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SPECIALIZATIONS AND A LOCAL HOMEOMORPHISM
THEOREM FOR REAL RIEMANN SURFACES OF RINGS

M.J. DE LA PUENTE

Let φ : k -» A and / : A -» R be ring morphisms, R a real
ring. We prove that if / : A -» R is etale, then the correspond-
ing mapping between real Riemann surfaces Sr(/) : Sr(R/k) -»
Sr(A/k) is a local homeomorphism. Several preparatory re-
sults are proved, as well. The most relevant among these are:
(1) a Chevalley's theorem for real Riemann surfaces on the
preservation of constructibility via Sr(/), and (2) an analysis of
the closure operator on real Riemann surfaces. Constructible
sets are dealt with by means of a suitable first-order language.

1. Introduction.

Let k be a real ring. In this paper we study a sufficient condition for two
real fc-algebras A and R to have homeomorphic real Riemann surfaces. More
precisely, here we show that if / : A —>> R is an etale morphism, then the
corresponding mapping between real Riemann surfaces Sr(/) : Sr(R/k) ->
Sr(A/k) is a local homeomorphism (Theorem 9). In order to prove this
theorem, we need several previous preparatory results, some of which are
interesting on their own. Namely,

(a) the functorial character of Sr (Theorem 4),
(b) a Chevalley's theorem for real Riemann surfaces (Theorem 6), which

guarantees that if / is finitely presented (in particular, if / is etale) then
the image by Sr(/) of any constructible subset of Sr(R/k) is a constructible
subset of Sr(A/k),

(c) a good knowledge of the closure operator on real Riemann surfaces
(Theorem 1) and of the constructible subsets of real Riemann surfaces in
terms of the first-order language of ordered valued fields,

(d) a result relating the notions of constructible, Tychonoff-closed, Tycho-
nofF-clopen, closed and stability of a subset under specialization in real Rie-
mann surfaces (Proposition 8) and, finally,

(e) the known result that if / is etale then Specr(/) : Specr(i?) -^
Specr(^4) is a local homeomorphism. This theorem is due to M. Coste and
M.-F. Roy.
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Two facts should be pointed out here. First, the etality of / is essen-
tial in our proof of Theorem 9 at two stages: (1) when we invoke the
Coste-Roy theorem and (2) because the etality of / provides a homeomor-
phism between the fibers ^^(β) and τr^1(α) of corresponding points β and
a — Specr(/)(/?) (Proposition 5), where TXQ is the natural projection from
Sr(C/k) onto Spec r(C), for C — A or R. Second, our proof of Chevalley's
theorem for real Riemann surfaces uses a result from model theory that al-
lows elimination of quantifiers in the theory of real closed fields endowed
with a non-trivial compatible valuation divisibility relation.

2. Notations and Background.

(RR) All rings appearing in this paper are commutative and have an
identity element. We call them rings, for short. Ring homomorphisms that
preserve the identity are simply called morphisms. When a base ring k is
given, morphisms are assumed to preserve the fc-algebra structure. By an
ordering on a field K we mean a total order relation on K. A ring A is said
to be real if A has a prime ideal p such that the quotient field of the integral
domain A/p can be ordered. Such a prime ideal is called reα/, as well.

(FOL) Given a first-order language £, variables are denoted by v1,v2,
υ3,... and greek letters φ, ψ, #, 77,... denote formulas of C. An expression
φ(vι,... ,vn) means that φ is formula whose free variables are a subset of
Vι:... ,vn. For any family of elements £1, . . . ,tn in an £-system i?, the
expression φ[tx,... , tn] denotes the element in R obtained as a result of the
substitution in φ(vι,... , vn) of tι by ^ x , . . . and tn by υn.

(CVR) Let K be an ordered field and k a subfield of K. If B is a convex
valuation ring of K, then the set of ideals of B is totally ordered by inclusion.
Every ideal of B is convex. Any convex valuation ring B' in K containing B
satisfies B1 — Bp, for some prime ideal p of B. Moreover, the set of convex
valuation rings of K/k (i.e., valuation rings of K which contain k) is totally
ordered by inclusion. These facts follow from various classical results on
valuation rings, realizing that convexity is preserved through the proofs; see
[A], [E], [K], [Ri] or [Z-S] for general valuation theory and [B-C-R] or [La]
for results on convex valuation rings.

(RS) Nowadays, the following definition is well-known to specialists in
real algebra. Let A be a ring. The real spectrum of A, denoted Specr(A),
is the collection of pairs (pβ, <β), where pβ is a real prime ideal of A ahd
<β is an ordering on the quotient field of A/pβ. We write β instead of
(Pβ, <β) Clearly, Specr(A) is non-empty if and only if the ring A is real.
For example, if A — K is a field then pβ = (0), for all β G Specr(K), and so
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any β G Specr(K) is simply an ordering on K. Moreover, if K is real closed,
then Specr(ίC) consists of just one point.

If β belongs to Specr(A), then let A[β], A(β), κ(β), a(β), A'[β] and \a(β)\β

respectively denote the ring A/pp endowed with the restriction of the order-
ing </?, the quotient field of A[β] endowed with <β, the real closure of A(β)
(it is unique, up to order-preserving A(/?)-isomorphism), the image of a e A
in A[β] by the canonical epimorphism A - » A[/3], the image of A1 C A
in A[β] by the same epimorphism and max{α(/3), —a(β)}. Expressions of
the form a(β) >β 0, \a(β)\β and the like are simplified to a(β) > 0, |α(/?)|,
respectively.

We consider subsets of Specr(A) of the type Ux := {β G Sρecr(A) : x(β) >
0}, where x runs through A. Then we take in Specr(A) the minimal topology
U (respectively, minimal boolean algebra C) that contains the sets Ux's. The
topology U is the usual topology considered on Specr(A). The topological
space Specr(A) has some very interesting properties we proceed to recall.
As customary, the elements of U are called open sets. The elements of C are
given a name too: they are called constructible sets. We further consider the
minimal topology T on Specr (A) that contains the constructible sets. It is re-
garded only as an auxiliary tool for the study of Specr(A). This topology on
Sρecr (A) is called the Tychonoff topology (also called the constructible topol-
ogy). Its elements are called Tychonoff-open sets. A subset F C Specr(A)
is Tychonoff-closed if and only if F is an intersection of constructible sets.
Tychonoίf-clopen means both Tychonoff-open and Tychonoff-closed, obvi-
ously. We have that F C Specr(A) is Tychonoff-clopen if and only if F is
constructible. Moreover, it is not hard to show that Specr(A) endowed with
T is a quasi-compact Hausdorff topological space. Now, comparison of both
topologies yields that U is finer than T. Therefore, Specr(A) endowed with
its usual topology is quasi-compact.

In order to present the constructible subsets of SpecΓ(^4), the framework
of first-order logic may be used, as an alternative. Namely, consider the
first-order language Cr of ordered fields. A subset L of Specr(Λ) is con-
structible if and only if there exists a quantifier-free formula φ(vχ,... ,vn)
in Cr and elements t l 5 . . . , t n in A such that L equals {β € Specr(A) :
A{β) |= φ[tι(β),... ,ίn(/?)]}. Notice that φ[tx{β),... ,tn(β)] simply consists
of finitely many conditions ti(β) > 0, tj(β) = 0 and th(β) < 0, joined by
conjunctive and or disjunctive symbols.

Back to the general properties of the real spectrum of a ring A, it is not
Hausdorff, in general (an exception to this is when A is a field, in which case5-
T = U). Therefore, one important question is to describe the closure of a
point β in Specr(A). It is shown that it looks like a spear, i.e., the closure
of a point is a totally ordered set and has a unique maximal element. The
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points in the closure of β are called specializations of β and β is said to be
a generization of each of them. Given a subset F of Specr(A), we say that
F is stable under specialization (respectively, generization) if the conditions
β G F and 7 is a specialization (respectively, generization) of β imply 7 E F.
The following statement holds true: ifYC Specr(τ4) is Tychonoff-closed and
F C.Y, then F is closed in Y if and only if F is Tychonoff-closed and stable
under specialization in Y.

Further properties that deserve to be mentioned here are the functo-
rial character of the construction as well as the naturality of the mapping
Specr(A) -» Spec(v4) given by β »-» pp. The real spectrum of a ring was
introduced in 1979 by M. Coste and M.-F. Roy. See [B-C-R] or [B] for
details.

(RRS) Once persuaded that the real spectrum of a ring A is a useful
tool and that it deserves to be studied and understood, soon we noticed that
some facts taking place at points β of Specr(A) are ultimately explained by
means of convex valuation rings of the corresponding residue fields A(β).
The very long remark 10.3.5 in [B-C-R] fully justifies our latter statement.
With this and certain applications in mind, we introduced the notion of
real Riemann surface of a ring in [Pu]. Notion and name were inspired on
both the real spectrum construction and the so called Riemann surface of
a field extension K/k, introduced by Zariski, see [Z-S] VI §17, (and later
named Zariski-Riemann space of K/k in [Li]). In fact, in [Pu] we began by
introducing a more general space, called the Riemann surface of a ring, for
which no reality conditions were required. Other authors have also defined
such latter spaces (under the name of valuation spectrum of a ring) and
studied them; see [H], [H-K] or [S].

Back to our presentation, given a ring morphism φ : k —» A, the real
Riemann surface of A/k is the set Sr(A/k) consisting of all pairs (/?,B)
where β G Specr(^4) and B is a convex valuation ring in A(β) finite over
φ(k)[β] i.e., B contains φ(k)[β]. Clearly, Sr(A/k) is non-empty if and only if
A is real, since convex hulls of intermediate rings are convex valuation rings
(see the next paragraph). The set Sr(A/k) is endowed with the minimal
topology containing the sets of the type Ux,y := {(β,B) : y(β) > 0 and
xy~1(β) £ B}, where x,y run through A. The choice of this topology is in
full accordance with both the usual topology of the real spectrum and the
topology given to the Riemann surface of a field extension K/k by Zariski.
In particular, the projection onto the first factor π^ : Sr(A/k) —>> Specr(A)
is a continuous mapping.

Just as in the real spectrum setting, we may consider the constructible
subsets of Sr(A/k) and then the Tychonoff topology on Sr(A/k). Then it
is proved that Sr(A/k) is Tychonoff quasi-compact, whence quasi-compact
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with its usual topology. In addition, π^ has several continuous sections,
the images of which are {non-necessarily disjoint) homeomorphic copies of
Specr(A) lying inside Sr(A/k). This ensures that every phenomenon taking
place inside Specr(A) is taking place in Sr(̂ 4/A;) too. A first instance of
such sections of ΈA is the mapping tA : Specr(^4) -> Sr(A/k) where tA(β) =
(/?, A(β)). We call it the trivial section since A(β) is the trivial (convex)
valuation ring of A(β). Other instances of these sections are the mappings
PA> , which arise by considering convex hulls of intermediate rings of the ring
extension A/φ(k). More precisely, for any intermediate ring A' and any β
in Specr(A), consider Oβ(A') := {x G A(β) : \x\ < \a\ for some a G A'[β)}.
Clearly, Oβ(Af) is a convex valuation ring of A(β). It is shown that the
mapping pA> : Specr(A) -+ Sr(A/k) given by ρA'{β) = (β,Oβ(A')) is a
section of πA having the mentioned properties. The most relevant cases are
obviously A' = φ(k) and A' = A. Clearly, Oβ(A) is the smallest convex
valuation ring in A(β) finite over A[β]. All these facts are proved in [Pu].
Moreover, the contractions of the ideals of Oβ(A) to A[β) are precisely the
convex ideals of A[β]. It follows that if J is a convex ideal in A[β], then
JOβ(A) Π A[β] = J. In particular, if p is a prime convex ideal in A[β], then
pOβ(A) is prime.

Let us now briefly look at the fibers of πA. Given β G Specr(A), the set
πA1(β) *s simply the collection of pairs (/?,-B), where B runs through all
the convex valuation rings of A(β) which are finite over φ(k)[β]. As seen in
(CVR), such a set is totally ordered by inclusion. It has both a minimal and
a maximal element, namely Oβ(φ(k)) and A(β), respectively. On the other
hand, Specr(/ί(/3)) reduces to a point, say /?, and therefore Sr(κ(β)/k) equals
π~(β\(β) By a well-known theorem, there is no content relation between two
extensions Bf and B" of a valuation ring B of A(β) to the algebraic extension
κ(β) of A(β). Thus, (β,B) H-> (β,Oβ(B)) defines a bijection from π^iβ)
onto Sr(κ(β)/k). The inverse mapping is given by (/?, C) «-> (β,C ΠA(β)).

Back to the constructible sets, it holds that πA is Tychonoff-continuous.
The latter statement simply means that if L C Specr(^4) is constructible,
then π^ι(L) is constructible. This is proved in [Pu]. We may make use of
first-order logic again, in order to deal with constructible subsets of Sr(A/k).
This time we are to talk about systems (K,B), where K is an ordered field
and B is a convex valuation ring of K. For technical reasons (namely, the
use of [Pr] Theorem 4.20), we should rather talk about systems (UΓ, |), where
I is a compatible valuation divisibility relation. Each convex valuation ring
B gives rise to a compatible valuation divisibility relation |#, and conversely
as follows: for all α,6 G K we have a\Bb if and only if there exists c G B
such that b = ac. In view of such systems (K, |), we consider the following
first-order language Cv = {+, , <, |, 0,1}. If (If, |), (JKΊ, |i) are /^-structures,
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then (ifl5 | x) is an extension of (if, |) if if C if x is an extension of ordered
fields and a\b if and only if α|i6, for all α,6 G if. The latter condition is
equivalent to saying that B — K Π J?i, where | = |B a n d |i — Ui Then a
subset L of Sr(A/fc) is constructible if L is of the form {(β,B) G Sr(A/fc) :
{A(β),\B) (= 0[*i(j9), .. ,<n (/?)]}, where t 1 ? . . . , t n G -A and φ(υu... ,υn) is
a quantifier-free formula of Cυ. The set above will be denoted Lφ.tu..^tn.
Notice that φ[t1(β),... ,tn(β)] consists of a finite collection of conditions
U(β) > 0, tί{β)\Btj(β) and their negations, joined by conjunctive and or
disjunctive symbols.

Let us remark here that in [Pu] we allowed B to equal if, the trivial valu-
ation ring of if; in fact, this was an essential requisite to prove compactness.
However, the presence of trivial valuation rings prevents us from directly
applying [Pr] Theorem 4.20 in our proof of Theorem 6.

(EM) Etale morphisms are defined by mimicking the implicit function
theorem, which is clearly false in the algebraic case. The notion comprises
both non-ramification and smoothness. Concerning language, when a mor-
phism / : A —» R has been fixed, we loosely say that R is etale over A
instead of saying that / is etale or that / makes R etale over A.

The concept is very simple in the field case: an etale extension of fields is
just a finite separable extension. Two results emphasizing the local character
of etality are to be pointed out. First, the etale property is local on Spec(iϋ),
i.e., if f : A —» R is a morphism and for every q G Spec(iϊ) there exists
an element g G R\ q such that Rg is etale over A, then R is etale over A.
Second, we have the so called local structure theorem for etale morphisms,
which guarantees that every such ring of fractions Rg is A-isomorphic to a
standard etale Ah-algebra, for some h G A\Spec(/)(g) and that the satisfac-
tion of all these local etality conditions implies that f is etale. A standard
etale C-algebra is simply a C-algebra of the type (C[X]/(j))t, where X is
transcendental over (7, j , I are polynomials in C[X], with j monic and the
class of the formal derivative j ' in (C[X]/(j))ι invertible. It is also impor-
tant that etality transfers to the fibers of f. See [A-K], [I], [M] or [Ra] for
details.

3. Specializations in Real R i e m a n n Surfaces.

Let φ : k —>• A be a morphism of rings. Recall that the topology of Sr(A/k)
is generated by the sets UXiV where #,y run through A. The very definition
of this topology yields that given points (β,B) and (7, C) in Sr(A/k), then
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(7, C) is a specialization of (/?, B) if and only if

(1) for all x, y G A, [y{η) > 0 and xy~x(j) G C]

imply [y(β) > 0 and xy~ι(β) G £].

Obviously, for /? = 7, condition (1) reduces to C C β. So, when restricted
to τr^1(/3), specialization just means inclusion of the valuation rings. This is
in full accordance with [Z-S] VI §17.

Now, if 7 φ /?, then it follows from (1) that 7 is a specialization of β.
Conversely, if 7 is a specialization of β then pΊ D pβ and A[y] is naturally
order-isomorphic to A[β]/pΊA[β]. Let AβtΊ be the localization of A[β] at
pΊA[β}. Then there exists a natural order-preserving epimorphism TβiΊ :
Aβn —» ̂ (7) fitting in the following commuting diagram

A

s \
A[β] —» A[Ί)

Aβπ •I^2^ A(ηr)

where the vertical arrows are canonical. Namely, Tβn(xy~1(β)) = xy~ι{η),
for x,y E A with ^(7) φ 0. We may regard τ/?ϊ7 as an evaluation on 7.
Evidently, r^^ is the identity on A(β). The existence of TβtΊ implies that (1)
is equivalent to

(2) 7 is a specialization of β and τ ^ ( C ) C B

and to

(3) 7 is a specialization of β and ^

since JB is convex, and finally to

(4) 7 is a specialization of β and (/3, <
is a specialization of (/?, B).

We have thus characterized the closure of the point (/3, B) as follows.

Theorem 1. Let (/?, J5) belong to Sr(A/k). Then, the closure of (β,B) is
the set {(7, C) G Sr(̂ 4/A;) : 7 is a specialization of β and (β,Oβ(τβ^(C))) i»
a specialization of(β,B)}.

Note that "7 is a specialization of β" is a statement about Specr(A). On
the other hand, the condition "(/?, O/?(τ^(C))) is a specialization of (/3, £?)"



434 M.J. DE LA PUENTE

takes place in the fiber π^iβ)- The latter is related with the so called
secondary specializations in [H-K].

Notation 2. If β and 7 belong to Specr(.A) and 7 is a specialization of
/3, let Oβn denote the localization of Op(A) at pΊOβ(A). Clearly, Oβn is a
convex valuation ring of A(β) and thus Oβ(AβiΊ) C Oβn.

Corollary 3. Let {β,B) belong to Sr(A/k) and let 7 be a specialization of

β. If Oβπ C B, then τr^1(7) is contained in the closure of (β,B).

Proof Let (7, C) be in τr^1(7). The obvious inclusion Tβl

Ί{C) C AβiΊ implies

^ C C?^(^,7) C Oβm by convexity. ' ' D

4. The Relationship between the Real Riemann Surface and the
Real Spectrum of a Ring.

Let A and R be rings, R real and / : A -> R a morphism. We know
that / induces a continuous mapping Spec r(/) : Specr(i?) -> Specr(A).
Namely, given β G Specr(i?), then Specr(/)(/?) is, by definition, the point
(f~1(Pβ) ) <α) where < α is defined by letting a <a b if and only if /(α) <β
/(&), for all α, b G A Moreover, Specr is a contravariant functor from the
category of rings to the category of topological spaces. Similarly, we have
the following:

Theorem 4. Let φ : k -> A and f : A —> R be morphisms, R a real ring.
Then f induces a continuous mapping S r(/) : Sr(R/k) —> Sr(^4/fc). Thus,
S r Z5 α contravariant functor from the category of k-algebras to the category
of topological spaces. In addition, π is a natural transformation from Sr to
Spec r.

Proof. Let (/?, B) belong to Sr(R/k) and consider the point a = Specr (/)(/?).
There exists a unique order-preserving morphism fβ such that the following
diagram commutes

A —^-+ R

A{a) -!i-> R(β)

where the vertical maps are canonical. The mapping fβ is defined by

fβ(x(a)) = f(x)(β), for all x G A. Moreover, it is routinely checked that

fβλ{B) is a convex valuation ring in A(a). Then we let Sr(/)(/3,J5) :=

{a,fβl(B)), by definition.
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In order to prove continuity of Sr(/), it is sufficient to show that
Sr(f)~1(UXyy) is open in Sr(iϊ/fc), for all x,y £ A. Actually, we prove the
equality Sr(f)~1(UXiy) = Uf(x)j(yy First, given x , y G i , by definition of α
we have y(a) > 0 if and only if f(y)(β) > 0. Moreover, xy~ι{ά) E fβλ{B) if
and only if fβ(xy'1(a)) = f(x)f(y)~1(β) € B, for all i , y € A . Prom this,
the desired equality follows.

Now the diagram

Sr(R/k) - ^ h Sr(Λ/Λ)

Specr(R) ^ ! f ^ 4 Specr(Λ)

is commutative, showing that π is a natural transformation. D

Proposition 5. Let φ : k —>• A be a morphism, R a real ring and f : A —» i?
an eίa/e morphism. Given β in Specr(iϊ) and a = Specr(/)(/?), ίΛen «()9) ts
isomorphic to κ(ά) and Sr(/) map5 π]ι~(β) homeomorphically onto τr^1(a).

Proof. Clearly, pp belongs to Spec(/) 1{pa)
 a n d fβ : A(a) —>• R{β) is an

ordered-preserving morphism of fields. By [Ra] p. 33 Propositions 10 and
11, if R is etale over A, then R(β) is etale over A(a), which amounts to
saying that R(β) is a finite separable extension of A(α), via fβ. In particular,
R{β) and A(a) have isomorphic real closures κ(β) and κ(α); we will identify
them. As explained in (RRS), π^ι{β) and π^x(α) are both homeomorphic
to Sr(κ(β)/k) and the resulting composite homeomorphism maps (/?, B) to
(a,C) if and only if B and (7 have the same convex hull in κ(β). If we
further identify A(a) with its image in i?(/3), then B is the convex hull of C
in fl(/3). G

5. Chevalley's Theorem for Real Riemann Surfaces.

We give a version of Chevalley's theorem, for real Riemann surfaces, which
we will use in our proof of Theorem 9. The ideas in the proof of the following
theorem are partially due to R. Huber, who kindly discussed with us about
this, back in 1991.

Theorem 6. Let φ : k -> A be a morphism, R a real ring and suppose
that f : A -» R is a morphism that makes R finitely presented over Ar J£
L C Sr(R/k) is constructible, then Sr (/)(£) is constructible.

Proof. As remarked in (RRS), L equals Lφ.itu...ttni for a certain quantifier-
free formula φ(vu ... , vn) of Cv and some tu ... ,tn e R. By hypothesis, R
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is the quotient of a polynomial ring A[X] modulo a finitely generated ideal
J and / is the composite of the canonical morphisms i : A -> A[X] and
e : A[X] -> i?, where X = (A"1?... , X m ) , m G N. We choose a finite family
{Pi(X) : ΐ = 1,...,/} generating J and, for each s = 1,... , n, we choose
a preimage T8(X) of ts in A[Λ"]. Let {Eh G -A : /ι = 1,... ,g} be the set
of coefficients of the polynomials P i , . . . , P/, T Ί , . . . ,T n . We write rrJ? e^ for
the class of Xj, Eh modulo J and x for ( x l 5 . . . , xm).

If (/?, J3) belongs to L then

(5) f\Pi(x)(β)=0 Λ

is a quantifier-free statement about (i?(/3), |β). It can be obtained by sub-
stitution of ei(/?),... ,eg(β),xι{β),... ,xm(β) by ^ , . . . , ̂ , ^ χ , . . . ,wm in
a quantifier-free formula ^ ( ^ i , . . . , ug,Wι,... , ^ m ) of Cv. In other words,
(5) coincides with

Let 0 1 = 3 ^ ! . . . iϋm t/;. Then 0 is a formula of £ υ whose free variables are
a subset of u l 5 . . . , i^. By [Pr] Theorem 4.20, the theory of real closed fields
with a non-trivial compatible valuation divisibility relation admits elimina-
tion of quantifiers. Then there exists a quantifier-free formula 77, equivalent
to 0, the free variables of which are a subset of u 1 ? . . . , ug.

In order to show that S r(/)(L) is constructible, we will prove that the
following equalities hold true:

= Li = L2 = £3 = L4 = Lη;El,...,Eg?

where

Li := {(a,C) € SP(Λ/fc) : (K, \D) (=

for some extension (if, | D ) of (A(α), | c ) } ,

L2 := {(α,C) 6 Sr(Λ/Λ) : ( i f , | β ) h ^ i W , . . ,E9(a)]

for some extension (iί, \D) of (j4(α), |c)> -K" r e a l closed, J9 non-trivial},

L3 := {(a,C) € Sr(Λ/A:) : (K,\D) \=η[Eι(a),... ,Eg(a)}

for some extension (K, \D) of (^4(α), |c)>-^ real closed, D non-trivial},

U := {(α, C) € Sr(,4/A;) : (K, \D) |= ^ ( α ) , . . . , S f l(α)]

for some extension (if, |D) of (A(α), |c)}
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Proof of Sr(f)(L) C Lχ\ Let (β,B) belong to L and write (α,C) for
Sr(/)(/3,B). Then,

(6) ( W ) , U ) |= β[ei(/?),.-. ,ep(/3)]

holds true, since we can take Wj equal to Xj(β), for j = 1,... , ra. Consider
the point (e*i,CΊ) := Sr(e)(/?, £?), where e : -A[-X] -» i? is the canonical epi-
morphism. Since Sr is functorial by Theorem 4, then we have a commutative
diagram

A A A[X] 4> Λ

1 1 1

where the vertical maps are canonical and fβ = epiai. Thus, (A[X](αχ), IcJ
is an extension of (-A(α), |c) Since (6) holds, 0 equals Ξtϋi... wm ψ, and ^
contains no existential quantifiers then, taking Wj equal to Xj(a1), we see
that

Thus (α, C) lies in Li, because (A[X](αi), | d ) is an extension of (-A(α), |c)

ofSr(f)(L) D Lλ: Suppose that (if, |#) is an extension of (-A(α), |c)
and that

(7) (if,|D)

Let Wi,... , Wm G K be elements satisfying

(8) ( ^ ID) h ^[£i (α),. ..,£?,(α),

We extend the canonical morphism A -> -A(α) to a morphism p : A[X] —>> K
by mapping X^ to W3?, for j = 1,... , m. Let 7 stand for the fixed order in K.
Then K = K(j) and Specr(p)(7) is a point in Specr(A[JΓ]); let us denote
it by αi. Write W = (Vi,... ,Wm). Since the conditions 0 = Pi(W) =
p(Pi(X)) are implicit in (8), then p factors through iϊ, yielding a morphism
φ : R -* K such that φe = p. We consider the point (β,B) := Sr(y>)(7,Z?).
We have a commutative diagram

K t^ R{β)
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where f — eu and the unlabelled vertical maps are canonical. It follows from
the diagram that (α, C) = Sr(f)(β,B). Moreover, since ψΊ is injective, φ is
a subformula of ψ and ψ contains no existential quantifiers, then (8) implies

(R(β),\B)ϊ=Φ[tl(β),...,tn(β)],

since in K the element ts(β) equals a certain polynomial expression in the

Eh(a)'s.

Proof of Li = L2: Clearly, Lx 2 L2. On the other hand, let (if, \D) be an
extension of (α, C) such that

Let Kx be the real closure of the simple transcendental extension K(Y) of if,
where the field if (Y) is endowed with the ordering that makes Y positive and
infinitesimal with respect to if. Then Kλ has a non-trivial convex valuation
ring Dx such that D = KΠD1. Then

since (ifl5 I^J is an extension of (if, !#) and θ contains no universal quanti-
fiers.

Now, L2 — L3 holds again by [Pr] Theorem 4.20, and the proof of L3 — L4

is similar to that of Lx — L2, done above.

Proof of Z/4 C Lη.Ei^.^Eg' If (^? ID) ι s a n extension of (A(α), |c) satisfying

then it follows that

since η contains no existential quantifiers.

Proof of JL4 2 Lη]E1,...,Eg

: If ( ^ ID) is any extension of (A(α), |c) and

holds true, then

follows, since η contains no universal quantifiers. D

Remark 7. Coste and Roy have proved that Spec r(/)(L) is constructive,
for every constructible subset L of Spec r(iϊ), when / is finitely presented, see
[C-R 2] and [C-R 1]. Bearing in mind the existence of continuous sections
of πΛ and πR which are homeomorphisms onto the image, as remarked in
(RRS), the Coste-Roy theorem follows from our Theorem 6.
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6. The Local Homeomorphism Theorem for Real Riemann
Surfaces.

The following result has been proved in [Ro] and [A-R]: let φ : k —>• A
and / : A —> R be morphisms, R a real ring; if / is etale then Specr(/) :
Specr(i2) -> Specr(A) is a local homeomorphism. Using this theorem, here
we prove an analogous statement for real Riemann surfaces. In order to do so,
first we need a result relating the notions of constructible, Tychonoff-closed,
Tychonoff-clopen, and closed, as well as the stabilility under specialization,
for a subset of Sr(A/k).

Proposition 8. Let φ : k —>> A be a morphism, A a real ring. Then
(a) F C Sr(A/fe) is Tychonoff-closed if and only if F is an intersection of

constructible sets,

(b) F C Sr(A/k) is Tychonoff-clopen if and only if F is constructible,

(c) i / y c Sr(A/k) is Tychonoff-closed and F C Y, then F is closed in Y
if and only if F is Tychonoff-closed and stable under specialization in
Y.

Proof. Analogous to the proof done for the real spectrum. D

Theorem 9. Let φ : k -» A and f : A ->- R be morphisms, R a real ring.
If f is etale, then Sr(/) : Sr(R/k) -> Sr(j4/λ;) is a local homeomorphism.

Proof Given (β,B) in Sr(i?//c), consider the point a = Specr(/)(/3) in
Specr(A). Because the etale property is local on Spec(iϊ), (see [Ra] p. 16
Propositions 5 and 6) we may replace R by Rg, for some g G R\pp- Now, by
the local structure theorem for etale morphisms, (see [Ra] p. 51 Theorem
1) there exists h e A \pa such that R is A-isomorphic to a standard etale
^U-algebra, i.e., R ~ (Ah[X]/(j))ι, where X is a transcendental element over
Ah, j , I are polynomials in A/JX], with j monic and the class of the formal
derivative j ' in (Ah[X]/(j))ι invertible.

Since Specr(/) is a local homeomorphism, there exist an open neighbor-
hood Hβ of β in Specr(iϊ) and an open neighborhood Ha of a in Specr(A)
such that Ha is homeomorphic to H@. The proof in [Ro] shows further
that Ha and H& can be assumed to be constructible. Since τr# and π^ are
both continuous and Tychonoff-continuous, then G@ = π ^ i ? ^ ) and Gα,=
π~^(Ha) are open constructible neighborhoods of (/?,B) and Sr(/)(/?,B),
respectively. We will show that G^ and Ga are homeomorphic.

First notice that, by Proposition 5, 7Γβ1(τ) is homeomorphic
to π^1(Specr(/)(7)), for every 7 G Hβ. Since we may express Gβ and Ga as



440 M.J. DE LA PUENTE

unions of π-fibers

^ α W = U ^ 1

we conclude that Sr(f)\op is a bijection onto Ga. By Theorem 4, S Γ (/) |G£ is
continuous. It only remains to show that S Γ (/) |G^ is a closed mapping. In
order to do so, let F C Gβ be closed in Gβ. We want to show that Sr(f)(F) is
closed in Gα, for which it is enough to see that S r(/)(F) is Tychonoff-closed
in Ga and stable under specialization in Gα, by Proposition 8 (c).

Proof ofSr(f)(F) Tychonoff-closed in Ga: F is closed in Gβ, whence Tycho-
noff-closed in Gβ. Then F equals an intersection f]ieJG

β Π F{, for some
constructible subsets Fι of Sr(R/k), by Proposition 8 (a). Since Sr(f)\oβ is
bijective, then S r(/)(F) = f]ieJ GαnS r(/)(F;) and Sr(f)(Fi) is constructible,
by Theorem 6. Thus, Sr(/)(F) is Tychonoff-closed in Ga, again by Propo-
sition 8 (a).

Proof of Sr(f)(F) stable under specialization in Ga: Suppose that (δι,Dι)
is a specialization of (ό2,D2), with (δι,Dχ) in Ga and {δ2,D2) in S r(/)(F).
We want to show that (δι,Dι) belongs to Sr(f)(F). Let us denote τδ2^r by
Ts. By expression (2), δλ is a specialization of δ2 and τ^ι(Dι) C D2. Taking
j { = Specr(/)~1(5i), for i — 1,2, we have that 71 is a specialization of 72,
since Ha and Hβ are homeomorphic. Then we find points (7 l5 CΊ) in Gβ and
(72? C2) in F such that {δ^Dij — Sr(/)(7 i,Cf

ί), for i — 1,2. Let us denote
T7i,72 b y T7

Clearly, it suffices to show that (71, Ci) belongs to F. By expression (2),
this holds if T~X{CI) C C2. By the proof of Proposition 5, we know that after
adecuate identifications, R(ji) is a finite ordered field extension of A{δι) and
Ci — OΊi{Di), for i = 1,2. The following commutative diagrams ilustrate
the situation.

A R

v/ \ , / \

—» -̂ .[̂ 1] ^[72] ~^

4 ^ 4 4 τ 4
52,^! ~^" -^v^l/ -^72,71 ^

4 4 4
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Let z2 belong to τ~ι(Cι) and consider z\ = τΊ{z2) in Cx. Since CΊ = OΊl (Dι),
there exists dλ in Dλ such that 1̂ 1 < 7 l \d\\. Now, dλ equals uv~x(δι) for
some u, v G A with v(δχ) φ 0. Then υ(52) Φ 0 and d2 = uυ~1(δ2) belongs
to τ^1(Dι) C D2 C C2. Since τ 7 is order-preserving, then |z2 | < 7 2 |d2|, and
this finishes the proof. D

Remark 10. Note that Theorem 9 is a strengthening of Roy's theorem
mentioned above.

We thank M.E. Alonso, C. Andradas, J.M. Gamboa and J.M. Ruiz and
very specially to R. Huber, who visited our department in 1991, for discussing
with us about the material presented here. We are also very grateful to the
last referee of this paper, who pointed out a few mistakes that occurred in
a former version.
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