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PROOF OF LONGUERRE'S THEOREM AND ITS
EXTENSIONS BY THE METHOD OF POLAR

COORDINATES

Yu ZHIHONG

There are several methods to prove the well-known Longu-
erre's theorem and its extensions in plane geometry. We now
prove them by the method of polar coordinates. Our proof
is characterized by its directness, simplicity, regularity, origi-
nality, and no need for any auxiliary lines.

Longuerre's Theorem. Let AιA2A3A4 be a quadrilateral inscribed in a
circle, on which p is an arbitrary point. Let Si denote the Simson line of point
p with respect to the triangle AjAkAι (i,j, fc,ί distinct) and let Dι denote the
projection of p on Si.

The four points Z?i, Z?2, D3, D4 are collinear.

Proof. We establish a polar coordinates system (Fig. 1) with p being the
pole and the extension line of po being the polar axis. Let d be the di-
ameter of the circle. Hence the equation of the circle is p — dcosθ. Let
(dcos0;,0ί)((i = 1,2,3,4), 0; e [0,2π]) be the coordinates of A1,A2,A3,A4.
Hence the two-point form equation of AχA2 is

sin(0 2-0i) _ sin(fl2 - 0) sin(fl-fli)

p dcosθi d cos 02 '

.-. ρ[sin(02 - 0) cos0 2 + sin(0 - 0X) cos Θx]

= d sin(02 — 0i) cos θλ cos 02.

Λ Jp[sin(202 - 0) + sin(0 - 2ΘX)]

— cίsin(02 — 0i) cos 0i cos 02,

.*. psin(02 — θι) cos(0 — 0i — 02) = dsin(02 — 0X) cos0i cos02,

Y s i n ( 0 2 - 0 ! ) ^ O ,

Λ pcos(0 — 0i — 02) = dcos0i cos02.

This is exactly the normal form equation of AλA2. Hence we have the

coordinates of the foot Bλ at which pBx is normal to AXA2 : Bx(d cos 0X cos 02,

0i + 02). By means of cyclic permutation of indices we get J32(dcos θ2 cos 03,
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02 + 03), B3(dcos θ3 cos0 l 5 03 + 0i). Obviously the coordinates of the three
feet Bi satisfy the normal form equation

p cos(0 — 0χ — 02 — θ3) = dcos 0i cos 02 cos 03.

Hence we get the normal form equation of the Simson line S\ of point p with
respect to AAXA2A3 :

Si: pcos(θ — θι — θ2 — θs) — dcosθi cos# 2 cos#3.

Figure 1.

Similarly, by the same means we can obtain the normal form equations of
the other three Simson lines with respect to AAjAkAι. They are

S2: pcos(θ — θχ—θ2 — θ±) = dcos θι cos θ2 cos 0 4,

S3: pcos(θ — θ2 — θ3 — θ4) = dcos θ2 cos θ3 cos 0 4,

^4: pcos(θ — 0 3 — 04 — 0i) = d c o s 0 3 c o s 0 4 c o s 0 χ .

Hence the coordinates of the four projections D{ are:

Dx(dCQS 0! COS 02 COS 0 3, 0i + 0 2 + 0 3 ),
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D2{dC0Sθι COS #2 COS #4, 0 1 + 0 2 + 0 4 ) ?

D3 (d COS 0 2 COS # 3 COS 0 4 , 0 2 + 0 3 + 0 4 ) ,

D4(dcos 03 cos 04 cos θu 03 + 04 + θx).

It is obvious that the above-mentioned coordinates satisfy the normal form
equation of the line

S: pcos(0 — 0χ — 02 — 03 — 04) = d cos 0χ cos 02 cos 03 cos 04.

Thus the four points Ό{ are collinear. D

The above equation of S represents a straight line containing the points
Di and this straight line is named the Simson line of a point p with respect
to four concyclic points.

Extension I. Let Aι,A2,A3,A4,Ab be five points on a circle and let p be
an arbitrary point on this circle. Let Si denote the Simson line of p with
respect to the 4-tuple AjAkAιAm (i, j,&,/,ra distinct) and let Di denote the
projection of p on the line Si (i = 1,2,3,4,5). Then the five points D{ are
collinear.

Proof. We establish a polar coordinates system (Fig. 2) with p being the
pole and the extension line of po being the polar axis. Let d be the diameter
of the circle. The equation of the circle is p = dcosθ. Let (dcos0j, 0;)(0; £
[0,2τr]) be the coordinates of A{. According to the above Longuerre's theorem
and its proof we can get the normal form equations of Si. They are:

Si: pcos(θ — 0i — 02 — 03 — 04) = dcos θλ cos02 cos 03 cos 04,

S2 : PCOS(Θ — 01 — 0 2 — 03 — 0δ) = dcOS0i COS 0 2 COS03 COS 0 5 ,

S3: pcos(0 — 02 — 03 — 04 — 0δ) = dcos 02 cos 03 cos 04 cos 05,

S 4 : pCOs(θ — 0 3 — 0 4 — 0 5 — 0 i ) = G? COS 0 3 COS 0 4 COS 0 5 COS 0 i ,

£5 : pcos(θ — 04 — 05 — 0i — 02) = dcos04 cos05 cos0i cos02.

Hence the coordinates of the five projections Di are:

Όι (dC0S θλ COS 0 2 COS 0 3 COS 0 4 , 0χ + 0 2 + 03 + 04),

D2 {d COS 0! COS 0 2 COS 0 3 COS 0 5 , 0χ + 0 2 + 0 3 + 0 5 ) ,

D3 (d COS 0 2 COS 0 3 COS 0 4 COS 0 5 , 0 2 + 0 3 + 0 4 + 0 5 ) ,

D 4 (<ίcθS03 COS 0 4 COS 0 5 COS 0i , 0 3 + 0 4 + 0 5 + 0χ),

JD 5(dcos0 4cos0 5cos0 1cos0 2, 04 + 05 + 0i + 0 2 )
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Figure 2.

Clearly the coordinates of Di satisfy the normal form equation of the line

/ 5 \ 5

S:

Thus the five points Di are collinear. D

Extension I I . Let Aι^A2^... , An be n points on a circle and let p be an
arbitrary point on this circle. Let Si denote the Simson line of p with respect
to the (n — l)-tuple (n — l)-gonal polygon AjAk Ax (i, j , &,... , x distinct)
and let Di denote the projection of p on the line Si (i = 1,2,... , n).

Then the n points Di are collinear.

Proof. We again establish a polar coordinates system with p being the pole
and the extension line of po being the polar axis. One can immediately veϊify
that

pcos tf-
\ n

fli =dY[cosθi
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represents a straight line containing the n points Di. Hence the n points D{

are collinear. D
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