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Abstract: A famous identity of Gauss gives a closed form expression for the values of the

digamma function  ðxÞ at rational arguments x in terms of elementary functions. Linear

combinations of such values are intimately connected with a conjecture of Erd}os which asserts

non vanishing of an infinite series associated to a certain class of periodic arithmetic functions. In

this note we give a different proof for the identity of Gauss using an orthogonality like relation

satisfied by these functions. As a by product we are able to give a new interpretation for nth

Catalan number in terms of these functions.
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1. Introduction. The search for an analytic

function which generalizes the notion of the well

defined factorial function for natural numbers led

to the definition of the complex valued Gamma

function �ðzÞ which is defined as

�ðzÞ :¼
Z 1

0

xz�1e�x dx

when ReðzÞ > 0 and for the rest of the complex

plane with the help of the functional equation

�ðzþ 1Þ ¼ z�ðzÞ:ð1Þ

For more details on Gamma function and its

properties reader may consult the book [2]. A well

known function related to Gamma function is the

digamma function  ðzÞ which is defined as the

logarithmic derivative of the �ðzÞ as follows:

 ðzÞ :¼
d

dz
log �ðzÞ ¼

�0ðzÞ
�ðzÞ :

Special values of the digamma function are impor-

tant because of its frequent occurrence in the

diverse areas of mathematics and physics. Unfortu-

nately at present, very less is known about the

nature of special values of the digamma func-

tion [15]. In fact it is not even known whether the

value  ð1Þ is a rational or an irrational number

which follows from the fact that  ð1Þ ¼ �� and

the famous conjecture that � is an irrational

number [12]. However in 1812, in the celebrated

memoir [9] on hypergeometric series by the famous

mathematician Johann Carl Friedrich Gauss, the

following closed form formula for the digamma

function at rational arguments was given.

Theorem 1.1 (Gauss’ Identity). For posi-

tive integers m; q such that m < q, the digamma

function can be expressed in terms of Euler’s

constant � and a finite number of elementary

functions in the following way

 ðm=qÞ þ � ¼ �log 2q �
�

2
cot

�m

q
ð2Þ

þ 2
Xbðq�1Þ=2c

a¼1

cos
2�am

q

� �
log sin

�a

q

� �
:

Contrary to the above identity (2), most of the

known formulas for  ðzÞ rather follow easily from

the definition of digamma function and some

standard trigonometrical identities. On the other

hand the Gauss’ proof is still not straightforward

even after it was simplified by Jensen [10] using

Abel’s theorem on continuity of convergent power

series. As of now several different proofs exist in

literature [3,7,11,13,16] which involve variety of

tools such as functional equation of Hurwitz zeta

function, Simpson’s dissection method, Discrete

Fourier analysis and integral representation of

digamma function.

Here we shall give another proof of the identity

(2) which uses a combinatorial identity exhibited

by a certain class of periodic arithmetic functions.

Definition 1.2 (Erd}osian function modulo q).

A function f is said to be Erd}osian modulo q if it is a

periodic arithmetic function with period q which
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takes values in the set f�1;þ1g everywhere except

at q where it is 0.

For example, it is easy to see that we have the

following 8 Erd}osian functions modulo 4.

n 1 2 3 4

f1 1 1 1 0

f2 1 1 �1 0

f3 1 �1 1 0

f4 �1 1 1 0

f5 1 �1 �1 0

f6 �1 1 �1 0

f7 �1 �1 1 0

f8 �1 �1 �1 0

The functions are called Erd}osian [5] mainly

because of the following conjecture due to Erd}os

which was written to A. Livingston [14] in 1965.

Conjecture 1.3 (P. Erd}os). For any

Erd}osian function f , the infinite series
P1
n¼1

fðnÞ
n

can never be equal to zero.

For more details on the progress made on this

conjecture and similar non-vanishing results

see [4–6,16]. We recall that our goal here is to

prove identity (2) and for this let us fix some

notations. Let

Lðs; fÞ :¼
X1
n¼1

fðnÞ
ns

denote the Dirichlet series associated to an arith-

metic function f and

�ðs; xÞ :¼
1

ðnþ xÞs

be the Hurwitz zeta function initially defined for

real part of s greater than 1 and then over the whole

complex plane except at s ¼ 1 using the principle of

analytic continuation. Now for an Erd}osian func-

tion f with period q it is easy to see that

Lðs; fÞ ¼ q�s
Xq
a¼1

fðaÞ� s;
a

q

� �
;ð3Þ

where �ðs; xÞ is the Hurwitz zeta function. It is well

known that the Hurwitz zeta function has a simple

pole at s ¼ 1 and admits the following expansion at

its unique simple pole [1]

�ðs; xÞ ¼
1

s� 1
�  ðxÞ þOðs� 1Þ:ð4Þ

From the Eqs. (3) and (4) it is straightforward to

deduce that Lðs; fÞ has a simple pole at s ¼ 1 with

residue Rf where

Rf :¼
1

q

Xq
a¼1

fðaÞ:

Therefore for Erd}osian functions f, Lð1; fÞ con-

verges if and only if Rf is equal to zero. Indeed, this

can only happen when the period q is odd and hence

the Erd}os conjecture holds trivially for even q.

Further in the case when q is odd one needs to

only consider the case when Rf is zero. For such

functions we state an orthogonality like relation

below. The standard binomial coefficient
n

m

� �
is

equal to the quantity
n!

m!ðn�mÞ! and for a finite set

S we write jSj for the cardinality of S.

Proposition 1.4 (Orthogonality like rela-

tion). Let f1; f2; . . . ; fNðqÞ denote the N :¼ NðqÞ
Erd}osian functions modulo q such that Rfi ¼ 0 for

1 � i � NðqÞ. Let m and n be two positive integers.

Then we have

XN
r¼1

frðmÞfrðnÞ

¼
N if m � n ðmod qÞ and q - m,

0 if q j n or q j m,

hðqÞ if m 6� n ðmod qÞ

8><
>:

where NðqÞ ¼ q � 1

ðq � 1Þ=2

� �
, hðqÞ ¼ �2Cq�3

2
and

Cn ¼
1

nþ 1

2n

n

� �
is the nth Catalan number.

Proof. First we observe that N is equal to the

number of ways of assigning values þ1 in half of

the available q � 1 positions which is nothing but

q � 1

ðq � 1Þ=2

� �
. Notice that all these fr functions

exhaust the possible ways of arranging 1 and �1
in q � 1 positions provided Rfr ¼ 0. If m �
n ðmod qÞ then for any fr, the product

frðmÞfrðnÞ ¼ 1 provided q - m. Further if q j m or

q j n then frðmÞfrðnÞ ¼ 0. The last case where

m 6� n ðmod qÞ the value hðqÞ :¼
PN
r¼1

frðmÞfrðnÞ will
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satisfy

hðqÞ ¼ jfr j frðmÞfrðnÞ ¼ 1gjð5Þ
� jfr j frðmÞfrðnÞ ¼ �1gj:

The value of each term in the sum
PN
r¼1

frðmÞfrðnÞ

depends on whether the value of frðmÞ and frðnÞ is

1 or �1. If both are of same sign then the product

frðmÞfrðnÞ gives 1 otherwise �1. Same sign occurs

when both of them are +1 or �1. Corresponding

to each such case we have q � 3 positions left to

be filled which will add upto either +2 or �2. So

number of ways that both frðmÞ and frðnÞ are of

same sign are the possible ways of filling q�1
2 places

in q � 3 places with either +1 or �1. Thus we have

jfr j frðmÞfrðnÞ ¼ 1gj ¼ 2
q � 3

ðq � 1Þ=2

� �
:

As there are N terms in the sum
PN
r¼1

frðmÞfrðnÞ, we

have

N ¼ jfr j frðmÞfrðnÞ ¼ 1gjð6Þ
þ jfr j frðmÞfrðnÞ ¼ �1gj:

Now from the above Eqs. (5) and (6) we get

hðqÞ ¼ 4
q � 3

ðq � 1Þ=2

� �
� q � 1

ðq � 1Þ=2

� �

¼ 4
ðq � 3Þ!

q � 1

2

� �
!
q � 5

2

� �
!

�
ðq � 1Þ!

q � 1

2

� �
!
q � 1

2

� �
!

¼ �
ðq � 1Þ!

q � 1

2

� �
!
q � 1

2

� �
!

1� 4

q � 3

2
:
q � 1

2
ðq � 2Þðq � 1Þ

2
64

3
75

¼ �
ðq � 1Þ!

q � 1

2

� �
!
q � 1

2

� �
!

:
q � 1

ðq � 2Þðq � 1Þ

¼
�2

q � 1

2

ðq � 3Þ!
q � 3

2

� �
!

� �2

¼ �2Cq�3
2
:

This completes the proof. �

As a corollary we give a different way (see [17]

for various other related counting problems) of

producing Catalan numbers using the Erd}osian

functions.

Corollary 1.5. The nth Catalan number Cn

is equal to �1

2

PN
r¼1

frð1Þfrð2Þ, where N ¼ 2nþ 2

nþ 1

� �
and fr’s are all the Erd}osian functions

modulo 2nþ 3.

Now we are ready to give the proof of the

Gauss’ identity (2), but before that we need some

preliminary lemmas.

2. Some Lemmas. In the rest of the section

the symbol �m shall denote the complex mth root of

unity e
2�i
m . It is easy to verify that

Xq
a¼1

��aðb�nÞq ¼
q; if b � n mod q

0; otherwise.

�
ð7Þ

The following result follows from the identities (3)

and (4) and is given as Theorem 16 in [15].

Lemma 2.1. Let f be any function defined

on the integers and with period q. Then,
P1
n¼1

fðnÞ
n

converges if and only if
Pq
a¼1

fðaÞ ¼ 0, and in the case

of convergence, the value of the series is

�
1

q

Xq
a¼1

fðaÞ ða=qÞ:

Using the idea of the proof of Theorem 5 given

in [16] one can derive the following expression for

the value Lð1; fÞ.

Lemma 2.2. For a q periodic arithmetic

function f satisfying Rf ¼ 0, the value of Lð1; fÞ is

given by

Lð1; fÞ ¼ ��i
fðqÞ
2q
�

1

q

Xq�1

b¼1

fðbÞ
�bq � 1

 !
ð8Þ

�
1

q

Xq
b¼1

fðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �
:

Proof. As Lð1; fÞ is convergent because of

Lemma 2.1, we can write

Lð1; fÞ ¼ lim
x!1

Xq
b¼1

fðbÞ
X
n�x

n�bmod q

1

n

0
B@

1
CA:

Now with the help of Eq. (7) we get

Lð1; fÞ ¼ lim
x!1

Xq
b¼1

fðbÞ
X
n�x

1

n

1

q

Xq
a¼1

��aðn�bÞq

 ! !

¼ 1

q

Xq�1

a¼1

Xq
b¼1

fðbÞ�abq ð� logð1� ��aq ÞÞ:

Since
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1� ��a ¼ ��að�a=2 � ��a=2Þ

we have on taking the principal logarithm

logð1� ��aq Þ ¼
1

2
� a
q

� �
�iþ log 2 sin

�a

q

� �
:

Substituting the above value in the expression for

Lð1; fÞ we get

Lð1; fÞ ¼ ��i
Xq�1

a¼1

1

q

Xq
b¼1

fðbÞ�abq
1

2
�
a

q

� � !

�
Xq�1

a¼1

1

q

Xq
b¼1

fðbÞ�abq log 2 sin
�a

q

� �

¼ ��i
1

2q

Xq�1

b¼1

fðbÞ
Xq�1

a¼1

�abq �
1

q2

Xq
b¼1

fðbÞ
Xq�1

a¼1

a�abq

 !

� 1

q

Xq
b¼1

fðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �

¼ ��i
fðqÞ
2q
�

1

q

Xq�1

b¼1

fðbÞ
�bq � 1

 !

� 1

q

Xq
b¼1

fðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �
:

�

We also recall an important multiplication

formula for the Gamma function which is attributed

to Legendre.

Yq
a¼1

� zþ
a� 1

q

� �
¼ q1=2�qzð2�Þðq�1Þ=2�ðqzÞ:

Logarithmically differentiating the above identity

and substituting z ¼ 1=q, we get

Xq
b¼1

 ðb=qÞ ¼ �q log q � �q:ð9Þ

Finally we evaluate the digamma function at

rational arguments.

3. Proof of Theorem 1.1. In order to use

the orthogonality like relations we let fr denote an

Erd}osian function modulo an odd integer q and

consider m 2 N such that 1 � m < q. Then by

Lemma 2.2 we have

XN
r¼1

frðmÞLð1; frÞ

¼
XN
r¼1

frðmÞ
"
��i

frðqÞ
2q
þ 1

q

Xq�1

b¼1

frðbÞ
1� �bq

 !

�
1

q

Xq
b¼1

frðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �#

¼ � �i
q

XN
r¼1

Xq�1

b¼1

frðmÞfrðbÞ
1� �bq

�
1

q

XN
r¼1

frðmÞ
Xq�1

b¼1

frðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �
:

Further from Lemma 2.1 we get

� 1

q

Xq�1

b¼1

XN
r¼1

frðmÞfrðbÞ ðb=qÞ

¼ � �i
q

XN
r¼1

Xq�1

b¼1

frðmÞfrðbÞ
1� �bq

�
1

q

XN
r¼1

frðmÞ
Xq�1

b¼1

frðbÞ
Xq�1

a¼1

�abq log 2 sin
�a

q

� �
:

Now when b ¼ m then frðmÞfrðbÞ ¼ 1 otherwise b 6�
mðmod qÞ. Therefore in the equation

�
1

q

Xq�1

b¼1

 ðb=qÞ
XN
r¼1

frðmÞfrðbÞ

¼ �
�i

q

Xq�1

b¼1

1

1� �bq

XN
r¼1

frðmÞfrðbÞ

�
1

q

Xq�1

b¼1

Xq�1

a¼1

�abq log 2 sin
�a

q

� �XN
r¼1

frðmÞfrðbÞ

we separate the terms when b ¼ m and b 6¼ m,

which gives us

�
hðqÞ
q

Xq�1

b¼1
b6¼m

 ðb=qÞ �
N

q
 ðm=qÞ

¼ �
�ihðqÞ
q

Xq�1

b¼1
b6¼m

1

1� �bq
�
�iN

q

1

1� �mq

�
hðqÞ
q

Xq�1

b¼1
b 6¼m

Xq�1

a¼1

�abq log 2 sin
�a

q

� �

�
Xq�1

a¼1

N�amq

q
log 2 sin

�a

q

� �
:

Further, with the help of Eq. (9) we get

� hðqÞ ðm=qÞ þ hðqÞð� � �qÞ � qhðqÞ log q

þN ðm=qÞ ¼ �ihðqÞ
Xq�1

b¼1

1

1� �mq
� �ihðqÞ

1

1� �bq
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þ �iN
1

1� �mq
þ hðqÞ

Xq�1

a¼1

log 2 sin
�a

q

� �Xq�1

b¼1

�abq

� hðqÞ
Xq�1

a¼1

log 2 sin
�a

q

� �
�amq

þN
Xq�1

a¼1

log 2 sin
�a

q

� �
�amq :

Some more simplification and dividing the above

equation with hðqÞ gives

N � hðqÞ
hðqÞ

 ðm=qÞ þ ð� � �qÞ � q log q

¼ �i
q � 1

2

� �
þ �i N � hðqÞ

hðqÞ
1

1� �mq

�
Xq�1

a¼1

log 2 sin
�a

q

� �

þ N � hðqÞ
hðqÞ

Xq�1

a¼1

log 2 sin
�a

q

� �
�amq :

Now observe that
N � hðqÞ
hðqÞ ¼ �ðq � 1Þ. Further by

using the expression

Xq�1

a¼1

log sin
�a

q

� �
¼ log q � ðq � 1Þ log 2;

and

1

1� �mq
¼

1

2
� 1

i
cot

�m

q

we obtain

 ðm=qÞ ¼ �� � log q � �i
2

1

i
cot

�m

q

� �
� log 2

þ
Xq�1

a¼1

log sin
�a

q

� �
�amq :

Now write �amq ¼ cos 2�am
q þ i sin 2�am

q in the above

equation and use the fact that cosine is an even

function and sine is an odd function to obtain the

desired result. To complete the proof we only need

to consider the case when q is even. For this we give

an outline of the proof as there is not much

difference from the odd q case. Indeed, if we are

given an even q we can alter the definition of an

Erd}osian function just by removing the 0 element

from the range. In this case Lð1; fÞ will converge if

and only if q is even and Rf ¼ 0. The orthogonality

like relation for these modified Erd}osian functions

can be similarly deduced as done in the proof of

Proposition 1.4. The rest of the arguments are

similar to the proof for the odd q case. This

completes the proof. �
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[ 3 ] P. E. Böhmer, Differenzengleichung und bes-
timmte Integrale, K. F. Koehler, Leipzing, 1939.

[ 4 ] T. Chatterjee and M. R. Murty, Non-vanishing
of Dirichlet series with periodic coefficients, J.
Number Theory 145 (2014), 1–21.

[ 5 ] T. Chatterjee and M. R. Murty, On a conjecture
of Erd}os and certain Dirichlet series, Pacific J.
Math. 275 (2015), no. 1, 103–113.

[ 6 ] S. Chowla, The nonexistence of nontrivial linear
relations between the roots of a certain irredu-
cible equation, J. Number Theory 2 (1970),
120–123.
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