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IMBEDDING AND MULTIPLIER THEOREMS FOR
DISCRETE LITTLEWOOD-PALEY SPACES

IGOR E. VERBITSKY

We prove imbedding and multiplier theorems for discrete
Littlewood—Paley spaces introduced by M. Prazier and B.
Jawerth in their theory of wavelet-type decompositions of
Ίriebel—Lizorkin spaces. The corresponding inequalities for
discrete spaces defined in terms of characteristic functions of
dyadic cubes, with respect to an arbitrary positive locally
finite measure on the Euclidean space, are useful in the the-
ory of tent spaces, weighted inequalities, duality theorems,
interpolation by analytic and harmonic functions, etc. Our
main tools are vector-valued maximal inequalities, a dyadic
version of the Carleson measure theorem, and Pisier's factor-
ization lemma. We also consider more general inequalities,
with an arbitrary family of measurable functions in place of
characteristic functions of dyadic cubes, which occur in the
factorization theory of operators.

1. Introduction.

Let Q = {Q} be the family of all dyadic cubes in R n . Let ω be a non-
negative locally finite Borel measure on R n such that fdQdω = 0 for all
Q G Q. We set Qo = {Q e Q : \Q\ω φ 0}, where \Q\ω = fQdω; \Q\ will
stand for the Lebesgue measure of Q. For any Q E QO> w e denote by XQ its
normalized characteristic function XQ = \Q\Z1^2XQ

For —oo < c* < oo, 0 < p < oo, and 0 < q < oo, we define the discrete
Littlewood-Paley space f = ΐpq(ω) ([7], [8]) as the space of sequences of
reals, s = {SQ}Q<EQO> such that

(1.1) Σ {\Qr/n\sQ\χQ)Ί < oo.

LP(dω)

Note that we use the normalized characteristic functions XQ in the defi

nition of f spaces in order to have the duality relation [f£q{ω)]* = f~,aq (ω)

with the usual pairing (s,t) = Σ 5 Q^Q (s ^ fp^M? ^ ^ ^ a q )? a ^ l e a s t for
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1 < p < oo and 1 < q < oo. (Here 1/p + 1/p' = 1 and 1/g + l/ςf; = 1.) We
will also follow the convention that q' = oo for 0 < q < 1. Then, as we will
see, the duality relation holds for all 0 < q < oo.

Our goal is to characterize both forward and reverse imbeddings of f
spaces into classical Γ spaces with weights. Let w = {wQ}QeQi WQ > 0? be
a fixed sequence of scalar weights. Then Γ(w) (0 < r < oo) is the sequence
space with quasi-norm

l/r

SQ\V WQ

We set lr — Γ(w) in the unweighted case wQ = 1. Let φQ =

|Q|-α/n ^ ~ 1 / r χ g . (Note that </>Q is a constant multiple of χQ.) Let us assume

that wQ = 0 if \Q\ω = 0. Then clearly the imbedding fp

αg(α;) C /r(tϋ) is valid

if and only if the inequality

(1.2)

l /r

LP(dω)

>c [Y:\SQY

holds, where the sums on both sides of (1.2) are taken over all Q € Qi =

{Qeδ:w^ o}.
In the same manner, the reverse imbedding Γ(w) C ΐpQ{ω) is equivalent

to the inequality

(1.3)

(Here we assume that \Q\ω — 0 if ^ Q = 0.)
Similar estimates, sometimes with some other functions in place of con-

stant multiples of %Q, appear in the theory of wavelet and atomic decom-
positions, tent spaces, weighted norm inequalities, interpolation by analytic
and harmonic functions, Banach space geometry problems, operator theory,
etc. (See [1], [2], [4], [7]-[ll], [14]-[19], [21].) Several special cases of (1.2)
and (1.3), mostly for dω — dx, are known. For some values of the indices
p, g, r these inequalities are equivalent to duality theorems for f spaces, or
dyadic versions of the Carleson measure theorem (see [2], [7], [10], -[1.7],
[19], [21], and the discussion below). In certain difficult cases the proofs use
"local maximal functions" [7], or "stopping time" arguments [14], [15].

Our approach is to consider (1.2) and (1.3) simultaneously, making use of
certain duality relationship between them, for allp,q,r > 0 and ω. The main
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tools are a generalization of the Fefferman-Stein vector-valued maximal the-
orem [5], the dyadic Carleson measure theorem [19], and Pisier's lemma [18]
proved in the context of the factorization theory of operators (see Theorem
A below). Even in the known cases some of our proofs seem to be new and
easier than the original ones. (Note that there is a gap in the proof given
in [7] for the duality theorem for ϊ£q in the case 1 < p < oo and 0 < q < 1.
This theorem, which is used in [7] to obtain the corresponding duality result
for the distribution spaces i^ 7 , is equivalent to a characterization of (1.2)
in the case r — 1 and dω = dx. See Sec. 3 where we give a proof in a more
general setting using Pisier's lemma and the results of [21].)

It is also of interest to look at the relations between f spaces and weighted
V spaces from a more general point of view. Let / be an index set, and let
{Φi}iei be a fixed family of non-negative measurable functions on a measure
space (X, dω). For the three indices, 0 < p < o o , 0 < g < o o , and 0 < r < oo,
we consider the following inequalities,

(1.4)

and

(1.5)

Σ
Kiel

19/A?

LP(dω)

LP(dω)

for all s = {si}iei (with finitely many nonzero reals s^).
It follows from (1.4) that

and similarly (1.5) implies

iei

in \LP(dω)

The converse is true for certain values of p, q and r (see Lemma 2 below),
but generally the problem of characterizing (1.4) or (1.5) is known to be very
difficult.

The following theorems of B. Maurey and G. Pisier treat the special cases
q = r of (1.2), and q = r or q — oo of (1.3). We denote by D(ω) the set of
all "densities" F G Lι(dω) such that F > 0 and / Fdω < 1.
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Theorem A. Let 0 < p < r < oo and s — {si}ieI.
(i) The inequality

(1.6)

1/r

LP(dω)

holds for all finitely supported s = {si} if and only if there exists F G

D(ω) such that

(1.7)

where dω0 = Fdω.

(ii) ΓΛe inequality

(1.8)

sup <oo,

SUp <C\\s\\ιr

LP(dω)

holds if and only if there exists F G D(ω), such that

(1.9) sup <OO,

where Lroo(dω0) is a weak U space with respect to the measure dω0 =
Fdω.

Theorem A plays a central role in the Nikishin-Stein-Maurey-Pisier theory
of factorization of operators. It also has interesting applications to weighted
norm inequalities (see [9, 21]). Statement (i) of Theorem A is proved in
[16]; statement (ii) is obtained in [18], where also a different proof of (i) is
given. It can be shown that, if p < r, then (1.4) actually does not depend
on q for r < q < oo. Hence the "weak type" condition (1.9) characterizes
(1.4) in this case. The following theorem is also proved in [16].

Theorem B. Let 0 < r < p < oo. The inequality

(1.10)
vie/

>C\\s\\,

LP(dω)

holds if and only there exists F G D(ω), such that

(1.11)
\L*(dωo)

> 0 ,
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where dω0 = F dω.

It seems to be no general duality relations known for the inequalities
(1.4) and (1.5). We will show below (Sec. 2) that actually Theorem B is a
consequence of the usual duality theorems for the mixed norm spaces Lp(lg),
and the Hahn-Banach theorem. We do not know whether there is a similar
proof of Theorem A, or a dual version of part (ii) of Theorem A. (It follows
from some recent results of N.J. Kalton and S.J. Montgomery-Smith [12]
that the sufficient condition infie/ HF" 1 ^ φi\\L^ι(dω0) > 0 is not necessary for
(1.5) in the case 1 < q < r.)

We observe that the characterizations given in Theorems A and B are
implicit. In the following theorem we give some sufficient conditions in order
that (1.4) or (1.5) hold for an arbitrary family of functions {φi}, and a wide
range oίp,q and r.

Let 0 < p < o o , 0 < r < o o and 0 < q < oo. Without loss of generality
we may assume φι E Lp(dω), φι > 0. We set

(1.12)

[suP i {ΦΓP(x)\\Φi\\Udω))] if 0 < r < q < oo,

in the case p < r, and

(1.13)

Fo{x) =

suP i

N

, (φΓ(x)/\\Φ,\\P

LP{dω))

if 0 < q < r < oo,

, if 0 < r < q < oo,

in the case p > r.
Note that if r < q in (1.12), or q < r in (1.13), then F0(x) is a generalized

maximal function associated with the family {φj(x)}.

Theorem 1.
(i) Let 0 < p < r < oo; and let Fo be defined by (1.12). Then (1.4) holds

ifFoeLx(dω).

(ii) Let 0 <r <p < oo, and let Fo be defined by (1.13). Then (1.5) holds
ifFoeLι(dω).
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Theorem 1, along with some other vector-valued inequalities of this type,
is proved in Sec. 2. In Sec. 3 we show that for functions {φi} that are
constant multiples of characteristic functions of dyadic cubes the converse
to Theorem 1 is also true.

Theorem 2. Let {Qi} be a family of dyadic cubes in R n . Suppose φi(x) =
cίXQi(x)j where {ci} is a fixed sequence of non-negative numbers.

(i) Let 0 < p < r < oo. Then (1.4) holds if and only if Fo e Lι(dω),
where Fo is defined by (1.12).

(ii) Let 0 < r < p < oo. Then (1.5) holds if and only if Fo G L1(dω),
where Fo is defined by (1.13).

Some special cases of Theorem 2 (i) were obtained in [21]. Similar "upper
triangle" inequalities of type (1.4) in the case q < p < r and dω = dx are
due to E. Amar and A. Bonami [2]. See also [14] and [15] where some
inequalities of type (1.5) are given for dω = dx with different proofs.

Theorem 2 yields a characterization of both forward and reverse imbed-
dings of ΐpq(ω) spaces into V spaces with arbitrary weights. We observe
that Theorems 1 and 2, as well as Theorems A and B stated above, cover
the so-called "upper triangle" case, where p < r in (1.4), or p > r in (1.5).
In this case the "only i f statements are usually more difficult to prove than
the "if" counterparts.

In the "classical" case, where p > r in (1.4), or p < r in (1.5), the
corresponding results are equivalent via duality to dyadic versions of the
Carleson measure theorem. (See Theorems 3 and 4 below.)

In Sec. 4 we consider a more difficult problem of characterizing multipliers
for a pair of f spaces. We show that this is equivalent to certain two weight
inequalities for general dyadic maximal or integral operators. (See [19]-[22].)

We wish to thank Professors William Cohn, Michael Prazier and Nigel
Kalton for valuable discussions.

2. Some remarks on vector-valued inequalities.

In this section, we discuss some dual versions of the inequalities (1.4) and
(1.5), and give a proof of Theorem 1 and Theorem B.

Let J be any countable (or finite) subset of the index set I. For a positive
locally finite measure ω, we denote by Lp(lq, dω) (sometimes we omit dω in
this notation) the space of vector-valued functions g = {gj}jeJ such that

/ f Σ M
p/q

dω < oo,



IMBEDDING AND MULTIPLIER THEOREMS 535

with the usual convention

sup dω

in case q — oo. Suppose 0 < p < oo, 0 < r < oo, and 0 < q < oo. For any

fixed sequence of real-valued functions {φj}j£j and t > 0, we set

j (x) = φ) (x), p = p/t, q = q/t, f = r/ί.(2.1)

L e m m a 1 . Le£ 0 < p < o c , 0 < r < o o , a n d 0 < # < o o . Then for any
t (0 < t < oo) such that t < min(g,r), and t < p, inequality (1.4) ΛoWs i/
and only if the inequality

(2.2)

l/f'

/or a// ̂  = {#j}j£j, J C I, with C independent of g and J. (Here
1/s + l/s' = 1, 1 < 5 < oo.)

Proof. Note that (1.4) is "invariant" under the transformation (2.1). In other
words, it remains true (with a constant Cι in place of C) if one replaces φ and
p, g, r by, respectively, φ and p, g, f, for any t > 0. Since 0 < t < min(p, q, r),
we have j δ > l , g > l , f > l . By duality for spaces with mixed norms,

, ω)* = 1/(lξ\ ω). Hence (1.4) is equivalent to the inequality

J ΣsjΦj(x)9j(x) <C\\s\\ι*

Using duality again, we see that this is equivalent to (2.2). The proof of
Lemma 1 is complete. D

Remark 1. In the case 0 < q < min(p, r), there is another dual form of
(1.4). Letting t = q, so that q' = oo, and g — sup^ \g$\, we see that (2.2)
holds if and only if

l/f'

(2.3) Σ <C\\g\\Lf'{dω),

for all functions g G Lfi'(dω), where p1 — p/(p — q) and r' — r/(r — q).

The following statement shows that reverse estimates of the form (1.5)

can be derived from the forward ones.
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Corollary 1. Let 0 < p < oo, 0 < r < oo7 0 < q < oo, and 0 < t <

min(g,r),t <p W

(2.4) Σ

for any finitely supported s = {SJ}. Here p,q,r are defined by (2.1).

Proof. By Lemma 1, it follows that (2.4) is equivalent to the estimate

1/f

(2.5) <C\\g\\mι*),

for all g G L^(lξ, ω). Letting g — {sjψtj} lΐl (2.5), and taking into ac-
count that fψjgjdω — s$, we get (1.5). The proof of Corollary 1 is com-
plete. D

In the following lemma we list the cases where an explicit characterization
of (1.4) and (1.5) is possible.

L e m m a 2.
(a) If 0 < r < min(p, q), then (1.4) holds if and only if sup ί ||</>i

oo.

(b) If max (p, g) < r < oo; then (1.5) holds if and only if infj ||< î
0.

\7JJP)
(c) Ifq=p< r, then (1.4) holds if and only if Σi \\Φi\\7J(dJ)P) < °°

(d) Ifq=p> r, then (1.5) holds if and only if Σi llΦilll^'^ < oo.

(e) If r = 00, then (1.4) holds if and only if \\(Σi Φl)1/q\\Lr{dω) < oo.

For other values of p, ^,r, a complete characterization of (1.4) or (1.5)

seems to be nontrivial.

Proof of Lemma 2. (a) Suppose sup^ ||< î||χ,p(du;) < oo. If 0 < q < p, then by
the integral Minkowski's inequality

LP(dω)

1/q

^ σ 11*1
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The last inequality holds since q > r. In the case p < q < oo, we have

LP(dω)

since p < r. Thus (1.4) holds. The converse statement is obvious.
Statement (b) can be proved in a similar manner, or derived from (a).

Indeed, suppose inf̂  ||0i||χ/P(du;) > 0. Choose 0 < t < min(p, g,r) and set

p = p/t. Define ψt(x) = φv~t{x)l\\Φi\\v

Lv{dω)^ a s *n ^ e P r o °f °f Corollary 1.

Then supi||^i||Lp/(p-*)(dα;) = s u P i I I^IIL^U;) < °° β y P a r t (a) w e conclude

that (2.4) holds, which implies (1.5) by Corollary 1. The converse statement

is obvious, as well as the remaining cases (c), (d), and (e). The proof of

Lemma 2 is complete. D

Now we prove Theorem l(i). Suppose 0 < p < r < oo. Prom Lemma 1 it
follows that we may assume p > l , g > l , r > l . Suppose Fo G Lι{dω), where
Fo is given by (1.12). Let g = {g5} G Lp>(lq\ dω). By Holder's inequality
with exponents r and r', we have

Φj 9j
T <(J\φj\pdωy 1 J\φj\

(r-p)(iJ-1)\9i\
r'dω.

Hence

where

Ψj\X) — j \\LP(dω)

We estimate the right hand side of the preceding inequality. Let Fo be
defined by (1.12). If q > r, then F0(x) = snpjφ

p

j

{r~1)/{r~p)(x). By Holder's
inequality with exponents p'/rf and (pf/r')' = p(r — l)/(r — p) we get

dω

w , (//%*-)
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The last inequality holds since q' < r''.
Analogously, if q < r, then q' > r1. Applying Holder's inequality twice,

we obtain

l-r'/q'

Thus we have

U dω

By Lemma 1, this completes the proof of Theorem 1 (i).
Now we prove statement (ii) of Theorem 1. Suppose p > r, and Fo G

Lλ{dω), where Fo is defined by (1.13). Since (1.5) is "invariant" under the
transform (2.1), we can assume p, g, r > 1, as in the proof of (i). (Otherwise,
we choose 0 < t < min (p, #, r), and replace φι and p, g, r by, respectively, φι
and p,<7, f.)

We set ^j(rr) = </)j~1(^)/||^||Lp(dω) ^ ι s easily seen that

(Note that p' < r'.) Prom the preceding inequality it follows that the func-
tion F0(x) defined by (1.13) can be rewritten as

if o

, if 0 < r < q.

Since Fo € L^cίω), then by part (i) of Theorem 1 proved above we have
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for all s — {SJ}. By Corollary 1 (with t — 1), this implies (1.5). The proof
of Theorem 1 is complete. •

The proof of the following lemma is based on the Hahn-Banach Theorem.

Lemma 3. Suppose 0 < r < p < oo and 0 < r < q < oo. Let pi = p/{p — r)

and qx — q/(q — r). Then (1.5) holds if and only if there exists g = {gι} such

that \\g\\Ln(i*i) < 1,

(2.6) £ GJCU > 0.

Remark 2. If 0 < q — r < p < oo, then setting #(x) = sup^ \gi(x)\ and

we see from (2.6) that there exists F such that

(2.7) / F dω < 1, and inf \\F~1/p φ > 0.

This proves the "only if" part of Theorem B (see the Introduction; the "if"
part of Theorem B is obvious).

Proof of Lemma 3. Suppose 0 < r < p. As in the proof of Theorem 1,
we make use of the fact that (1.5) is "invariant" under the transform (2.1).
Letting t = r in (2.1), and replacingp, q and φ{ by, respectively, p — p/r, q —
g/r, and φι = φr^ we may rewrite (1.5) as

(2.8) Σ
1/9

>C

LP(dω)

Σ

Let C denote the subspace of L? (Z ,̂ ω) consisting of all finitely supported
vector functions of the form s — {siφi}^^ for all real {si}. The preceding
inequality means that the linear functional defined on C by G{si φi) = J2i Si
is bounded. Let B = [Lp(lξ, ω)]*. Since p > 1, we have B = LPl{lqi, ώ) if
q > r, and B — LPl(Z°°, α;) if q — r. By the Hahn-Banach theorem, there is
an extension G = {g%}iei °f G defined on B so that \\G\\B < 1/C, where C i s
the constant in (1.5), and G coincides with G on C. The latter means that

/ ^Sigi
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for all finitely supported s ί ? i.e., Jgίφidω = 1 for all i e I. Hence

(2.9) u

Setting g = CG, we see that \\g\\β < 1, and (2.6) holds.
Conversely, suppose there is a g — {gι} such that ||<7||LPI(/<JI) < 1? where

Pi — P/(r~p)i Qι — Q/(Q~r)^ a n ( l (2-6) holds. Then using (2.6) and applying
Holder's inequality twice we get

The proof of Lemma 3 is complete. Π

Remark 3. Lemma 3 remains true for r = p < q < oo (the case r = p > q
follows from Lemma 2). If r = p and g = oo, there is a deeper version of
Lemma 3 due to L. Dor [4]. We can set g — {XEΛ in (2.6), where {Ei}ieI

(Ei C X) is a family of disjoint sets. Thus, for all 0 < r < oo, the inequality

(2.10) / sup (|*Γ#)dw>CΣl*Γ
Jx iei i

holds if and only if there exists a family of disjoint sets {Ei} so that

(2.11) inf / φζ dω > C.

This result for the functions {ΦQ}QEQ has interesting connections with the
dyadic Carleson measure theorem discussed in the next section (see [17], and
also Corollary 2 below).

3. Imbedding theorems for f spaces.

Let Q = {Q} be the family of all dyadic cubes in R n . To any Q G Q we
associate a fixed non-negative number CQ. Let ΦQ(X) — CQXQ(X), for all
x E R n . Note that

Q xeQ

where the sum on the right-hand side is taken over all Q containing x.

The following theorem generalizes Theorem 2 (i) and gives a characteri-
zation of the imbeddings of weighted lr spaces into fpQ{ω) spaces. (See the
Introduction.)
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Theorem 3. Let 0 < p < o o , 0 < r < o o ; and 0 < q < oo. Let ω be a
positive locally finite measure on R n . The inequality

(3.1) <C\\s\\r

LP(dω)

holds for all scalar sequences s = {SQ} if and only if one of the following
conditions holds.
(a) 0 < r < min(p, q), and

(3.2) sup cQ \Q\)J* < oo.
Q

(b) 0 < q < r < p, and for all dyadic cubes P,

(3-3) £
QCP

(c) max (p, q) < r < oo; and

(3.4) / Σ {c q/{v-q)
p(r-q)/q(r-p)

dω < oo.

(d) 0 < p < r < q < oo, and

(3.5) /sup (cr

Q\Q\ω)
p/(r-p)

dω < oo.

Proof. Statement (a) follows from Lemma 2. In case (b), we use a dual

characterization given by (2.3). For the family {ΦQ} > where ΦQ = CQXQ, the

latter boils down to the inequality

(3-6)

) {r — q)/r

<C\\g\\LPnP-qHdωy

We observe that (3.6) is a dyadic form of the Carleson inequality (see [17],
[19]); and (3.3) is a discrete version of the Carleson-Duren condition (see
[10]). The necessity of (3.3) for (3.6) is obvious (use a test function g = χP)]
sufficiency is proved, for any measure ω, using a standard technique involving
weak type estimates and interpolation (see [9], [19]).
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Now we prove statement (c). It follows from Theorem 1 (i) that (3.4) =>
(3.1). Indeed, for the family ΦQ = CQXQ, the function Fo defined by (1.12)
is in L1(dω) if and only if (3.4) holds.

To prove (3.1) =Φ- (3.4), we will need an analogue of the Fefferman-Stein
vector-valued maximal inequality [5] for the dyadic maximal operator

(3.7) = sup \rl \f\dω,
\Ql JQ

where ω is an arbitrary locally finite measure on R n . (The supremum in
(3.7) is taken over all QG So containing x.)

Theorem C. Let 1 < p < oo and 1 < q < oo. Suppose ω is a locally finite
measure on R n . Then

(3.8) <c

Theorem C is possibly known, but we were not able to find a reference
and sketch a proof below. (As was pointed out by the referee, the original
proof given in [5] in the case dω = dx should be modified, at least in the
case p < q, if ω does not have a doubling property.) We note that in the
case p > q the proof of Theorem C given in [5] for dω = dx basically remains
valid for M% with arbitrary ω. The idea is to use duality together with
a weighted inequality for the scalar maximal function (Lemma D below).
Then we reduce the case p < q to p > q by means of a more sophisticated
duality argument, making use of Lemma D again. (In [5], for p < q and
dω = dx, (3.8) is derived from a weak type vector-valued estimate based on
the C alder on-Zygmund lemma.)

Proof. We will need the following weighted inequality.

Lemma D. Let 1 < r < oo. Let ω be a locally finite measure on R n . Then

(3.9) J {MdJ)T φdω<C I |/r (Λθ) dω,

where C does not depend on f and φ (φ > 0, φ E L\QC(dω)).

The proof of Lemma D is similar to that given in [5] in case dω — dx and
is outlined below for the sake of convenience.
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Proof. We prove the following weak type estimate. Let t > 0 and Et — {x :
M£f(x) > *}. Then

/ φdω<- (\f\Md

ωφdω.
Et t J

First we assume that all dyadic cubes have side length less than N. Then

Et = UQ, where Q are pairwise disjoint (maximal) dyadic cubes such that

IQL 1 IQ I/I dω > t- ( S e e [1 9] ) A s i n [5]J f o r a 1 1 Q i n t h i s collection we have

t ί φdω< (\Q\Zι ί \f\dω] ί φdω< ί \f\Md

ωφdω.

Thus

(
Q

φdω< [ \f\M*φdω.

Letting N -> oc, we obtain the weak type estimate. Then (3.9) follows by
a standard interpolation argument for all 1 < r < oo, since it is obviously
true for r = oo. The proof of Lemma D is complete. D

If p > g, then we complete the proof of Theorem C by applying Lemma

D with r = p/(p — g), as in [5]:

LP(dω)

= S U P

< Csup : \\φ\\L,nr-,Hdω) <

Since M* in bounded in Lp^p~q^(dω), we have

Then by Holder's inequality with exponents p/q and p/(p — q) we get

1/9
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Thus

Σ (MdMd f \<1 <c
LP{dω) LP(dω)

which proves Theorem C in the case p > q.
Now suppose p < q. We choose 1 < r < p. Then by the duality relation

we have

LP{dω)

Applying Lemma D again, we get

By Holder's inequality,

Thus

Since p/(p — r) > g/(g — r), it follows from the case considered above

Σ «/i

1/9

for p < q, which completes the proof of Theorem C. D
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Now we return to the proof of Theorem 3 (c). We may assume again
without loss of generality that p > 1, q > 1, and r > 1. By Lemma 1, it
follows that (3.1) is equivalent to the inequality

(3.10) [ΣCQ\[

.A ι'r'

for all g — {gQ} G Lp'(lq'). Since r > max(p, g), we have r' < mm(p',q').

Setting £Q = φ1^' (φQ > 0), and p1 = p'/r', ςf; - 9 ' / r ' (p > 1, g > 1), we

rewrite (3.10) in the equivalent form

(3.11) Σ (cQ \QU ( i J /
Q \ JQ

for all φ = {ψQ} e L*'(lξ\ ω).
By Holder's inequality, obviously (3.11) holds if

(3.12) Σ (CQ \Q\"Y' IGU1 / ΦQdω < C\\φ\\Lf/{ι,Ί,
Q Q

for all ψ = {ψQ} E Lp'(lξ', ω). Let us show that, conversely, (3.11)=>(3.12).

Let ψ = {φQ} E LP'(19', ω). Then, by Theorem C, MjV = {M«ψQ} E

I?(I?, ω), and

Applying (3.11) with M%φ in place of φ, we obtain

Σ (CQ \QIY' (\QV j Q «

(3.13) < C

For all dyadic cubes Q and ΦQ > 0 clearly

IQIZ1 j Q φ Q d ω <

Combining the preceding inequality and (3.13), we see that (3.12) holds.

Thus (3.11) is equivalent to (3.12). It remains to note that by duality (3.12)

can be rewritten in the form φ £ L^(lξ, ω), where φ = {CQ IQI^" 1 XQ}, which

coincides with (3.4). This completes the proof of statement (c) of Theorem

3.
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In case (d) Theorem 3 was proved in [21]. For the sake of completeness,
we give a sketch of the proof here. Note that, as in case (c), it follows that
(3.5) => (3.1) by Theorem 1 (i). To prove the converse, we make use of
Pisier's lemma [Theorem A (ii) ]. Suppose (3.1) holds for p < r. Then there
exists F e Lx(dω), F > 0, such that

(3.14)

Set f(x) = F-^(x)χQ(x) and du = Fdω. Note that \\f\\Lr(dv) = \Q\ιJp.
Suppose p < s < r, and 1/s = t/p + (1 — t)/r, where 0 < t < 1. Applying
the elementary interpolation inequality

ll/IU w <

we have

roo(Fdω)

Letting β = s/p—1 > 0, and combining the preceding inequality with (3.14),
we obtain

Γ ( l α i ; 1 ) < c
By Holder's inequality,

1 /
/Q

for all e > 0 and β > 0. Hence

and

dω < CJF0(x)dω = jsup

Suppose 0 < e < 1. Since the dyadic maximal operator M% is bounded in
L1/e(dω), we get Fo G L^dώ). The proof of Theorem 3 is complete. D
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Remark 4. It follows from the proof of Theorem 3 that the best constant
C in (3.1) satisfies the inequality Aικ(c) < C < A2κ(c), where Aλ,A2 are
positive constants that do not depend on c = {CQ}, and κ(c) is defined
in terms of the quantities given by (3.2)-(3.5): κ(c) = supg CQ \Q\]/P if
0 < r < min (/?,#); «(c) = C{r~q)/rq if q < r < p, where C is the best
constant in (3.3);

κ(c) = Σ (<*\Q\l'r)
qr/(r-q)

(r-q)/qr

if max (p, q) < r; and

κ(c) = SUp (CQ \Q\lfΓ)
x€Q x J

if p < r < q.

Now we state the following theorem which contains part (ii) of Theorem
2, and yields a characterization of imbeddings of fpQ{ω) spaces into weighted
Γ spaces.

Theorem 4. Let 0 < p < o o ; 0 < r < o o , and 0 < q < oo. Suppose ω is
a locally finite measure on R n , and {CQ}Q^Q (CQ > 0) is a fixed sequence of
reals. Then the inequality

(3.15)

LP(dω)

holds for all s = {sQ} if and only if one of the following conditions holds.
(a) max (p, q) < r < oo, and

(3.16) inf

QCP

(c) 0 < r < min(p, g) ; and

(b) p < r < q < oo, and for all dyadic cubes P,

(3.i7) y

, -«/(«-r)
(3.18) / ^ (cr

Q\Q\ω)
J xeQ

p(q-r)/q(p-r)

dω < oo.
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(d) q<r<p, and

(3.19)
~p/(p-r)

dω < oo.

Remark 5. We observe that, as in the case of Theorem 3 (see Remark 4),
it follows from the proof presented below that the best constant in (3.15)
satisfies the inequality Aχκ(c) < C < A2κ(c), where Aχ,A2 are positive
constants which do not depend o n c = {CQ}, and κ(c) is defined in terms of
the quantities (3.16)-(3.19): κ(c) = infQ cQ\Q\ιJp if max(p,g) < r; κ(c) =
C-^-r)/qr if p < r < q, where C is the best constant in (3.17);

Σ

if 0 < r < min(p, g); and

sup

-qr/(q-r)
(q~r)/qr - 1

P — )(dw)

- 1
- 1

if q < r < p.

Proof. Clearly (3.15) => (3.16) for all p, r, q. Hence we may assume CQ φ 0
and \Q\ω φ 0 for all dyadic cubes Q. If max Q?, ρ) < r, then by Lemma 2 (b)
it follows that conversely, (3.16) => (3.15), which proves statement (a).

Let us prove (b). Suppose p < r < q, and (3.17) holds. We choose
0 < t < p and set pλ = p/(p — t),qι = q/(q — t) ,r i = r/(r — t). Let
φQ(x) = CQX(X) and ψQ(x) = Φo~t(x)/\\ΦQ\\P

LP{dω) Then it is easily seen
that ψQ{x) = CQ* I Q I J 1 XQ(X). By Corollary 1, (3.15) holds if

Σ M1
 ΨQ

ix€Q i (dω)

By Theorem 3(b), the preceding inequality holds if, for any dyadic cube P,

Σ
QCP

ή" \QI]

Since rλ{px - 5i)/pi(ri - gi) = r(q - p)/p{q - r) and tq^/fa - qx) =
qr/(q — r), it follows that the preceding condition is independent of t and in
fact coincides with (3.17). Thus (3.17) =ϊ (3.15).
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The proof of the converse is similar to that given in [7, p. 77]. For any

dyadic cube P and integer N (l(P) > 2~N) , we set s = {SQ}, where

sQ = (c

q

Q \Q\ω)-ι/iq~r) if Q C P and l(Q) > 2~N, and sQ = 0 otherwise.

Then by (3.15) for all cubes Q, Z(Q) > 2~N, we have

-I 1/r

QCP

Σ
QCP

-q/{q-r)
CQXQ

LP(dω)

p/q \ */p

dω

By Holder's inequality, the right-hand side of the preceding inequality is

bounded by

\p\l" - 1 / q

= \p\ιι•p-l/q

QCP

Σ (4
QCP

-r(q-r)

Thus

Σ (4
QCP

-r(q-r)

1/r

< \p\ιJp-l/q Σ (4 \Ql)
QCP

-r(q-r)

Since the sums are taken over the cubes Q such that l(Q) > 2 7V, the right-

hand side of the preceding inequality is finite, and we get

QCP

Letting N -» oo, we obtain (3.17). The proof of (b) is complete.

Now we prove statement (c). By Theorem 1 (ii) we get that (3.18) =>

(3.15), as in the proof of Theorem 3 (c). To prove the converse, note that if

(3.15) holds, then by Lemma 3 there exists g = {<?Q} such that ||g||LPi(m) ^

1, where px = p/(p - r), qx = q/(q - r), and

(3.20) / \gQ\ φr

Q dω = cr

Q ί \gQ\ dω > C,
J J Q
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where C does not depend on Q. Prom (3.20) it follows that

s
x£Q

-qι
xeQ

Pi/qι

dω

<C\\Md

ωg\\PlPi(m)<C\\g\\l\1(m)<C.

Here M^ is the vector-valued dyadic maximal operator. (See (3.7). Note
that in the last inequality we used Theorem C. This part of the proof is
similar to the argument in [7, pp. 78-79].) Thus (3.15) =» (3.18), which
completes the proof of (c).

Now we prove statement (d). As in the proof of (c), it follows from
Theorem 1 (ii) that (3.19) => (3.15). We prove the converse first for q — r.
Suppose (3.15) holds. Then by Lemma 3 (see Remark 2) there exists F £
Lι\dω), F > 0, such that

(3.21) inf / Fλ-r/p φr

Q dω = inf cr

Q ί Fχ-r/p dω > 0.
Q J Q Jo

It follows from the preceding inequality

-p/(p-r)

I sup ) dω < / sup ( — - / F 1 " ^ dω
J xeQ \\Q\ω JQ

< ί (M*Fl-r

dω

dω<C I Fdω < oo.

In the last inequality we used the fact that the maximal dyadic operator
defined by (3.7) is bounded on Lp^p~^(dω) (see [19]). Thus (3.19) holds.

It is more difficult to show that (3.15) => (3.19) for q < r. Note that by
duality

M p .

Hence (3.15) is equivalent to the inequality

<c 11*111-q/(r-q) .

LP(dω)

Letting u = {uQ}, υ — {vQ}, where uQ — sQ tQ and υQ — cQ/\tQ\, we rewrite
the preceding estimate in the following form

<c ΣI«QI*«,Q
\lrq/(r-q) .

LP{dω)
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It follows from the argument given above for q = r that

sup
1/9

LP(dω)

(P~Q)/(PQ)

Since VQ = CQ/|<Q|, from this we obtain

\{p-q)/{pq)
it / ^PKP-V) \{pq)/{pq)

(3.22) Π sup (\t\q

Qc~Q

q UZ1) dω) < C||t|U<..-,>,

for all t = {tQ}. Let p1 = pq/(p - q), rx = rq/(r - q), and cQ = Cg1 \Q\Zι/q-
Then (3.22) may be rewritten in the form

( / s u p (cg*g)P l d j ) <

Using the fact that PiVx/fri —p\) — pr/(p — r), and applying Theorem 3 (d),
we get from the preceding inequality

/

/ . _ . \Pi/(ri-Pi) Γ / \-p/(p-r)

sup (eg \Q\ω) dω= /sup ώ Q U do; < oo.
xeQ κ J J xeQ v '

Thus (3.15) =^ (3.19) in the case q < r < p. The proof of Theorem 4 is
complete. D

The following properties of discrete Carleson measures are immediate from
Theorem 4 (in the case r = p = 1 and q = oo) and the result of L. Dor
mentioned above (see Remark 3).

Corollary 2. Let {CQ}Q^Q (CQ > 0) be a fixed sequence of reals and letω be

a locally finite measure on R n . Then the following statements are equivalent.

(a) The inequality

/
sup \SQ\ dω > C y^ \SQ\ CQ
xeQ

holds for all scalar sequences s = {sQ}.

(b) Σ Q C P C Q ~ C\P\ω for aM dyadic cubes P.

(c) There exists a family ofpairwise disjoint sets {EQ}QeQ such that EQ C

Q andcq <C\EQ\ω.
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Remark 6.
(i) Theorem 4 is equivalent to the duality theorems for f spaces proved

in [7] in the case where dω is Lebesgue measure. As was mentioned in
the Introduction, the proof given in [7] for the identity (f^9)* = ϊ~,aoc',
which is equivalent to Theorem 4 (d), is not correct for 0 < q < 1 and
p > 1. (Note that the Hahn-Banach theorem used in that proof fails
for the space Lp(lq) in the non-locally-convex case 0 < q < 1; see [13].)
Our proof of Theorem 4 is based on duality and Theorem 3.

(ii) In case (b), which contains a discrete analogue of the Hι-BMO duality
theorem, our proof is based on the dyadic Carleson measure theorem,
rather than on the "local maximal functions" used in [7].

(iii) In the case dω = dx and p < r, it can be shown that (3.17) is equivalent
to the simpler condition (3.16) (cf. [7]). For p = r, as well as for
arbitrary measures ω, it can be shown that (3.16) generally does not
imply (3.17).

4. Multipliers of f spaces.

Let ω and σ be locally finite measures on R n . We say that the sequence of
reals c = {cQ} is a multiplier for the couple of f spaces, ΐpq(σ) and f£1<71 (ω),
if

(4.1)

for all s = {sQ} E f^g(cr). In other words, c is a multiplier if the correspond-
ing multiplier operator defined by C {SQ} = {CQ SQ} is bounded. In this case
we write c G Mult (f£g(σ) -> ΐ£qi(ω)).

In this section we characterize multipliers of f spaces in the "diagonal"
case p = Pi and q — q\ for arbitrary ω and σ. We show that the multiplier
problem is equivalent to the two weight problem for a generalized dyadic
maximal operator considered in [21].

We may assume without loss of generality that the multipliers are non-

negative {cQ > 0). It is easily seen that c= {cQ} £ Mult (ΐ°q(σ) -> f ^ ( )

if and only if the following inequality holds,

(4.2) Σ CQ <C

LP(dω) LP(dσ)

where CQ — CQ \Q\ιJ2 |QL 1 / / 2 Thus the following theorem yields a character-

ization of the class of multipliers Mult (ΐpQ(σ) - )
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T h e o r e m 5. Let 0 < p < o o , 0 < < / < o o , and c — { C Q } , CQ > 0. Then
(4.2) holds if and only if one of the following conditions is valid.
(a) p = q and

(4.3)

(b) 0 < q < p and

(4.4) /
Jf

\Q\1/p

SUp CQ γη- < OO.

Q \Q\llp

sup
P x€Q,QcP

CQ
\Q\l/q\

pq/(p-q)

dσ<C\P\u

for all dyadic cubes P.

(c) 0 < p < q < oo and

(4.5) sup
P χeQ,QcP

pq/(q-p)

\Q\ιJq)
dω<C\P\0

for all dyadic cubes P.

Proof. Note that (4.3) is clearly necessary in order that (4.2) hold for all p
and q. If p = q, then it is easily seen that the converse is also true since in
this case f spaces turn into usual weighted lv spaces. This proves (a).

Suppose q < p. Then from Theorem 4 (c) with q — oo (see Remark 5) it
follows

sup
{tQ}

(ΣQ4,\QIMM)
1/9

LP(dω)

Hence (4.2) holds if and only if

1/9

sup \tQ\

\tn\

<c
LP{dσ)

Applying Theorem 4 (d) with r = q, we get

(ΣQc9

Q\Ql\sQ\9\tQ\9)1/9

sup SUp CQ \tQ\

\Q\
ιJ\

LP(dσ)
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Thus (4.2) is equivalent to the inequality

(4.6) <c sup | ί Q |
*€<? v " •• \Q\yq

We define the generalized dyadic maximal operator (see [21]) by

Mf(x) = sup (PQ —— I I/I dω) ,
xeQ \ \y\ω JQ /

where the supremum is taken over all cubes Q G Qo = {Q £ Q '- \Q\ω Φ 0}

containing x, and ρQ are fixed non-negative reals associated with Q G Qo

Let PQ = CQ j%77 We show that (4.6) is equivalent to the two weight

maximal inequality

(4.7)

By setting f(x) —

\\Mf\\Lpqnp-q){dσ) < C

\tq\ in (4.7) and taking into account that

\f\dω>\tQl[
\Q\ω JQ

it is easily seen that (4.7) =̂> (4.6). To prove the converse, let

t Q T7JΓ [ \\
\Q\ω JQ

in (4.6) and use the fact that the dyadic maximal operator M^ defined by
(3.7) is bounded on Lvq^v-q\dω). Hence (4.6) holds if and only if (4.7) is
true.

It follows from the generalized two weight maximal inequality [21] that
(4.7) holds if and only if

sup pp

Q

q/(p~q) dσ<C\P\u
Q Q P

for all dyadic cubes P, which coincides with (4.4). This proves statement
(b) of Theorem 5.

We use duality to show that (c) can be reduced to (b). Suppose p <
q < oo. Using the transformation p — p/t, q = q/t, and CQ = CQ (t > 0) if
necessary, we see that, as in Sec. 2, we may assume without loss of generality
p > 1 and q > 1.
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If q = oo, then one can show that (4.2), which may be rewritten in the
form

sup CQ SQ
X<EQ

<C SUp SQ
XEQ LP(dσ)

is equivalent to the generalized maximal inequality

s u p nΓ /Γ /
σ JQ

<C\\f\\LHdσ),
LP(dω)

where / E Lp(dσ). (See the proof of the equivalence of (4.6) and (4.7) above.)
Then it follows from [21] again that the preceding maximal inequality is
characterized by

/ sup <%dω<C\P\σ,
JP χeQ,QCP

which coincides with (4.5) for q = oo.
Suppose l < p < ς f < o o . It follows from the duality theorems for f spaces

(or, which is equivalent, from Theorem 4 (c)) that (4.2) holds if and only if

(4.8)
1SQ]

l/ϊ'

<c
Lp'{dω)

Since p' > qι', it is easily derived from (b) that (4.8) holds if and only if (4.5)
is true. The proof of Theorem 5 is complete. D
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