ that is called the gap (B.1).

Summarizing the results of (1) and (2), Theorem 1 follows for $\alpha=\alpha_{3}$.
It follows from (6.A) and (6.B) that Theorem 1 is proved for case (6) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{3}\right\}$.
(1') $\quad \theta_{C}=(1,1,0,0)$.
( $\mathbf{1}^{\prime} . \mathbf{A )}$ Let $\alpha=\alpha_{1}$. By similar methods used in case (1), it is easily verified that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[2,1,0]$. Therefore, for this case, Theorem 1 can be shown by a similar argument used in case (1).
( $\mathbf{1}^{\prime}$.B) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easily verified that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[2,1,0]$. Therefore, for this case, Theorem 1 can be shown by a similar argument used in (3.B).

It follows from ( $\mathbf{1}^{\prime} . \mathbf{A}$ ) and ( $\left.\mathbf{1}^{\prime} . \mathbf{B}\right)$ that Theorem 1 is proved for case ( $\mathbf{1}^{\prime}$ ) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{4}\right\}$.
(2') $\quad \theta_{C}=(0,1,1,0)$. Set $z= \pm 1$. It is easy to see that

$$
\begin{aligned}
\Lambda_{K}^{+}= & \left\{-e_{1}, e_{4},-e_{1} \pm e_{4}, e_{2} \pm e_{3},-\frac{1}{2}\left(e_{1}+z e_{2}-z e_{3} \pm e_{4}\right)\right\} \\
\Lambda_{n}^{+}= & \left\{e_{2}, e_{3},-e_{1} \pm e_{2},-e_{1} \pm e_{3}, e_{2} \pm e_{4}, e_{3} \pm e_{4}\right. \\
& \left.-\frac{1}{2}\left(e_{1}+z e_{2}+z e_{3} \pm e_{4}\right)\right\} \\
& \Pi_{K}=\left\{\alpha_{3}, \alpha_{4},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right), \alpha_{1}, e_{2}+e_{3}\right\}, \delta_{K}=-5 e_{1}+2 e_{2}+e_{4} .
\end{aligned}
$$

(2'.A) Let $\alpha=\alpha_{2}$. Clearly, we have

$$
\begin{aligned}
\Phi^{-} & =\left\{e_{3},-e_{1}+e_{3}, e_{2}-e_{4},-\frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}\right)\right\} \\
\Phi_{\alpha}^{-} & =\left\{e_{4},-e_{1}+e_{4}, e_{2}-e_{3},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)\right\} \\
\Phi^{+} & =\left\{-e_{1}-e_{3}, e_{2}+e_{4},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)\right\} \\
\Phi_{\alpha}^{+} & =\left\{-e_{1}-e_{4}, e_{2}+e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\}
\end{aligned}
$$

By Table 2.1 of [BK1], the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq 0, & \left\langle\wedge, \alpha_{2}\right\rangle \geq[0,1,2] \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq\left[\frac{1}{2}, 0,0\right], & \left\langle\wedge, \alpha_{4}\right\rangle \geq \frac{1}{2}[-3,-2,-1]
\end{array}
$$

It follows from (2.2'1) that

$$
\begin{array}{ll}
\#\left(\Psi_{0}^{-}\right) \leq[1,2,2], & \#\left(\Psi_{1}^{-}\right) \leq[2,1,0] \\
\#\left(\Psi_{o}^{+}\right) \leq[2,0,0], & \#\left(\Psi_{1}^{+}\right) \leq[0,1,0]
\end{array}
$$

Let $\beta=-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)$ and $\beta^{\prime}=-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)$. It is easy to see that $\beta$ and $\beta^{\prime}$ are compact and strongly orthogonal to $\alpha$. Thus, the fact that $\left\langle\lambda_{0}, s\right\rangle=0, s=\beta, \beta^{\prime}$ is in contradiction to nondegeneracy. So, it follows that $\left\langle\lambda_{0},-e_{1}\right\rangle>0$. Then we shall consider the case where $\lambda_{0}=$ $(t, 0,0,0), t \in \mathbf{Z}, t>1$ for $\mu_{\alpha}=-1$. Let $r_{3}=\beta=e_{3}^{*}, r_{2}=e_{2}-e_{3}=e_{2}^{*}-e_{3}^{*}$ and $r_{1}=\alpha_{2}=e_{1}^{*}-e_{2}^{*}$. Let $\Lambda_{L}=\Lambda\left(r_{1}, r_{2}, r_{3}\right)$. Then $L$ is a standard subgroup
of $G$ and $L \cong \operatorname{SO}(5,2)$. The restriction $\lambda_{0}^{*}$ of $\lambda_{0}$ to $L$ can be written as $\lambda_{0}^{*}=\frac{1}{2} t e_{3}^{*}$. Clearly, if $\mu_{\alpha}=-1$, then we have $t \in 2 \mathbf{Z}, t>0$.

Under these conditions, it follows from (2.2'.1) that $-e_{1}-e_{4}, r \notin \Psi_{0}^{+} \cup \Psi_{1}^{+}$ if $\mu_{\alpha}=-1, r \notin \Psi_{1}^{+}$if $\mu_{\alpha}=0$. Here $r=-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)$. Thus by (2.2'.1) we obtain $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,1,0]$.

Hence, similar arguments as used in case (2.A) show that Theorem 1 holds for this case. Similarly, if (2.2.q) holds, $\mu_{\alpha}=-1$, and $e_{4} \notin \Psi_{1}^{-}$, then there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$.
( $\mathbf{2}^{\prime}$. B) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easily verified that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[2,1,0]$, therefore, by a similar argument used in (3.B), Theorem 1 can be shown for $\alpha=\alpha_{4}$.

It follows from ( $\mathbf{2}^{\prime} . \mathbf{A}$ ) and ( $\mathbf{2}^{\prime} . \mathbf{B}$ ) that Theorem 1 is proved for case ( $\mathbf{2}^{\prime}$ ) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{2}, \alpha_{4}\right\}$.
$\left(3^{\prime}\right) \quad \theta_{C}=(1,0,0,1)$. It is easy to see that

$$
\begin{gathered}
\Lambda_{K}^{+}=\left\{e_{2}, e_{3},-e_{1} \pm e_{4}, e_{2} \pm e_{3},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3}-e_{4}\right)\right\}, \\
\Lambda_{n}^{+}=\left\{-e_{1}, e_{4},-e_{1} \pm e_{2},-e_{1} \pm e_{3}, e_{2} \pm e_{4}, e_{3} \pm e_{4},\right. \\
\left.-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3}+e_{4}\right)\right\}, \\
\Pi_{K}=\left\{\alpha_{1}, e_{3},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right),-e_{1}-e_{4}\right\}, \\
2 \delta_{K}=-4 e_{1}+3 e_{2}+e_{3}+2 e_{4} .
\end{gathered}
$$

$\left(\mathbf{3}^{\prime} . \mathbf{A}\right) \quad$ Let $\alpha=\alpha_{2}$. It is clear that

$$
\begin{aligned}
\Phi^{-} & =\left\{-e_{1}+e_{3}, e_{2}-e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2}-e_{3}+e_{4}\right)\right\} \\
\Phi_{\alpha}^{-} & =\left\{-e_{1}+e_{4}, e_{2}-e_{3},-\frac{1}{2}\left(e_{1} \pm e_{2}+e_{3}-e_{4}\right)\right\} \\
\Phi^{+} & =\left\{e_{4},-e_{1}-e_{3}, e_{2}+e_{4}\right\} \\
\Phi_{\alpha}^{+} & =\left\{e_{3},-e_{1}-e_{4}, e_{2}+e_{3}\right\}
\end{aligned}
$$

By Table 1.2 in [BK1], the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq 0, & \left\langle\wedge, \alpha_{2}\right\rangle \geq 1+\mu_{\alpha} \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq\left[0,-1,-\frac{3}{2}\right], & \left\langle\wedge, \alpha_{4}\right\rangle \geq \frac{3}{2}
\end{array}
$$

It follows from (2.3'.1) that

$$
\begin{aligned}
& \#\left(\Psi_{0}^{-}\right) \leq[1,1,2], \quad \#\left(\Psi_{1}^{-}\right) \leq[0,2,1] \\
& \#\left(\Psi_{0}^{+}\right) \leq[2,2,0], \quad \#\left(\Psi_{1}^{+}\right) \leq[0,0,1]
\end{aligned}
$$

Let $\beta=-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)$. It is clear that $\beta$ is compact and strongly orthogonal to $\alpha$. Therefore, the fact that $\left\langle\lambda_{0}, \beta\right\rangle=0$ is in contradiction to nondegeneracy. Thus, it follows that $\left\langle\lambda_{0}, \beta\right\rangle>0$. Therefore, we have $\left\langle\lambda_{0}, \alpha_{3}\right\rangle>0$ or $\left\langle\lambda_{0}, \alpha_{4}\right\rangle>0$. Under these conditions, it follows from (2.3'.1) that $-\frac{1}{2}\left(e_{1} \pm e_{2}+e_{3}-e_{4}\right) \notin \Psi_{1}^{-}$if $\mu_{\alpha}=0$. Hence, by (2.3'.1), we obtain $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[2,3,1]$.

Thus, similar arguments as used in case (3.A) show that Theorem 1 holds for this case. Similarly, if (2.3.q) holds and $\mu_{\alpha}=0$, then there is a "gap" $\left(c_{0}^{\prime}, c_{0}\right)=(2,3)$ that will be considered in Section 4.
(3'.B.a) Let $\alpha=\alpha_{3}$. By similar methods used in (3.B), it is easily verified that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[0,1,2]$. Therefore, by a simlar argument used in (3.B), Theorem 1 can be proved for this case.
(3'.B.b) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easily verified that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[0,1,2]$. Therefore, by a similar argument used in (3.B), Theorem 1 can be proved for this case.

It follows from ( $\left.\mathbf{3}^{\prime} . \mathbf{A}\right),\left(\mathbf{3}^{\prime} . \mathbf{B} \cdot \mathbf{a}\right)$ and ( $\left.\mathbf{3}^{\prime} . \mathbf{B} . \mathbf{b}\right)$ that Theorem 1 is proved for case ( $\mathbf{3}^{\prime}$ ) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
(4') $\quad \theta_{C}=(0,1,0,1)$. It is easy to see that

$$
\begin{aligned}
& \Lambda_{K}^{+}=\left\{-e_{1}, e_{3},-e_{1} \pm e_{3}, e_{2} \pm e_{4},-\frac{1}{2}\left(e_{1}+z e_{2} \pm e_{3}-z e_{4}\right), z= \pm 1\right\} \\
& \Lambda_{n}^{+}=\left\{e_{2}, e_{4},-e_{1} \pm e_{2},-e_{1} \pm e_{4}, e_{2} \pm e_{3}, e_{3} \pm e_{4}\right. \\
&\left.\quad-\frac{1}{2}\left(e_{1}+z e_{2} \pm e_{3}+z e_{4}\right), z= \pm 1\right\} \\
& \Pi_{K}=\left\{e_{3},-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right), e_{2} \pm e_{4}\right\} \\
& 2 \delta_{K}=-5 e_{1}+2 e_{2}+e_{3}
\end{aligned}
$$

(4'.A.a) Let $\alpha=\alpha_{1}$. It is clear that

$$
\begin{aligned}
& \Phi^{-}=\left\{e_{2},,-e_{1}+e_{2},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)\right\} \\
& \Phi_{\alpha}^{-}=\left\{e_{3},-e_{1}+e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi^{+}=\left\{e_{3} \pm e_{4},-e_{1}-e_{2},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)\right\} \\
& \Phi_{\alpha}^{+}=\left\{e_{2} \pm e_{4},-e_{1}-e_{3},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)\right\}
\end{aligned}
$$

By Table 1.2 in [BK1], the following formulas are easily verified

$$
\begin{array}{ll}
\left\langle\wedge, \alpha_{1}\right\rangle \geq-1+\mu_{\alpha}, & \left\langle\wedge, \alpha_{2}\right\rangle \geq 1-\mu_{\alpha} \\
\left\langle\wedge, \alpha_{3}\right\rangle \geq \frac{1}{2}, & \left\langle\wedge, \alpha_{4}\right\rangle \geq-\frac{1}{2}
\end{array}
$$

It follows from $\left(2.4^{\prime}, 1\right)$ that

$$
\begin{aligned}
& \#\left(\Psi_{0}^{-}\right)=0, \quad \#\left(\Psi_{1}^{-}\right) \leq[0,0,2] \\
& \#\left(\Psi_{0}^{+}\right) \leq 3, \quad \#\left(\Psi_{1}^{+}\right)=0
\end{aligned}
$$

Let $\beta=-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)$ and $\beta^{\prime}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}\right)$. It is clear that $\beta$ and $\beta^{\prime}$ are compact and strongly orthogonal to $\alpha$. Then the fact that $\left\langle\lambda_{0}, s\right\rangle=0, s=\beta, \beta^{\prime}$ is in contradiction to nondegeneracy. Hence, it follows that $\left\langle\lambda_{0},-e_{1}\right\rangle>0$. Under these conditions, it follows from (2.4'.1) that $-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right) \notin \Psi_{1}^{-}$and $-e_{1}-e_{3},-\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right) \notin \Psi_{0}^{+}$if $\mu_{\alpha}=1$. Thus $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right) \leq[0,1,2]$.

Thus, similar arguments as used in cases (4.A.a) show that Theorem 1 holds. Similarly, if (2.2.q) holds and $\mu_{\alpha}=1$, then there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=$ $(1,2)$ that will be considered in Section 4.
(4'.A.b) Let $\alpha=\alpha_{2}$. Under the reflection in $\alpha$, then the data of the case ( $\left.\mathbf{4}^{\prime} . \mathbf{A} . \mathbf{b}\right)$ with $\alpha=\alpha_{2}$ are replaced by the data of the case ( $\mathbf{2}, \mathbf{A}$ ) with $\alpha=\alpha_{2}$. Hence, similar arguments as used in ( $\mathbf{2}^{\prime} . \mathbf{A}$ ) show that for this case Theorem 1 holds. Similarly, if (2.2.q) holds, $\mu_{\alpha}=1$ and $e_{3} \notin \Psi_{1}^{+}$, then there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$.
(4'.B.a) Let $\alpha=\alpha_{3}$. By similar methods used in (4.B), it is easy to see that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[0,1,2]$. By a similar argument used in (4.B), we can show that Theorem 1 holds for this case.
(4'.B.b) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easy to see that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[0,1,2]$. By a similar argument used in (3.B), Theorem 1 can be proved for this case.

Therefore, it follows from ( $4^{\prime} . \mathbf{A}$ ), ( $4^{\prime}$. B.a) and ( $4^{\prime} . \mathbf{B} . \mathrm{b}$ ) that Theorem 1 is proved for case ( $4^{\prime}$ ) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}\right\}$.
(5') $\quad \theta_{C}=(1,0,1,0)$.
(5'.A.a) Let $\alpha=\alpha_{1}$. Under the reflection in $\alpha$, then the data of the case (5.A.a) with $\alpha=\alpha_{1}$ are replaced by the data of the case (1.A) with
$\alpha=\alpha_{1}$. Therefore, by a similar argument used in case (1.A), Theorem 1 can be shown for this case.
( $5^{\prime}$.A.b) Let $\alpha=\alpha_{2}$. Under the reflection in $\alpha$, then the data of the case ( $5^{\prime} . \mathbf{A} . \mathrm{b}$ ) with $\alpha=\alpha_{2}$ are replaced by the data of the case ( $\mathbf{3}^{\prime} . \mathbf{A}$ ) with $\alpha=\alpha_{2}$. Therefore, by a similar argument used in case ( $\left.\mathbf{3}^{\prime} . \mathbf{A}\right)$, Theorem 1 can be shown for this case.
(5'.B.b) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easy to see that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[2,1,0]$. By a similar argument used in (3.B), Theorem 1 can be shown for this case.

It follows from ( $5^{\prime} . \mathbf{A . a}$ ), ( $5^{\prime} . \mathbf{A . b}$ ) and ( $\mathbf{5}^{\prime} . \mathbf{B} . \mathbf{b}$ ) that Theorem 1 is proved for case (5') since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
(6') $\quad \theta_{C}=(0,0,1,1)$.
( $\mathbf{6}^{\prime}$.A) Let $\alpha=\alpha_{1}$. Under the reflection in $\alpha$, then the data of the case ( $6^{\prime} . \mathrm{A}$ ) with $\alpha=\alpha_{1}$ are replaced by the data of the case ( $4^{\prime} . \mathbf{A} . a$ ) with $\alpha=\alpha_{1}$. Therefore, by similar argument as used in case (4'.A.a), Theorem 1 can be shown for this case. Similarly, if (2.4.q) holds and $\mu_{\alpha}=-1$, then there is a gap $\left(c_{0}^{\prime}, c_{0}\right)=(1,2)$ that will be considered in Section 4.
(6'.B.a) Let $\alpha=\alpha_{3}$. For this case, as in the case (6.B), it is easy to see that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0} \leq[0,5,2]$ and $c_{0}^{\prime} \leq[0,3,2]$. By a similar argument used in case (6.B), we can show that for $\mu_{\alpha} \neq 0$, Theorem 1 holds and, for $\mu_{\alpha}=0$, (B.1) holds in Theorem.
(6'.B.b) Let $\alpha=\alpha_{4}$. By similar methods used in (3.B), it is easy to see that $\min \left(\nu_{0}^{+}, \nu_{0}^{-}\right)=c_{0}=c_{0}^{\prime} \leq[0,1,2]$. By a similar argument used in (3.B), Theorem 1 can be shown for this case.

It follows from ( $\left.\mathbf{6}^{\prime} . \mathbf{A}\right),\left(\mathbf{6}^{\prime} . \mathbf{B . a}\right)$ and ( $\left.\mathbf{6}^{\prime} . \mathbf{B} . \mathrm{b}\right)$ that Theorem 1 is proved for case ( $6^{\prime}$ ) since $\Pi \cap \Lambda_{n}^{+}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}\right\}$.

The proof of Theorem 1 is complete.

## 3. The Reducibility for the Gaps.

The reducibility of the standard induced representations of $G$ is important in the study of unitary representations of $G$. B. Speh and D.A. Vogan [SV], and Barbasch and D.A. Vogan [BV] gave an algorithm for computing composition series of the standard induced representations of $G$. Baldoni-Silva and A.W. Knapp [BK2] use Vogan's algorithm mentioned above to determine some irreducibility questions that arise in [BK1]. In this section, we shall use Vogan's algorithm to determine some reduciblility questions that arise in the discussions for the gaps mentioned in Section 2.

By the results of Section 2, it is clear that in the cases of (4.A.a),(1),(ii) and of (3.A),(2),(ii), there are the gaps (A.1) and (A.2) respectively. The case (4.A.a), (1),(ii) is called the case of gap (A.1), and for this case we have (3.1)

$$
\lambda_{0}=\lambda_{0, b}=(-1,0,0,0), \mu_{\alpha}=1, \wedge=\frac{1}{2}(-3,1,1,1), \nu=\frac{1}{2} \alpha, c_{0}^{\prime}=1, c_{0}=2
$$

The case (3.A),(2),(ii) is called the case of gap (A.2) and for this case, we have

$$
\begin{equation*}
\lambda_{0}=\lambda_{0, b}=\frac{1}{2}(-3,1,0,0), \mu_{\alpha}=0, \wedge=(-3,0,0,3), \nu=\frac{1}{2} 2 \alpha, c_{0}^{\prime}=2, c_{0}=3 \tag{3.2}
\end{equation*}
$$

The data given by (3.1) and (3.2) are called the data of gap (A.1) and of gap (A.2) respectively.

First we shall use some notations given by D. Barbasch and D.V. Vogan [BV].

Let $R\left(\lambda_{0} \otimes \nu\right)=\{r \in \Lambda \mid 2\langle\gamma, r\rangle /\langle r, r\rangle=(\gamma, r) \in \mathbf{Z}\}$. Here $\gamma=\left(\lambda_{0} \otimes \nu\right)=$ $\lambda_{0}+\nu$. It is clear that $R\left(\lambda_{0} \otimes \nu\right)$ has a decomposition

$$
R\left(\lambda_{0} \otimes \nu\right)=R^{++} \cup R_{0} \cup R^{--}
$$

of the roots according to whether their inner products with $\gamma$ are positive, zero, or negative. Let $\phi=\alpha$. Then $R\left(\lambda_{0} \otimes \nu\right)^{\alpha}=R\left(\lambda_{0} \otimes \nu\right)$. Choose a positive root system $R_{0}^{+}$so that
(a) $R_{0}^{+} \supset \Lambda_{-}^{+} \cap R_{0}$.
(b) If $r \in R_{0}$ and $(-\theta) r \in R^{++}$, then $r \in R_{0}^{+}$.
(c) If $r,(-\theta) r \in R_{0}^{+}, r \neq(-\theta) r$, then both belong to $R_{0}^{+}$, or neither does.

Define $\Pi^{R}$ be the simple root system of the positive root system $R^{+}\left(\lambda_{0} \otimes\right.$ $\nu)=R^{++} \cup R_{0}^{+}$. If $-\theta$ does not preserve $R^{+}\left(\lambda_{0} \otimes \nu\right)$, then

$$
\alpha=\sum_{r \in \Pi^{R}} n_{r} r
$$

with $n_{r}$ a nonegative rational number. We define

$$
\Pi_{\mathrm{crit}}=\left\{r \in \Pi^{R} \mid n_{r} \neq 0\right\}
$$

Let $C\left(\lambda_{0} \otimes \nu\right)^{\alpha}$ be the span of $\Pi_{\text {crit }}$.
Lemma 3.1. For the case of gap (A.1), (resp. of gap (A.2)), $\Pi_{\text {crit }}$ is given by (3.1.1) (resp. by (3.1.2)) below. It is isomorphic to a subset of
$\Lambda^{+}$containing $\alpha$ and the isomorphism $\varphi$ preserveing the additional structure (1) - (5) described in [BV], (cf. p. 384 in [BV]).

Proof. It follows from the data of gap (A.1) given by (3.1) that

$$
\gamma=\left(\lambda_{0} \otimes \nu\right)=\lambda_{0}+\frac{1}{2} \alpha=\left(-1, \frac{1}{2},-\frac{1}{2}, 0\right)
$$

It is easily verified that

$$
\begin{aligned}
& R^{+}\left(\left(-1,0, \frac{1}{2},-\frac{1}{2}\right)\right) \\
& =\left\{-e_{1}, e_{2},-e_{3}, e_{4}, e_{2} \pm e_{3},-e_{1} \pm e_{4},-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
\end{aligned}
$$

It follows that

$$
\Pi^{R}=\left\{e_{2}+e_{3},-e_{3},-\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right), e_{4}\right\}
$$

It is easily shown that

$$
\begin{equation*}
\Pi_{\mathrm{crit}}=\left\{e_{2}+e_{3}=r_{1}^{*},-e_{3}=r_{2}^{*}\right\} \tag{3.1.1}
\end{equation*}
$$

Here $r_{1}^{*}, r_{2}^{*}$ can be written as $r_{1}^{*}=e_{1}^{*}-e_{2}^{*}, r_{2}^{*}=e_{2}^{*}$.
It is easy to see that $\varphi \Pi_{\text {crit }}=\left\{e_{2}-e_{3}, e_{3}\right\}$ where the isomorphism $\varphi$ is the reflection in the hyperplane orthogonal to the root $e_{3}$. Clearly $e_{3} \in \Lambda_{K}$, hence, $\varphi$ preserves the additional structure (1) $-(5)$ given by [BV], (cf. p. 384 in [BV]).

It follows from the data of gap (A.2) given by (3.2) that

$$
\gamma=\left(\lambda_{0} \otimes \nu\right)=\lambda_{0}+\alpha=\frac{1}{2}(-3,1,2,-2)
$$

Set $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), x_{i}= \pm 1, i=1,2,3,4$. By computing, we have

$$
R^{+}\left(\frac{1}{2}(-3,1,2,-2)\right)=\left\{-e_{1}, e_{2}, e_{3},-e_{4},-e_{1} \pm e_{2}, e_{3} \pm e_{4}, \frac{-\eta_{x}}{2} x\right\}
$$

Here $\eta_{x}=-1$ if $x=(1,-1,1,-1),(1,1,1,-1), \eta_{x}=1$ otherwise.
Hence, it is easy to see that

$$
\Pi^{R}=\left\{-e_{3}-e_{4},-\frac{1}{2}(1,1,-1,-1), \frac{1}{2}(1,1,1,-1),-\frac{1}{2}(1,-1,1,1)\right\}
$$

Therefore, we obtain
(3.1.2) $\Pi_{\text {crit }}=\left\{-e_{3}-e_{4}=r_{3}^{*},-\frac{1}{2}(1,1,-1,-1)=r_{2}^{*}, \frac{1}{2}(1,1,1,-1)=r_{1}^{*}\right\}$.

Here $r_{1}^{*}, r_{2}^{*}, r_{3}^{*}$ can be written as $r_{1}^{*}=e_{1}^{*}-e_{2}^{*}, r_{2}^{*}=e_{2}^{*}-e_{3}^{*}, r_{3}^{*}=2 e_{3}^{*}$.
Clearly, $\varphi \Pi_{\text {crit }}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ where $\varphi=\varphi_{1} \varphi_{2}$. Here $\varphi_{1}$ (resp. $\varphi_{2}$ ) is the reflection in the hyperplane orthogonal to $\alpha_{4}$ (resp. $e_{3}$ ). Clearly, the isomorphism $\varphi$ preserves the additional structure (1)-(5) since $\alpha_{4}$ and $e_{3}$ are roots in $\Lambda_{K}$.

The proof is complete.

If $x=x_{1} e_{1}^{*}+x_{2} e_{2}^{*}$ in case (A.1) (resp. $x=x_{1} e_{1}^{*}+x_{2} e_{2}^{*}+x_{3} e_{3}^{*}$ in case (A.2)), then $\left(x_{1}, x_{2}\right)^{*}$ (resp. $\left.\left(x_{1}, x_{2}, x_{3}\right)^{*}\right)$ is called the coordinate of $x$ for $\Pi_{\text {crit }}$.

We shall directly use some results given by B. Speh and D.A. Vogan [SV] and D.A. Vogan [V2] and we shall introduce some notations given by Baldoni-Silva and A.W. Knapp [BK2].

Let $L$ be the standard subalgebra of $g$ with $\Lambda_{L}=\Lambda(S), S \subset \Lambda$, and let $L$ denote the standard subgroup of $G$ with Lie algebra $L$ also.

Let us fix a compact Cartan subgroup $B_{L}$ of $L$ with Lie algebra $b_{L}=b \cap L$. We shall be working with some Cartan subalgebras $b_{-, L}+\mathbf{a}$ where $b_{-, L}=$ $b_{-} \cap b_{L}$ and $\mathbf{a} \subset g_{-}$formed by Cayley transform relative to a succession of noncompact roots in an ordered set $\{\ldots\}$ and we can write $\mathbf{a} \Rightarrow\{\ldots\}$ for $\mathbf{a}$. Let $A$ be the subgroup of $G$ with Lie algebra a. For subgroup $A$, there is a standard cuspidal parabolic subgroup $P_{L}=M_{L} A N_{L}$ of $L$. Let $\lambda_{0, L}, \mu_{\alpha, L}$ and $\nu_{L}$ be the restriction of $\lambda_{0}, \mu_{\alpha}$ and $\nu$ to $L$ which are defined by (3.1b) of [BK1] respectively. Here $\lambda_{0}, \mu_{\alpha}$ and $\nu$ are the data given by the cases of gap (A.1) or of gap (A.2). Let $\sigma_{L}$ be the representation determined by $\lambda_{0, L}, \mu_{\alpha, L}$ and $\nu_{L}$. If $\gamma_{L}=\lambda_{0, L}+\nu_{L}$ is singular, then there is regular $\gamma_{0, L}$ obtained by adding to $\gamma_{L}$ a suitable parameter that is dominant integral for $\Lambda_{L}^{+}=\Lambda_{L} \cap \Lambda^{+}$and adjusting $\mu_{\alpha, L}$ compatible. Let $\sigma_{0, L}$ be the representation determined by $\gamma_{0, L}$ and $\mu_{\alpha, L}$. We denote by $U^{L}\left(M_{L} A N_{L}, \sigma_{0, L}, \nu_{L}\right)$ and $J^{L}\left(M_{L} A N_{L}, \sigma_{0, L}, \nu_{L}\right)$ the induced representation for group $L$ and its Langlands quotient respectively. Let $\pi\left(\gamma_{L} ;\{\ldots\}\right)$ and $\bar{\pi}\left(\gamma_{L} ;\{\ldots\}\right)$ be the global characters of $U^{L}\left(M_{L} A N_{L}, \sigma_{0, L}, \nu_{L}\right)$ and of $J^{L}\left(M_{L} A N_{L}, \sigma_{0, L}, \nu_{L}\right)$ respectively. (Baldoni-Silva and Knapp's notations in [BK2] differs slightly from this: they use $\pi\left(\gamma_{L}, \mathbf{a} \leftrightarrow\{\ldots\}\right)$ and $\bar{\pi}\left(\gamma_{L}, \mathbf{a} \leftrightarrow\{\ldots\}\right)$ for $\pi\left(\gamma_{L} ;\{\ldots\}\right)$ and $\bar{\pi}\left(\gamma_{L} ;\{\ldots\}\right)$ respectively.)

In the following, we shall directly use the notations given by [BK2]. For each $\beta \in \Lambda_{L}$, let $s_{\beta}$ denote the wall-crossing functor which acts on the local expression for a global character by the reflection in the hyperplane orthogonal to $\beta$ (or the reflection in the hyperplane orthogonal to $\beta$ on $\left.E_{R}\right)$. We say that $\beta$ is in the $\tau$ - invariant of $\bar{\pi}\left(\gamma_{L} ;\{\ldots\}\right.$ ) (denoted by $\beta \in$ $\left.\tau\left(\bar{\pi}\left(\gamma_{L} ;\{\ldots\}\right)\right)\right)$ if $s_{\beta} \bar{\pi}\left(\gamma_{L} ;\{\ldots\}\right)=0$. Let $\phi$ denote the empty set.

Lemma 3.2. Let $\Lambda_{L}=\Lambda\left(\Pi_{\text {crit }}\right)$. Then $U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \nu_{L}\right)$ is reducible.
Proof. First, we show the lemma for the case of the gap (A.1). By (3.1), we have $\gamma=\lambda_{0}+\nu=\frac{1}{2}(-2,1,-1,0)$ (in system given by (1.1)). It is easy to see that

$$
\left(\gamma, r_{1}^{*}\right)=0,\left(\gamma, r_{2}^{*}\right)=1
$$

Thus $\gamma_{L}=\frac{1}{2}(1,1)^{*}$ is dominant for $\Pi_{\text {crit }}$. Clearly, $\alpha=(1,1)^{*}$, so, $\left(\gamma_{L}, \alpha\right)=1$. Since $\mu_{\alpha, L}=1, \alpha$ ( or $\sigma_{L}$ ) is a cotangent case. Hence $\alpha$ does not satisfy the parity condition.

We number the simple roots of simple Lie algebra $B_{2}$ (from left to right) as 1 and 2 ( 2 is shorter).

Let $\Pi^{\vee}=\left\{r_{1}^{*}+2 r_{2}^{*},-r_{2}^{*}\right\}$ and $\beta=r_{2}^{*}=(0.1)^{*}$. For convenience, let $s_{2}$ denote $s_{\beta}$. Clearly, $s_{2} \gamma_{L}$ is dominant for $\Pi^{\vee}$ and the set of singular roots in $\Pi^{\vee}$ for $s_{2} \gamma_{L}=\frac{1}{2}(1,-1)^{*}$ is the set $\left\{(1,1)^{*}\right\}=\{1\}$. It is easy to see that $\alpha \notin s_{2} \Pi^{\vee}=\Pi_{\text {crit }}$.

Since $\alpha$ does not satisfy the parity condition and $\alpha$ is a simple root in $\Pi^{\vee}$, moreover, $s_{2} \gamma_{L}$ is $\Pi^{\vee}$ dominant and is integral, by Theorem 1.2 of [BK2], we have

$$
\begin{equation*}
\pi\left(s_{2} \gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{2} \gamma_{L} ; \alpha\right) \tag{3.2.1}
\end{equation*}
$$

Since $\beta$ is complex, it follows from Theorem 1.5 of [BK2] that

$$
\begin{equation*}
s_{2} \pi\left(s_{2} \gamma_{L} ; \alpha\right)=\pi\left(s_{2} s_{2} \gamma_{L} ; \alpha\right)=\pi\left(\gamma_{L} ; \alpha\right) \tag{3.2.2}
\end{equation*}
$$

By Theorem 1.6 of [BK2], we have

$$
\begin{equation*}
s_{2} \pi\left(\gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{2} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(\gamma_{L} ; \alpha\right)+\Theta_{0} \tag{3.2.3}
\end{equation*}
$$

Here $\Theta_{0}$ must occur on the right side of (3.2.1) and must have the simple root 2 in their $\tau$-invariants. Clearly, $s_{2} \gamma_{L}$ is dominant for $\Pi^{\vee}$ so it is easy to see that $\theta\left((0,-1)^{*}\right)=(1,0)^{*}$ is a positive root, hence, by Theorem 1.4 of [BK2], we have $\tau\left(\bar{\pi}\left(\gamma_{L} ; \alpha\right)\right)=\phi$. Thus $\Theta_{0}=0$.

Clearly, $\gamma_{L}$ is dominant for $s_{2} \Pi^{\vee}$. By Theorem 1.4 of [BK2], $\tau\left(\bar{\pi}\left(\gamma_{L} ; \alpha\right)\right)=$ $\left\{(0,1)^{*}\right\}=\{2\}$ since $\theta\left((0,1)^{*}\right)=(-1,0)^{*}$ is negative root (the number of $(0,1)^{*}$ is 2 in $\left.s_{2} \Pi^{\vee}\right)$.

Clearly, the set $\{2\}$ is disjoint the singular root set $\{1\}$. Therefore, by Theorem 1.3 of [BK2], it follows from (3.2.2) and (3.2.3) that $U^{L}\left(M_{L} A N_{L}, \sigma_{L}\right.$, $\frac{1}{2} \alpha$ ) is reducible into two pieces for the case of gap (A.1).

Now we shall prove the lemma for the case of gap (A.2). By (3.2), we have $\gamma=\lambda_{0}+\nu=\frac{1}{2}(-3,-1,2,-2)$ (in the system given by (1.1)). It is easy to see that

$$
\left(\gamma, r_{1}^{*}\right)=\left(\gamma, r_{2}^{*}\right)=1,\left(\gamma, r_{3}^{*}\right)=0
$$

Thus $\gamma_{L}=(2,1,0)^{*}$ that is dominant for $\Pi_{\text {crit }}$. Clearly, $\alpha=(2,0,0)^{*}$, so, $\left(\gamma_{L}, \alpha\right)=2$. Since $\mu_{\alpha, L}=0, \alpha$ (or $\left.\sigma_{L}\right)$ is a tangent case. Hence $\alpha$ does not satisfy the parity condition.

We number the simple roots of simple Lie algebra $C_{3}$ from left to right as 1,2 and 3 ( 3 is longer).

Let $\Pi^{\vee}=\left\{r_{3}^{*}+2 r_{2}^{*}+2 r_{1}^{*}=2 e_{1}^{*},-r_{1}^{*}=-e_{1}^{*}+e_{2}^{*},-r_{2}^{*}=-e_{2}^{*}+e_{3}^{*}\right\}$.
Let $\beta_{1}=(-1,0,1)^{*}, \beta_{2}=(-1,1,0)^{*}$ and $\beta_{2}^{\prime}=(0,-1,1)^{*}$. Let $s_{i}=s_{\beta_{i}}, i=$ 1,2 and $s_{2}^{\prime}=s_{\beta_{2}^{\prime}}$. It is easily verified that $\alpha=(2,0,0)^{*}$ is a simple root in $\Pi^{\vee}$. Clearly, $s_{2} s_{1} s_{2}^{\prime} \gamma_{L}=(0,1,2)^{*}$ is dominant for $\Pi^{\vee}$ and is integral. The set of singular roots in $\Pi^{\vee}$ for $s_{2} s_{1} s_{2}^{\prime} \gamma_{L}$ is $\{3\}$. It is clear that $\alpha \notin s_{2}^{\prime} s_{1} s_{2} \Pi^{\vee}=\Pi_{\text {crit }}$.

Since $\alpha \in \Pi^{\vee}$ and $\alpha$ does not satisfy the parity condition, by Theorem 1.2 of [BK2], we have

$$
\begin{equation*}
\pi\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right) \tag{3.2.4}
\end{equation*}
$$

Clearly, $\beta_{2}$ is a complex root, thus by Theorem 1.5 of [BK2], we have

$$
\begin{equation*}
s_{2} \pi\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)=\pi\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right) \tag{3.2.5}
\end{equation*}
$$

By Theorem 1.6 of [BK2], it follows from (3.2.4) and (3.2.5) that

$$
\begin{equation*}
\pi\left(s_{1} s_{2}^{\prime} \gamma ; \alpha\right)=\bar{\pi}\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\Theta_{1} \tag{3.2.6}
\end{equation*}
$$

By Theorem 1.4 of [BK2], we obtain

$$
\begin{equation*}
\tau\left(\bar{\pi}\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)\right)=\{1\}, \tau\left(\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)\right)=\{2\} \tag{3.2.7}
\end{equation*}
$$

Thus, by Theorem 1.6 of [BK2] it follows from (3.2.7) and (3.2.4) that $\Theta_{1}=0$. Clearly, $\beta_{1}$ is complex, so, by Theorem 1.5 of [BK2], we have

$$
\begin{equation*}
s_{1} \pi\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)=\pi\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right) \tag{3.2.8}
\end{equation*}
$$

By Theorem 1.6 of [BK2], it follows from (3.2.7) and (3.2.8) that

$$
\begin{equation*}
\pi\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right)=-\bar{\pi}\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\Theta_{2} \tag{3.2.9}
\end{equation*}
$$

By Theorem 1.4 of [BK2], we obtain

$$
\begin{equation*}
\tau\left(\bar{\pi}\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right)\right)=\{1,2\} \tag{3.2.10}
\end{equation*}
$$

Clearly, we have $\Theta_{2}=c_{2} \pi\left(s_{2} s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)$ by (3.2.6) and (3.2.7), where $c_{2}$ is a constant. Using similar methods used in [BK2], it is easily verified that $c_{2}=1$ by Theorem 1.7 of [BK2]. Therefore, by (3.2.9), we have

$$
\begin{equation*}
\pi\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right) \tag{3.2.11}
\end{equation*}
$$

It is easy to see that $\beta_{2}^{\prime}$ is a $m$-compact root. Clearly, $2 \in \tau\left(\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)\right)$ by (3.2.7) and $2 \in \tau\left(\bar{\pi}\left(s_{2}^{\prime} \gamma_{L} ; \alpha\right)\right)$ by (3.2.10). Thus, by Theorem 1.6 of [BK2], it follows from (3.2.11) that

$$
\begin{equation*}
-\pi\left(\gamma_{L} ; \alpha\right)=-\bar{\pi}\left(s_{1} s_{2}^{\prime} \gamma_{L} ; \alpha\right)-\bar{\pi}\left(\gamma_{L} ; \alpha\right) \tag{3.2.12}
\end{equation*}
$$

It is easy to see that the sets $\{2\}$ and $\{1,2\}$ are disjoint from the set $\{3\}$ of the set of singular roots, hence, by Theorem 1.3 of [BK2], it follows from (3.2.7), (3.2.10) and (3.2.12) that $U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \alpha\right)$ is reducible into two pieces for the case of gap (A.2). The proof is complete.

Combining Lemma 3.1, Lemma 3.2 and Theorem of [BV], we obtain the following lemma immediately.

Lemma 3.3. For gap (A.1) or gap (A.2), $U\left(M A N, \sigma, \frac{1}{2} c_{0}^{\prime} \alpha\right)$ is reducible.
D.A. Vogan [V1], [V3] and Speh and Vogan [SV] used the $\theta$-stable parabolic subgroups of $g^{C}$ to study of unitary representations of semisimple Lie groups. We shall not need their detailed construction. It is enough to have the following result.

For each subset $S^{\dagger}$ of $\Lambda$, let $-S^{\dagger}=\left\{-r \mid r \in S^{\dagger}\right\}$. Let $S$ be a given subset of $\Lambda$. A subset $S^{\dagger}$ of $\Lambda$ is said to be a supplement of $S$ in $\Lambda$ if $S^{\dagger}$ satisfies the following condition:
(s.1) $S^{\dagger} \cap \Lambda(S)=\phi$,
(s.2) $S^{\dagger} \cup \Lambda(S) \cup-S^{\dagger}=\Lambda$,
(s.3) $S^{\dagger} \cap-S^{\dagger}=\phi$,
(s.4) there exists a $\zeta$ in $i b^{\prime}$ such that $\langle\zeta, r\rangle \geq 0$ for all $r \in S^{\dagger}$,
(s.5) there is a positive root system $\Lambda_{0}^{+}$in the root system $\Lambda_{0}=\{r \in \Lambda \mid$ $\langle\zeta, r\rangle=0\}$ such that $\Lambda_{0}^{+} \cap S^{\dagger}=\Lambda_{0} \cap S^{\dagger}$.

For fixed $S \subset \Lambda$ and a fixed supplement $S^{\dagger}$ of $S$ in $\Lambda$, define

$$
l^{C}=b^{C}+\sum_{r \in \Lambda(S)} g_{r}^{C}, u=u^{C}=\sum_{r \in S^{*}} g_{r}^{C}
$$

For convenience, let $\Lambda_{l}$ and $\Lambda(u)$ denote $\Lambda(S)$ and $S^{\dagger}$ respectively. Let

$$
\begin{equation*}
\mathbf{q}=l^{C}+u \tag{3.e}
\end{equation*}
$$

It is easily verified that the following conditions are satisfied:
(a) $\theta(\mathbf{q})=\mathbf{q}$, (since for any $\left.r \in \Lambda, \theta\left(e_{r}\right)= \pm e_{r}\right)$.
(b) $l^{C}=\overline{\mathbf{q}} \cap \mathbf{q}$, (by Lemma 1.1, (s.1) and (s.3)).
(c) $g^{C}=\bar{u}+l^{C}+u$, (by Lemma 1.1, (s.2) and (s.3)).
(d) (3.e) is Levi decompostion of $\mathbf{q}$ with Levi factor $l$, (by (s.4), (s.5) and (s.3)).

By (a), (b), (c), (d) and (3.e), we obtain the following Lemma immediately.
Lemma 3.4. With above notations, $\mathbf{q}$ is a $\theta$-stable parabolic subalgebra of $g^{C}$ and $\mathbf{q}$ is determined by the subset $S$ and $S^{\dagger}$ of $\Lambda$.

The subalgebra $\mathbf{q}$ defined by (3.e) is called to be the $\theta$ - stable parabolic subalgebra determined by ( $S, S^{\dagger}$ ). Let $l=l^{C} \cap g$ and $L$ be the normalizer of $\mathbf{q}$ in $G$. Clearly, $\Lambda_{L}=\Lambda(S)$.

Lemma 3.5. With above notations, for gap (A.2), $U\left(M A N, \sigma, \frac{1}{2} 3 \alpha\right)$ is irreducible.

Proof. We number the simple roots of simple Lie algebra $B_{3}$ from left to right as 1,2 and 3 ( 3 is shorter).

Let $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and let $\Lambda_{l}=\Lambda_{L}=\Lambda\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ Let

$$
S^{\dagger}=\left\{-e_{1} \pm e_{2},-e_{1} \pm e_{3},-e_{1} \pm e_{4},-e_{1},-\frac{\eta_{x}}{2} x, x=\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
$$

Here $\eta_{x}=-1$ if $x=(1,-1,1,-1)$ or $x=(1,1,1,-1), \eta_{x}=1$ otherwise, (cf. the coordinates given by (1.1)). It is easily verified that the subset $S$ and $S^{\dagger}$ of $\Lambda$ safisfy the condition (s.1)-(s.5) (letting $\zeta=\gamma=\lambda_{0}+\nu=$ $\left.\frac{1}{2}(-3,1,3,-3)\right)$. Let $\mathbf{q}$ be the $\theta$-stable parabolic subalgebra determined by $\left(S, S^{\dagger}\right)$. Then $l^{C}$ is its Levi factor. Let $\Lambda_{L}^{+}=\Lambda_{L} \cap \Lambda^{+}$and $\Lambda^{\prime+}=\Lambda_{L}^{+} \cup \Lambda(u)$. Define

$$
\lambda_{0, L}=\lambda_{0}-\delta(u), \mu_{\alpha, L}=\mu_{\alpha}, \wedge_{L}=\wedge-2 \delta(u \cap p)
$$

Here $\delta(u)$ (resp. $\delta(u \cap p)$ ) is the half sum of the roots (resp. noncompact roots) in $\Lambda(u)=S^{\dagger}$ (cf. (3.1b) in [BK1]). Let $\chi_{L}$ be such that $\chi_{L}\left(\gamma_{\alpha}\right)$ is consistently with $\mu_{\alpha, L}$. Then ( $\lambda_{0, L}, \Lambda_{L}^{+}, \chi_{L}$ ) leads to a well-defined standard induced series of representations $U^{L}\left(M_{L} A N_{L} \cdot \sigma_{L}, \frac{1}{2} 3 \alpha\right)$. Here $M_{L}=M \cap L$ and $N_{L}=N \cap L$ and $N$ is defined in $G$ for $\Lambda^{\prime+}$. Let $\gamma_{L}=\lambda_{0, L}+\frac{1}{2} 3 \alpha$.

It is easily verified that $\delta(u)=\frac{1}{2}(-9,0,2,-2)$. By the data of gap (A.2) given by (3.2), we have

$$
\lambda_{0, L}=\lambda_{0}-\delta(u)=\frac{1}{2}[(-3,1,0,0,)-(-9,0,2,-2)]=\frac{1}{2}(6,1,-2,2)
$$

It follows that

$$
\gamma_{L}=\lambda_{0, L}+\frac{3}{2} \alpha=\frac{1}{2}[(6,1,-2,2)+(0,0,3,-3)]=\frac{1}{2}(6,1,1,-1)
$$

It is easy to see that $\left(\gamma_{L}, \alpha\right)=1$ is odd. Since $\mu_{\alpha, L}=0, \alpha$ (or $\sigma_{L}$ ) is a tangent case. Therefore, $\alpha$ satisfies the parity condition. Let $\Pi_{L}=\left\{\alpha_{1} \alpha_{2}, \alpha_{3}\right\}=\Pi_{L}^{\vee}$.

Let $\beta=\alpha_{3}$ and $s_{3}=s_{\beta}$. It is clear that $s_{3} \gamma_{L}=\frac{1}{2}(6,1,1,1)$ is $\Pi_{L}=\Pi_{L}^{\vee}$ dominant and the set of the singular roots in $\Pi_{L}=\Pi_{L}^{\vee}$ for $s_{3} \gamma_{L}$ is $\{1,2\}$. Therefore, since $\alpha$ satisfies the parity condition, by Theorem 1.1 of [BK2], we have

$$
\begin{equation*}
\pi\left(s_{3} \gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{3} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{3} \gamma_{L} ; \phi\right)+\bar{\pi}\left(s_{\alpha} s_{3} \gamma_{L} ; \phi\right) \tag{3.5.1}
\end{equation*}
$$

Clearly, $\beta$ is a complex root, so, by Theorem 1.5 of [BK2], we have

$$
\begin{equation*}
s_{3} \pi\left(s_{3} \gamma ; \alpha\right)=\pi(\gamma ; \alpha) \tag{3.5.2}
\end{equation*}
$$

By Theorem 1.4 of [BK2], we have

$$
\begin{equation*}
\tau\left(\bar{\pi}\left(s_{3} \gamma_{L} ; \alpha\right)\right)=\{2\}, \tau\left(\bar{\pi}\left(s_{3} \gamma_{L} ; \phi\right)\right)=\{1\}, \tau\left(\bar{\pi}\left(s_{\alpha} s_{3} \gamma_{L} ; \phi\right)\right)=\{3\} \tag{3.5.3}
\end{equation*}
$$

By Theorem 1.6 of [BK2], it follows from (3.5.1) and (3.5.2) that

$$
\begin{equation*}
\pi\left(\gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{3} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(\gamma_{L} ; \alpha\right)+\Theta_{1}+\varpi \tag{3.5.4}
\end{equation*}
$$

Here

$$
\varpi=\bar{\pi}\left(s_{3} \gamma_{L} ; \phi\right)+\bar{\pi}\left(s_{3} \gamma_{L} ; \beta\right)+\Theta_{2}-\bar{\pi}\left(s_{\alpha} s_{3} \gamma_{L} ; \phi\right)
$$

By Theorem 1.4 of [BK2], we obtain

$$
\begin{equation*}
\tau\left(\bar{\pi}\left(\gamma_{L} ; \alpha\right)\right)=\{3\}, \quad \tau\left(\bar{\pi}\left(s_{3} \gamma_{L} ; \beta\right)\right)=\{1,3\} . \tag{3.5.5}
\end{equation*}
$$

It follows from (3.5.1) and (3.5.3) that $\Theta_{1}=c_{1}\left(\bar{\pi}\left(s_{\alpha} s_{3} \gamma_{L} ; \phi\right)\right)$ by Theorem 1.6 of [BK2]. Here $c_{1}$ is a constant. Using similar methods used in [BK2], by Theorem 1.7 of [BK2], we obtain $c_{1}=1$.

Thus, by the results given above, we have

$$
\begin{equation*}
\pi\left(\gamma_{L} ; \alpha\right)=\bar{\pi}\left(s_{3} \gamma_{L} ; \alpha\right)+\bar{\pi}\left(\gamma_{L} ; \alpha\right)+\bar{\pi}\left(s_{3} \gamma_{L} ; \phi\right)+\bar{\pi}\left(s_{3} \gamma_{L} ; \beta\right)+\Theta_{2} \tag{3.5.6}
\end{equation*}
$$

It is easily shown that if $C\left(\Theta_{2}\right)$ is a irreducible character which occurs in $\Theta_{2}$, then the $\tau$-invariant of $C\left(\Theta_{2}\right)$ must contain 1 where 1 is the compact root $e_{2}-e_{3}=\alpha_{1}$ in $\Pi_{L}=\Pi_{L}^{\vee}$. Thus, by (3.5.3), (3.5.5) and (3.5.6), it is easily verified that only the $\tau$-invariant of the second term in the right side of (3.5.6) that is $\pi\left(\gamma_{L} ; \alpha\right)$ is disjoint from the set $\{1,2\}$ of the singular roots, so, by Theorem 1.3 of [BK2], $U^{L}\left(M_{L} A N_{L}, \sigma_{L}, \frac{1}{2} 3 \alpha\right)$ is irreducibe.

It is easily verified that $\left\langle\beta,\left(\lambda_{0}+\nu\right)\right\rangle \geq 0$ for all $\beta \in \Lambda(u)=S^{\dagger}$. Here $\nu=\frac{1}{2} 3 \alpha$. Hence, by 4.17 of [SV], $U\left(M A N, \sigma, \frac{1}{2} 3 \alpha\right)$ is irreducible. The proof is complete.

## 4. The Gaps and the Isolated Representations.

In this section, the chief idea to prove the unitarity is to use the arguments given by D.A. Vogan [V1] and D.A. Vogan and G.J. Zuckerman [VZ] as in Baldoni-silva and A.W. Knapp [BK1].

Now we bring in intertwining operator. We shall use the notations of $[K S]$ and of [BK1] without redefining. According to [KZ1], the intertwining operator that defines the Hermitian form at $\nu$ is

$$
\begin{equation*}
\sigma(w) A_{P}(w, \sigma, \nu) \tag{4.1}
\end{equation*}
$$

apart from normalization. Here $w$ is a representative in $K$ of the nontrivial element of $W(A: G)$. We may assume that this operator is positive definite (on each $K$-type) relative to $L^{2}\left(K, V^{\sigma}\right)$ for $\nu$ small and positive.

Let $E$ be a finite-dimensional subspace of the domain of (4.1) equal to the sum of number of $K$-types, and let $T(z): E \rightarrow E$ be the restriction to $E$ of $\sigma(w) A_{P}\left(w, \sigma, \frac{1}{2}\left(c_{0}^{\prime}-z\right) \alpha\right)$, for complex $z$ with $|z|<1$. Let $E_{k}$ be the subspace of $E$ defined by (13.2) in [BK1]. We say that $T(z)$ has only a simple zero at $z=0$ if $E_{2}=0$.

Lemma 4.1. With the above notations, for the case of gap (A.1) or gap (A.2)

$$
E_{0}=E, E_{1}=E \cap \operatorname{ker} T(0) \quad \text { and } \quad E_{2}=0
$$

Proof. First we shall consider the case of gap (A.2). Let $A_{*}$ be the subgroup of $G$ built from $\alpha=e_{3}-e_{4}, \alpha^{\prime}=e_{3}+e_{4}$ and $\alpha^{\prime \prime}=-e_{1}$. (By [ $\left.\mathbf{C}\right]$ (or by [ $\left.\mathbf{S u}\right]$ ), it is easy to see that the Lie algebra of $A_{*}$ is contained in a Cartan subalgebra of $g$.) For $A_{*}$, let $P_{*}=M_{*} A_{*} N_{*}$ be the real rank three standard parabolic subgroup of $G$. Clearly $\Lambda_{m_{*}}=\left\{e_{2}\right\}$ where $m_{*}$ is the Lie algebra of $M_{*}$. Let $\lambda_{0}^{*}$ and $\sigma_{*}$ be the restriction of $\lambda_{0}$ and $\sigma$ to $P_{*}$ respectively. For restricted roots relative to this parabolic subgroup, we can use a system of type $A_{1} \oplus B_{2}$ with $f_{1}+f_{2}=\operatorname{cayley}(\alpha), f_{1}-f_{2}=\operatorname{cayley}\left(\alpha^{\prime}\right)$ and $f=\operatorname{cayley}\left(\alpha^{\prime \prime}\right)$.

We can choose $w$ in (4.1) to be a representative in $K$ of the reflection $s_{f_{1}+f_{2}}$ in $W\left(A_{*}: G\right)$, and the techniques of $[\mathbf{K S}]$ show that

$$
\begin{equation*}
A_{P}\left(w, \sigma, \frac{1}{2} c \alpha\right) \subseteq A_{P_{*}}\left(w, \sigma_{*}, \frac{1}{2} c\left(f_{1}+f_{2}\right)\right) \tag{4.2}
\end{equation*}
$$

Actually since we can discard invertible operators in our analysis by Lemma 13.2 of [BK1], we can simply write $s_{f_{1}+f_{2}}$ directly in place of $w$ and Proposition 7.8 of [KS] allows us to factor the right side of (4.2) according to a cocycle relation as

$$
\begin{equation*}
A_{P_{*}}\left(w, \sigma_{*}, \frac{1}{2} c\left(f_{1}+f_{2}\right)\right)=A_{P_{*}, 3} A_{P_{*}, 2} A_{P_{*}, 1} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& A_{P_{*}, 3}=A_{P_{*}}\left(s_{f_{2}}, s_{f_{1}-f_{2}} s_{f_{2}} \sigma_{*},-\frac{1}{2} c\left(f_{1}-f_{2}\right)\right) \\
& A_{P_{*}, 2}=A_{P_{*}}\left(s_{f_{1}-f_{2}}, s_{f_{2}} \sigma_{*}, \frac{1}{2} c\left(f_{1}-f_{2}\right)\right) \\
& A_{P_{*}, 1}=A_{P_{*}}\left(s_{f_{2}}, \sigma_{*}, \frac{1}{2} c\left(f_{1}+f_{2}\right)\right)
\end{aligned}
$$

(cf. (13.5) of [BK1]). Let $\mathbf{a}_{*}$ be the subspace generated by $\left\{f_{1}, f_{2}, f\right\}$ over $\mathbf{R}$. It is easy to see that $\mathbf{a}_{*}$ is a commutative subalgebra in $g_{-}$

Let us examine $A_{P_{*}, 1}$ here more closely. This operator depends only on data in the subgroup of $G$ given as the centralizer $Z_{1}=Z_{G}\left(\operatorname{ker}\left(f_{2}\right)\right)$, and by means of kind of identification in Proposition 7.5 of [KS], it can be identified with a standard intertwining operator of $Z_{1}$.

Clearly, $\operatorname{ker} f_{2}$ in $\mathbf{a}_{*}$ is a subapace generated by $\left\{f_{1}, f\right\}$ over $\mathbf{R}$. Thus $Z_{1} \cong \mathrm{SO}(3,2)$ and we can write the Dynkin diagram of Lie algebra $\mathbf{z}_{1}$ of $Z_{1}$ as

$$
\bullet \Rightarrow \bullet .
$$

Here the left (resp. right) $\bullet$ denotes $e_{2}-e_{4}\left(\right.$ resp. $\left.f_{2}=\operatorname{Cayley}\left(e_{4}\right)\right)$. Let $\mathbf{a}_{*, 1}$ be the subspace generated by $f_{2}$ over $\mathbf{R}$. Clearly $\mathbf{a}_{*, 1} \subset \mathbf{z}_{1}$. Let $A_{*, 1}$ be the subgroup of $Z_{1}$ with Lie algebra $\mathbf{a}_{*, 1}$. For $A_{*, 1}$, there is a standard parabolic subgroup $P_{*, 1}=M_{*, 1} A_{*, 1} N_{*, 1}$ of $Z_{1}$.

Let $m_{*, 1}$ denote the Lie algebra of $M_{*, 1}$. Then $\Lambda_{m_{*, 1}}=\Lambda\left(e_{2}\right)$ and $m_{*, 1}=$ $m_{*}$. Clearly $M_{*, 1} \subset M$ and $N_{*, 1} \subset N$. Relative to this system, the restriction of $\lambda_{0}$ to $M_{*, 1}$ can be write as ( $\frac{1}{2}, 0$ ) in coordinates ( $x_{2}, x_{4}$ ) (cf. (1.1)). It is easy to see that the restriction of $\sigma$ to $M_{*, 1}$ (denoted by $\sigma_{*, 1}$ ) is a tangent case. Hence, since $f_{2}$ is short in $\mathbf{z}_{1}$ and $c=2$ is even, by 8.3 of [ $\left.\mathbf{B K 1}\right]$, the induced representation $U^{Z_{1}}\left(M_{*, 1} A_{*, 1} N_{*, 1}, \sigma_{*, 1}, \frac{1}{2} 2 f_{2}\right)$ is irreducible. Therefore at $z=$ $0, T_{1}(z)$ is invertible. Thus 13.2 of [BK1] allows to discard the opertor $T_{1}$ on the right side of (4.3) from our analysis, and in similar fashion we can discard $T_{3}$ in the right side of (4.3).

Let us examine more closely the operator $A_{P_{*}, 2}$. This operator depends only on data in the subgroup $Z_{2}=Z_{G}\left(\operatorname{ker}\left(f_{1}-f_{2}\right)\right)$ and again can be identifitied with a standard intertwining operator for $Z_{2}$. Here the relevant fact about the identification is that if the operator for $Z_{2}$ is diagonal with diagonal entries having at most a simple zero at $z=0$, then the same thing is ture of the operator in $G$.

Clearly, $\operatorname{ker}\left(f_{1}-f_{2}\right)$ in $\mathbf{a}_{*}$ is the subspace generated by $\left\{f_{1}+f_{2}, f\right\}$ over R. Thus $Z_{2} \cong \mathrm{SL}(2, \mathbf{R}) \otimes \mathrm{SO}(3)$ and we can write the Dynkin diagram of Lie algebra $\mathbf{z}_{2}$ of $Z_{2}$ as

Here - denotes $f_{1}-f_{2}$ corresponding to the subgroup $Z_{2}^{\prime}, Z_{2}^{\prime} \cong \mathrm{SL}(2, \mathbf{R})$
and $\circ$ denotes $e_{2}$ corresponding to the subgroup $Z_{2}^{\prime \prime}, Z_{2}^{\prime \prime} \cong \mathrm{SO}(3)$. Clearly, $Z_{2}=Z_{2}^{\prime} \otimes Z_{2}^{\prime \prime}$. Let $\mathbf{a}_{*, 2}$ be the subspace generated by $f_{1}-f_{2}$ over $\mathbf{R}$. Clearly $\mathbf{a}_{*, 2} \subset \mathbf{z}_{2}$ and $\mathbf{a}_{*, 2}$ is the Lie algebra of $A^{\prime}$. Let $m_{*, 2}$ denote the Lie algebra of subgroup $Z_{2}^{\prime \prime}$. Then $\Lambda_{m_{*, 2}}=\Lambda\left(e_{2}\right)$ and $m_{*, 2}=m_{*}$. Let $M_{*, 2}=M_{*} \cap Z_{2}$ and $N_{*, 2}=N_{*} \cap Z_{2}$. Then $P_{*, 2}=M_{*, 2} A^{\prime} N_{*, 2}$ is a standard parabolic subgroup of $Z_{2}$ for $A^{\prime}$. It is easy to see that $M_{*, 2}=Z_{2}^{\prime \prime}=M_{*} \cong \mathrm{SO}(3)$. By a similar argument as in Section 13 of [BK1], (cf. p. 113 in [BK1]), it is easy to see that only the subgroup $Z_{2}^{\prime}$ of $Z_{2}$ is important to the operator $A_{P_{*}, 2}$. As in Section 13 of [BK1], thus we can regard the operator $A_{P_{*}, 2}$ (on a ( $K \cap Z_{2}$ )type) as the tensor product of an identity operator by the restriction of this operator to a $K$-type of $Z_{2}^{\prime},\left(Z_{2}^{\prime} \cong \mathrm{SL}(2, \mathbf{R})\right)$. The $K$-types for $\mathrm{SL}(2, \mathbf{R})$ have multiplicity one, and, thus any standard intertwining operator for $\operatorname{SL}(2, \mathbf{R})$ is scale for a given $K$-type and given $\nu$. Let $T_{2}(z)$ be the restriction of $A_{P_{*}, 2}$ on $E$. Using 13.3 and 13.4 of [BK1], by the analysis mentioned above, it is easy to see that at $z=0, T(z)$ has only simple zero. It follows that $E_{2}=0$. By Lemma 3.3 we have $\operatorname{ker} T(0) \neq 0$, hence, $E_{1} \neq 0$.

By s aimilar argument used above, we can prove the lemma for case (A.1). (For case (A.1), let $\alpha=e_{2}-e_{3}, \alpha^{\prime}=e_{2}+e_{3}$ and $\alpha^{\prime \prime}=e_{4}$.) The proof is complete.

The operator $T(z)$ is Hermitian for real $z$, and we can use it as in Section 3 of $[\mathbf{V 1}]$ to define a nondegenerate Hermitian form on $E_{k} / E_{k+1}$, say with signature $\left(p_{k}, q_{k}\right)$. Lemma 4.1 says that $p_{k}=q_{k}=0$ for $k \geq 2$ and the positivity of $T(z)$ for $z>0$ says that $q_{0}=q_{1}=0$. According to Theorem 7.10 and Corollary 7.11 of $[\mathrm{V} 1]$, the signature on $E$ of $T(z)$ for small negative $z$ is $\left(p_{0}, p_{1}\right)$. Here $p_{0}=\operatorname{dim}\left(E_{0} / E_{1}\right)$ and $p_{1}=\operatorname{dim}\left(E_{1} / E_{2}\right)=\operatorname{dim}\left(E_{1}\right)$. Thus operator (4.1) is indefinite on any $E$ large enough to contain the minimal $K$-type and a $K$-type that meets the (nontrivial) kernel of (4.1) at $\nu=\frac{1}{2} c_{0}^{\prime} \alpha$. It follows from 8.3 of [BK1] and Lemma 3.5 that for gap (A.1) $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducble when $c_{0}^{\prime}=1<c<c_{0}=2$, and for the gap (A.2), $U\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is irreducible when $c_{0}^{\prime}=2<c \leq c_{0}=3$. Therefore, by Lemma 4.1, we obtain the following lemma immediately.

## Lemma 4.2.

(1) For the case of gap (A.1), $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary when $c_{0}^{\prime}=1<c<c_{0}=2$.
(2) For the case of gap (A.2), $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is not infinitesimally unitary when $c_{0}^{\prime}=2<c \leq c_{0}=3$.

## Lemma 4.3.

(1) For the case of gap (A.1), $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary when $c=c_{0}=2$.
(2) For the case of gap (B.1), $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary when $c=c_{0}=5$.

Proof. Let $\rho_{l}=\rho_{L}$ denote the half sum of roots in the set

$$
\left\{r \in \Lambda_{l}=\Lambda_{L} \mid\langle r, \alpha\rangle>0\right\}
$$

First we shall show (1). From data of gap (A.1) given by (3.1) we have

$$
\lambda_{0}=\lambda_{0, b}=(-1,0,0,0), \wedge=\frac{1}{2}(-3,1,1,1), \mu_{\alpha}=1
$$

Let $S=\left\{\alpha_{1}=\alpha, \alpha_{2}\right\}$ and $\Lambda_{L}=\Lambda(S)$. Clearly, $\alpha=\alpha_{1} \in \Lambda_{L}$ and

$$
\Lambda_{L}=\left\{ \pm\left(e_{i}-e_{j}\right) \mid 2 \leq i<j \leq 4\right\}
$$

Let $\Lambda^{\wedge}=\left\{-\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}$. Then

$$
\Lambda_{L}(u)=\left\{-e_{1} \pm e_{i}, e_{i}+e_{j},-e_{1}, e_{i}, i=2,3,4, j=3,4, i<j\right\} \cup \Lambda^{\wedge}
$$

Let $\Lambda^{\vee}=\left\{-\frac{1}{2}\left(e_{1}+z e_{2} \pm e_{3}-z e_{4}\right), z= \pm 1\right\}$. Then

$$
\Lambda_{L}\left(u \cap p^{C}\right)=\left\{e_{2}, e_{4}, e_{1} \pm e_{2},-e_{1} \pm e_{4}, e_{2}+e_{3}, e_{3}+e_{4}\right\} \cup \Lambda^{\vee}
$$

Thus we have $2 \delta\left(u \cap p^{C}\right)=(-6,2,2,2)$. It is clear that

$$
2 \rho_{L}=\left(e_{2}-e_{3}\right)+\left(e_{2}-e_{4}\right)-\left(e_{3}-e_{4}\right)=2\left(e_{2}-e_{3}\right)=2 \alpha
$$

Let $\lambda$ be the parameter defined by (12.4) of [BK1]. Then we have

$$
\lambda=\wedge-2 \delta\left(u \cap p^{C}\right)=\frac{1}{2}(-3,1,1,1)-(-6,2,2,2)=\frac{1}{2}(9,-3,-3,-3)
$$

It is easily verified that $\langle\lambda, \beta\rangle=0$ for all $\beta \in \Lambda_{L}$. Clearly, $\Lambda_{L}$ has real rank one, so, by Proposition 12.4 of [BK1], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary when $c=c_{0}=2$.

Now, we shall show (2). Let $\Lambda_{L}=\Lambda\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Clearly, $\alpha=\alpha_{3} \in \Lambda_{L}$. If (2.6.q) holds, then by the results of case (6.B), we have

$$
\lambda_{0}=\frac{1}{2}(-3,1,1,0), \wedge=(2,-2,0,0)
$$

By computing, we obtain

$$
2 \rho_{L}=5 \alpha, \lambda=\wedge-2 \delta\left(u \cap p^{C}\right)=(-2,2,0,0)-(-5,5,0,0)=(3,-3,0,0)
$$

It is easily verified that $\langle\lambda, \beta\rangle=0$ for all $\beta \in \Lambda_{L}$. Clearly $\Lambda_{L}$ has real rank one, so, by Proposition 12.4 of [BK1], $J\left(M A N, \sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary when $c=c_{0}=5$.

The proof is complete.
In Section 2 for the cases (4.A.a),(1),(ii) and (3.A),(1),(ii) we give certain statements for the gaps (A.1) and (A.2) respectively. By these statements, we can summarize Lemma 4.2 and 4.3 in the following proposition.

## Proposition 4.1.

(1) For the case of gap (A.1), J(MAN, $\left.\sigma, \frac{1}{2} c \alpha\right)$ is infinitesimally unitary exactly when $0<c<c_{0}^{\prime}=1$ or $c=c_{0}=2$. ( $J($ MAN $, \sigma, \alpha)$ is an isolated unitary representation.)
(2) For the case of gap (A.2), J (MAN, $\sigma, \frac{1}{2} c \alpha$ ) is infinitesimally unitary exactly when $0<c<c_{0}^{\prime}=c_{0}=2$.
(From left to right, the circles in the Dynkin diagram of $F_{4}$ correspond the simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\alpha_{4}$.)
(1) $\theta_{C}=(1,-1,0,0): \bullet-\circ \Rightarrow 0-0 . \quad\left(\mathbf{1}^{\prime}\right) \theta_{C}=(1,1,0,0): \bullet-\circ \Rightarrow 0-\bullet$.
(2) $\theta_{C}=(0,1,-1,0): \circ-\bullet \Rightarrow 0-\circ$. ( $\left.\mathbf{2}^{\prime}\right) \theta_{C}=(0,1,1,0): \circ-\bullet \Rightarrow 0-\bullet$.
(3) $\theta_{C}=(1,0,0,-1): \circ-\bullet \Rightarrow \bullet-\circ$. (3') $\theta_{C}=(1,0,0,1): \circ-\bullet \Rightarrow \bullet-\bullet$.
(4) $\theta_{C}=(0,1,0,-1): \bullet \bullet \bullet \bullet-$. (4') $\theta_{C}=(0,1,0,1): \bullet-\bullet \Rightarrow \bullet-\bullet$.
(5) $\theta_{C}=(1,0,-1,0): \bullet-\bullet \Rightarrow \circ-\circ$. ( $\left.\mathbf{5}^{\prime}\right) \theta_{C}=(1,0,1,0): \bullet-\bullet \Rightarrow \circ-\bullet$.
(6) $\theta_{C}=(0,0,1,-1): \bullet-\circ \Rightarrow \bullet-$ 。. ( $\left.\mathbf{6}^{\prime}\right) \theta_{C}=(0,0,1,1): \bullet-\circ \Rightarrow \bullet-\bullet$.

## Table 1.1

(1) $\theta_{C}=(0,0,0,0): \circ-\circ \Rightarrow \circ-\circ$. (2) $\theta_{C}=(-1,-1,-1,1): \circ-\circ \Rightarrow \bullet-\bullet$.
(3) $\theta_{C}=(1,1,1,1): \circ-\circ \Rightarrow \bullet-$. (4) $\theta_{C}=(2,0,0,0): \circ-\circ \Rightarrow \circ-\bullet$.

## Table 1.2

## References

[BK1] M.W. Baldoni-Silva and A.W. Knapp, Unitary representations induced from maximal parabolic subgroups, J. Funct. Anal, 69 (1986), 21-120.
[BK2] , Vogan's algorithm for computing composition series, Lecture Notes in Math., 1243.
[BK3] , Interwining operator and unitary representations, I, J. Funct. Anal, 82 (1989), 151-236.
[BV] D. Barbasch and D.A. Vogan, Reducibility of standard representation, Bull. Amer. Math. Soc, 11 (1984), 383-385.
[C] C.-H. Cheng, On the Cartan subalgebra of real semisimple Lie algebra, I, II, Sci. Record, 3 (1959), 214-219, 220-224.
[G] F. Gantmacher, On the classification of real simple Lie group, Mat. Sb., 5 (1939), 217-249.
[K] A.W. Knapp, Minimal $K$-type formula, Non Commutative Harmonic Analysis and Lie Groups, Lecture Notes in Math., Springer-Verlag, Berlin, 1020 (1983), 107-118.
[KS] A.W. Knapp and E.M. Stein, Intertwining operators for semi-simple groups, Ann. of Math., 93 (1971), 489-578.
[kZ1] A.W. Knapp and G. Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-Commutative Harmonic Analysis, Lecture Notes in Math., Springer-Verlag, Berlin, 587 (1977), 138-159.
[KZ2] , Classification of irreducible tempered representations of semisimple groups, Ann. of Math., 116 (1982), 389-501; 119 (1984), 639.
[SV] B. Speh and D.A. Vogan, Reducibility of generalized principal series representation, Acta. Math., 145 (1980), 227-299.
[Su] M. Sugiura, Conjugate classes of Cartan subalgebra in real semi-simple Lie algebra, J. Math. Soc., Japan, 11 (1959), 374-434.
[V1] D.A. Vogan, Unitarizability of certain series of representations, Ann. of Math., 120 (1984), 141-187.
[V2] , Irreducible character of semisimple Lie groups I, II, Duke Math. J., 46 (1979), 61-108, 805-859.
[V3] , The unitary dual of $G_{2}^{*}$, Invent. Math., 116 (1994), 677-791.
[VZ] D.A. Vogan and G.J. Zuckerman, Unitary representation with non-zero cohomology, Compositio Math., 53 (1984), 51-90.
[Y] Yan Zhi-Da, Sur la classification des algebres de Lie reels et semi-simples et leur figures, Sci Record, 3 (1959), 213-217.

Received October 18, 1994 and revised January 10, 1996
Xiangtan University
Xiangtan, Hunan, 411105 P.R. of China

