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PROOF OF LONGUERRE’S THEOREM AND ITS
EXTENSIONS BY THE METHOD OF POLAR
COORDINATES

YU ZHIHONG

There are several methods to prove the well-known Longu-
erre’s theorem and its extensions in plane geometry. We now
prove them by the method of polar coordinates. Our proof
is characterized by its directness, simplicity, regularity, origi-
nality, and no need for any auxiliary lines.

Longuerre’s Theorem. Let A;A;A3A, be a quadrilateral inscribed in a
circle, on which p is an arbitrary point. Let S; denote the Simson line of point
p with respect to the triangle A;ArA; (i,5,k,1 distinct) and let D; denote the
projection of p on S;.

The four points Dy, Dy, D3, D4 are collinear.

Proof. We establish a polar coordinates system (Fig. 1) with p being the
pole and the extension line of po being the polar axis. Let d be the di-
ameter of the circle. Hence the equation of the circle is p = dcosf. Let
(dcosb;,6,)((i = 1,2,3,4),6; € [0,27]) be the coordinates of A;, Az, Az, Ay.
Hence the two-point form equation of A; A, is

sin(@, — 6,) sin(6, —0)  sin(6 — 6,)
P ~ “dcos 0, dcos 6,
.. p[sin(62 — 6) cos 62 + sin( — 6,) cos 6, ]
= dsin(f, — 6,) cos 0; cos 0.

%p[sin(zaz — ) + sin(9 — 26,)]
= dsin(f, — 6,) cos 6, cos 65,
.. psin(6y — 6;) cos(6 — 6, — 6;) = dsin(f; — 6,) cos 6, cos 0,
Sin(02 - 91) # 0,
.. pcos(@ — 6, — 6;) = dcos B, cosb,.
This is exactly the normal form equation of A;A,. Hence we have the

coordinates of the foot B; at which pB, is normal to A; A, : By(d cos 6, cos 65,
0, + 0). By means of cyclic permutation of indices we get Bs(d cos 0, cos 03,
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0> + 05), Bz(dcos 83 cosfy, 03 + 6;). Obviously the coordinates of the three
feet B; satisfy the normal form equation

pcos(0 — 6; — 0, — 63) = dcos B, cos b, cos ;.

Hence we get the normal form equation of the Simson line S; of point p with
respect to AA; Ay Az :

S1: pcos(f — 60, — 6, — 03) = dcos 6, cos b, cos 0.

Figure 1.

Similarly, by the same means we can obtain the normal form equations of
the other three Simson lines with respect to AA;AA;. They are

Sy: pcos(@ — 6, — 0, — 64) = dcos b, cos b, cos by,
S3: pcos(f — 6, — 63 — 6,) = d cos 6 cos 05 cos by,
Sy: pcos(@ — 03 — 0y — 6,) = dcos b5 cos b cos 6.

Hence the coordinates of the four projections D; are:

D, (dcos 8, cos 0, cos b3, 0, + 6, + 03),
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D, (d cos 8, cos 0, cos 0y, 6, + 65 + 6,),
Ds(d cos 0y cos 05 cos 04, 65 + 65 + 6,),
Dy (dcos 03 cosBycos by, 03+ 6, + 6,).

It is obvious that the above-mentioned coordinates satisfy the normal form
equation of the line

S: pcos(0 — 6, — 0, — 03 — 64) = dcosB; cos b, cos B cos 0.
Thus the four points D; are collinear. (]

The above equation of S represents a straight line containing the points
D; and this straight line is named the Simson line of a point p with respect
to four concyclic points.

Extension I. Let Ay, Ay, A3, Ay, As be five points on a circle and let p be
an arbitrary point on this circle. Let S; denote the Simson line of p with
respect to the 4-tuple A; A AjA,, (3,7, k,1,m distinct) and let D; denote the
projection of p on the line S; (1 = 1,2,3,4,5). Then the five points D; are
collinear.

Proof. We establish a polar coordinates system (Fig. 2) with p being the
pole and the extension line of po being the polar axis. Let d be the diameter
of the circle. The equation of the circle is p = dcos 6. Let (dcos¥b;, 6,)(6; €
[0, 27]) be the coordinates of A;. According to the above Longuerre’s theorem
and its proof we can get the normal form equations of S;. They are:

Sy:pcos(d — 6, — 6, —
SQZ pCOS(e 01 — 92 — 03 - 95

04) = dcos 0; cos 6, cos 03 cos by,
)
S3: pcos(6 — 6, —0; — 6, — 05)
) =
)

dcos 0; cos 6, cos 03 cos G5,

Il

d cos 0, cos 85 cos 04 cos 05,
S4Z pCOS(9 93 -—04 '—05 ——01
S5: pCOS(0-04 95 —01 ‘—02

d cos 03 cos 04 cos 05 cos 0,

Il

d cos 04 cos 05 cos 6, cos 0,.
Hence the coordinates of the five projections D; are:

D (d cos 0, cos 0, cos B3 cos 04, 0; + 6 + 03 + 6),
D,(d cos 0, cos 6, cos 0s cos 05, 0; + 0, + 05 + 65),
Ds(d cos 6, cos 63 cos 04 cos 05, 0 + 05 + 64 + 65),
D4(d cos 65 cos 04 cos 05 cos 0y, 05 + 04 + 65 + 6,),
Ds(d cos 04 cos 05 cos 0, cos 0z, 04+ 05 + 0, + 65).
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Figure 2.

Clearly the coordinates of D; satisfy the normal form equation of the line

5 5
S': pcos (0— ZO,-) = dHcosHi.
i=1

i=1

Thus the five points D; are collinear. O

Extension II. Let A;,A,,...,A, be n points on a circle and let p be an
arbitrary point on this circle. Let S; denote the Simson line of p with respect
to the (n — 1)-tuple (n — 1)-gonal polygon A;Ay--- A; (4,5, k,... ,z distinct)
and let D; denote the projection of p on the line S; (1 =1,2,... ,n).

Then the n points D; are collinear.

Proof. We again establish a polar coordinates system with p being the pole
and the extension line of po being the polar axis. One can immediately verify

that
p COS (0 - 20,-) = dHcosOi
i=1

i=1
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represents a straight line containing the n points D;. Hence the n points D;
are collinear. O
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