On products of cyclic and abelian finite p-groups (p odd)

By Brendan McCann
Department of Computing and Mathematics, Waterford Institute of Technology, Cork Road, Waterford, Ireland
(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2018)

Abstract

For an odd prime p, it is shown that if $G=A B$ is a finite p-group, for subgroups A and B such that A is cyclic and B is abelian of exponent at most p^{k}, then $\Omega_{k}(A) B \unlhd G$, where $\Omega_{k}(A)=\left\langle g \in A \mid g^{p^{k}}=1\right\rangle$.

Key words: Products of groups; factorised groups; finite p-groups.

Much of what is known about finite p-groups that are the product of a cyclic subgroup and an abelian subgroup is limited to the case where both "factors" are cyclic. Products of two cyclic p-groups were investigated for odd primes by Huppert [5], and for $p=2$ by Itô [7], Itô and Ôhara [8,9], and Blackburn [2]. Huppert showed in particular that if p is an odd prime and if the finite p-group G is the product of two cyclic subgroups, then G possesses a normal cyclic subgroup N such that G / N is cyclic ([5] Hauptsatz I).

Apart from products of cyclic subgroups, little is known about the detailed structure of finite p-groups of the form $G=A B$, where A is cyclic and B is abelian. Such products are, of course, metabelian by the celebrated Theorem of Itô ([6] Satz 1); while a result of Howlett ([4] Theorem A) shows that $\exp (G) \leq \exp (A) \exp (B)$, where $\exp (G)$ denotes the exponent of a finite group G. The only other relevant result appears to be that of Conder and Isaacs ([3] Corollary C), which states that if $G=A B$ for abelian subgroups A and B such that B is finite and either A or B is cyclic, then $G^{\prime} /\left(G^{\prime} \cap A\right)$ is isomorphic to a subgroup of B.

The present note considers the case where p is an odd prime and $G=A B$ is a finite p-group, where A is a cyclic subgroup and B is an abelian subgroup of exponent at most p^{k}. For such a group Theorem 6 shows that $\Omega_{k}(A) B \unlhd G$, where the characteristic subgroup, $\Omega_{k}(H)$, of a finite p-group H is defined by $\Omega_{k}(H)=\left\langle h \in H \mid h^{p^{k}}=1\right\rangle$. For $|A|=p^{n}(n>k)$ and $N=\Omega_{k}(A) B$, it can then be seen that G / N is cyclic of order p^{n-k}, a result that can be viewed as a

[^0]partial analogue to that of Huppert cited above. Theorem 6 also generalises a recent result of the author ([10] Lemma 2.5), which deals with the case where A is cyclic and B is elementary abelian.

The following notation is used. The cyclic group of order p^{n} is denoted by $C_{p^{n}} . U_{G}$ denotes the core of the subgroup U of a group G. Thus $U_{G}=$ $\bigcap U^{g}$. The normal closure of U in G is denoted by $g \in G$
U^{G}, so $U^{G}=\left\langle U^{g} \mid g \in G\right\rangle$. We first derive some elementary results which will be used in the proof of Theorem 6.

Lemma 1. Let $G=A B$ be a finite p-group for subgroups A and B such that A is abelian. Let N be a normal subgroup of G and let $s \geq 0$ and $t \geq 0$ be such that:
(i) $N \leqslant \Omega_{s+t}(A) B \leqslant G$;
(ii) $\Omega_{s}(A N / N) B N / N \unlhd G / N$;
(iii) $A \cap N \leqslant \Omega_{t}(A)$.

Then $\Omega_{s+t}(A) B \unlhd G$.
Proof. We let $\widetilde{A} / N=\Omega_{s}(A N / N)$. Since A is abelian and $A \cap N \leqslant \Omega_{t}(A)$, we have $\Omega_{s}(A N / N) \leqslant$ $\Omega_{\sim+t}(A) N / N$, so $\widetilde{A} \leqslant \Omega_{s+t}(A) N$. Now $\widetilde{A} B N=$ $\widetilde{A} B \unlhd G$ and $\widetilde{A} B \leqslant \Omega_{s+t}(A) N B=\Omega_{s+t}(A) B$. Since $G / \widetilde{A} B$ is abelian, it follows that $\Omega_{s+t}(A) B \unlhd G$.

Lemma 2. Let $G=A B$ be a finite group for subgroups A and B such that A is the cyclic group $\langle x\rangle$. Then $B^{G}=\left\langle B, B^{x}\right\rangle$.

Proof. We have $\left\langle B, B^{x}\right\rangle=\left(\left\langle B, B^{x}\right\rangle \cap A\right) B$ and so $\left\langle B, B^{x}\right\rangle^{x}=\left(\left\langle B, B^{x}\right\rangle \cap A\right)^{x} B^{x}=\left(\left\langle B, B^{x}\right\rangle \cap\right.$ A) $B^{x} \leqslant\left\langle B, B^{x}\right\rangle$. Hence x normalises $\left\langle B, B^{x}\right\rangle$ and thus $B^{G}=\left\langle B, B^{x}\right\rangle$.

Lemma 3. Let $G=A B$ be a finite p-group for subgroups A and B such that A is the cyclic group $\langle x\rangle$ and B is a proper subgroup of G. Let s be such that $A \cap B^{G}=\Omega_{s}(A)$. If t is such that $\Omega_{t}(A) \leqslant B$,
then $t \leq s$ and $\left|B: B \cap B^{x}\right| \leq p^{s-t}$.
Proof. Since G is a finite p-group and B is a proper subgroup of G, we have $B^{G} \neq G$. Hence $\Omega_{s+1}(A) \nless B^{G}$, so $\Omega_{s}(A) \neq \Omega_{s+1}(A)$. But $\Omega_{t}(A) \leqslant$ $A \cap B \leqslant A \cap B^{G}=\Omega_{s}(A), \quad$ so $t \leq s$. Now $B^{G}=$ $\Omega_{s}(A) B$, so

$$
\left|B B^{x}\right|=\frac{|B|\left|B^{x}\right|}{\left|B \cap B^{x}\right|} \leq\left|B^{G}\right|=\frac{\left|\Omega_{s}(A)\right||B|}{\left|\Omega_{s}(A) \cap B\right|}
$$

Since $\Omega_{t}(A) \leqslant \Omega_{s}(A) \cap B$, we have $\left|\Omega_{s}(A) \cap B\right| \geq$ $\left|\Omega_{t}(A)\right|$. Hence

$$
\frac{|B|\left|B^{x}\right|}{\left|B \cap B^{x}\right|} \leq \frac{\left|\Omega_{s}(A)\right||B|}{\left|\Omega_{t}(A)\right|}=p^{s-t}|B|
$$

and it follows that $\left|B: B \cap B^{x}\right| \leq p^{s-t}$.
Lemma 4. Let p be an odd prime and let $G=$ $H K$ be a finite p-group for subgroups H and K such that $[H, K] \leqslant Z(G)$ and $\exp (K) \leq p^{t}$. Then
(i) $\exp ([H, K]) \leq p^{t}$;
(ii) $\Omega_{t}(G)=\Omega_{t}(H)[H, K] K=\left\langle\Omega_{t}(H), K\right\rangle$.

Proof. For (i) we let $h \in H$ and $k \in K$, and let $z=[h, k]$. Then $h=h^{k^{p^{t}}}=h z^{p^{t}}$, so $z^{p^{t}}=1$. But $[H, K] \leqslant Z(G), \quad$ so $\quad[H, K]$ is abelian. Hence $\exp ([H, K]) \leq p^{t}$.

For (ii) we note first that $K^{G}=[H, K] K$, so by (i), we have $\left\langle\Omega_{t}(H), K\right\rangle \leqslant \Omega_{t}(H)[H, K] K \leqslant \Omega_{t}(G)$. Conversely, let $g=h k \in G$ be such that $g^{p^{t}}=1$, where $h \in H$ and $k \in K$. Letting $z=[h, k] \in Z(G)$, we see that

$$
1=g^{p^{t}}=(h k)^{p^{t}}=k^{p^{t}} h^{p^{t}} z^{\frac{\left(p^{t}+1\right) p^{t}}{2}}
$$

Since p is odd and $\exp ([H, K]) \leq p^{t}$, we have $z^{\frac{\left(p^{t}+1\right) p^{t}}{2}}=1$. In addition $k^{p^{t}}=1$. Hence $h^{p^{t}}=1$, so $\Omega_{t}(G) \leqslant\left\langle\Omega_{t}(H), K\right\rangle \leqslant \Omega_{t}(H)[H, K] K$.

Corollary 5. Let p be an odd prime and let G be a finite p-group such that $G=H Z K$ for subgroups H, Z and K such that
(i) $Z \leqslant Z(G)$;
(ii) $[H, K] \leqslant Z$;
(iii) $\exp (K) \leq p^{t}$.

Then $\Omega_{t}(G)=\Omega_{t}(H Z) K$.
Proof. Since $Z \leqslant Z(G)$, we have $[H Z, K]=$ $[H, K] \leqslant Z(G)$. In addition, K normalises $H Z$, so $\left\langle\Omega_{t}(H Z), K\right\rangle=\Omega_{t}(H Z) K$. The result then follows from Lemma 4.

We now come to our main result.
Theorem 6. Let p be an odd prime and let $G=A B$ be a finite p-group for subgroups A and B such that A is cyclic and B is abelian. If $\exp (B) \leq$ p^{k}, then $\Omega_{k}(A) B \unlhd G$.

Proof. We use induction on $|G|$. We may assume that G is non-cyclic, $G \neq B$ and $\Omega_{k}(A) \neq$ G. Thus $A \neq 1$ and $B \neq 1$, and hence $\Omega_{1}(A) \neq 1$ and $k \geq 1$. Moreover, let $|A|=p^{n}$. If $k \geq n$, then $\Omega_{k}(A)=A$ and $\Omega_{k}(A) B=A B=G$. Thus we can also assume that $k \leq n-1$. Since A is cyclic and G is a finite p-group, we note that $\Omega_{t}(A) B \leqslant G$ for all values of t.

We have $Z(G)=(Z(G) \cap A)(Z(G) \cap B)$ by, say, [1] Lemma 2.1.2. If $A \cap Z(G)=1$, then $1 \neq$ $Z(G) \leqslant B$. By induction, we have

$$
\Omega_{k}(A Z(G) / Z(G)) B / Z(G) \unlhd G / Z(G)
$$

Since $A \cap Z(G)=1$, we apply Lemma 1 to see that $\Omega_{k}(A) B \unlhd G$. We thus may assume that

$$
\Omega_{1}(A) \leqslant Z(G)
$$

Moreover, letting $\widetilde{B}=\Omega_{1}(A) B$, we have $\exp (\widetilde{B})=$ $\exp (B)$ and $\Omega_{k}(A) B=\Omega_{k}(A) \widetilde{B}$. Thus if we can show that $\Omega_{k}(A) \widetilde{B} \unlhd G$, then we also have $\Omega_{k}(A) B \unlhd G$. Hence we may assume that

$$
\Omega_{1}(A) \leqslant B
$$

We next show that the result holds for $k=1$. In this case B is elementary abelian. By induction, we have

$$
\Omega_{1}\left(A / \Omega_{1}(A)\right) B / \Omega_{1}(A) \unlhd G / \Omega_{1}(A)
$$

But $\Omega_{1}\left(A / \Omega_{1}(A)\right)=\Omega_{2}(A) / \Omega_{1}(A)$, so

$$
\Omega_{2}(A) B \unlhd G
$$

Now $\quad \Omega_{1}(A) \neq A, \quad$ so $\quad\left|\Omega_{2}(A) B: B\right|=\mid \Omega_{2}(A)$: $\Omega_{1}(A) \mid=p$ and $B \unlhd \Omega_{2}(A) B$. If $B \nsubseteq G$ then, letting $g \in G \backslash N_{G}(B)$, we see, by comparison of orders, that

$$
\Omega_{2}(A) B=B B^{g} .
$$

Thus $\Omega_{2}(A) B$ is the product of two elementary abelian normal subgroups. Since p is odd, we see that $\Omega_{2}(A) B$ has exponent p, which is a contradiction. We thus conclude that $B=\Omega_{1}(A) B \unlhd G$.

We now assume that $k \geq 2$. We let M be a maximal proper subgroup of G such that $A \leqslant M$. Then $|G: M|=p$ and $M=A(B \cap M)$. Since $B \nless$ M, we have $|B: B \cap M|=p$. We let $B_{1}=B \cap M$. By induction, we have $\Omega_{k}(A) B_{1} \unlhd M$. Since B normalises B_{1}, we note further that $B_{1}^{G}=B_{1}^{M} \leqslant$ $\Omega_{k}(A) B_{1}$.

We have $B \nless B_{1}^{G}$, as otherwise $G=A B_{1}^{G}=M$. Since $\left|B: B_{1}\right|=p$, we further have $B B_{1}^{G} / B_{1}^{G} \cong C_{p}$. Now $A B_{1}^{G} / B_{1}^{G}=M / B_{1}^{G}$ is a non-trivial, normal
cyclic subgroup of index p in G / B_{1}^{G} and G / B_{1}^{G} is the extension of $A B_{1}^{G} / B_{1}^{G}$ by $B B_{1}^{G} / B_{1}^{G}$. Since p is odd, we have

$$
\Omega_{1}\left(G / B_{1}^{G}\right)=\Omega_{1}\left(A B_{1}^{G} / B_{1}^{G}\right) B B_{1}^{G} / B_{1}^{G} \unlhd G / B_{1}^{G}
$$

Now $A \cap B_{1}^{G} \leqslant A \cap \Omega_{k}(A) B_{1}=\Omega_{k}(A)\left(A \cap B_{1}\right)$. But $\exp (B) \leq p^{k}$, so $A \cap B_{1} \leqslant \Omega_{k}(A)$. Hence $A \cap B_{1}^{G} \leqslant$ $\Omega_{k}(A)$.

We consider the case where $A \cap B_{1}^{G} \neq \Omega_{k}(A)$. Then $A \cap B_{1}^{G} \leqslant \Omega_{k-1}(A)$. Now $B_{1}^{G} \leqslant \Omega_{k}(A) B_{1} \leqslant$ $\Omega_{k}(A) B$. Hence, by Lemma 1 , we have $\Omega_{k}(A) B \unlhd G$.

We thus assume that $A \cap B_{1}^{G}=\Omega_{k}(A)$, so $B_{1}^{G}=\Omega_{k}(A) B_{1} \leqslant \Omega_{k+1}(A) B$. By Lemma 1, we have $\Omega_{k+1}(A) B \unlhd G$. Since $\exp (B) \leq p^{k}$, we have $A \cap B \leqslant$ $\Omega_{k}(A)$, so $\Omega_{k}(A) \cap B=\Omega_{k+1}(A) \cap B=A \cap B$. Hence $\left|\Omega_{k+1}(A) B: \Omega_{k}(A) B\right|=p \quad$ and $\quad \Omega_{k}(A) B_{1}=B_{1}^{G} \leqslant$ $B_{1}^{G} B=\Omega_{k}(A) B \leqslant B^{G} \leqslant \Omega_{k+1}(A) B \unlhd G$.

Since $B B_{1}^{G} / B_{1}^{G} \cong C_{p}$, we have $\Phi(B) \leqslant B_{1}^{G}$. Now $\quad k \geq 2$, so $\quad g^{p^{k-1}}=\left(g^{p}\right)^{p^{k-2}} \in \Omega_{1}(\Phi(B)) \leqslant$ $\Omega_{1}\left(B_{1}^{G}\right)$ for all $g \in B$. Hence $\exp \left(B \Omega_{1}\left(B_{1}^{G}\right) /\right.$ $\left.\Omega_{1}\left(B_{1}^{G}\right)\right) \leq p^{k-1}$. But $1 \neq \Omega_{1}(A) \leqslant \Omega_{1}\left(B_{1}^{G}\right) \quad$ so, by induction $\quad \Omega_{k-1}\left(A \Omega_{1}\left(B_{1}^{G}\right) / \Omega_{1}\left(B_{1}^{G}\right)\right) B \Omega_{1}\left(B_{1}^{G}\right) /$ $\Omega_{1}\left(B_{1}^{G}\right) \unlhd G / \Omega_{1}\left(B_{1}^{G}\right)$. Now if B_{1}^{G} is abelian, then $\Omega_{1}\left(B_{1}^{G}\right)$ is elementary abelian, so $A \cap \Omega_{1}\left(B_{1}^{G}\right)=$ $\Omega_{1}(A)$. In addition, we have $\Omega_{1}\left(B_{1}^{G}\right) \leqslant B_{1}^{G} \leqslant$ $\Omega_{k}(A) B$, so, by Lemma $1, \Omega_{k}(A) B \unlhd G$.

We can thus assume that B_{1}^{G} is non-abelian. We let $Z=Z\left(B^{G}\right)$ and note that $\Omega_{1}(A) \leqslant B^{G} \cap$ $Z(G) \leqslant Z$. We show that $Z \leqslant \Omega_{k}(A) B$. If not, then, by comparison of orders, $B^{G}=\Omega_{k+1}(A) B=$ $\Omega_{k}(A) B Z$. Now $\Omega_{k}(A)=\Phi\left(\Omega_{k+1}(A)\right)$, so $B^{G}=$ $\Omega_{k+1}(A) B=B Z$. But B is abelian, so B^{G} is abelian. Then B_{1}^{G} is abelian, which is a contradiction. Therefore

$$
Z \leqslant \Omega_{k}(A) B
$$

We note further that $\Omega_{k}(A) \nless Z$, as otherwise $B_{1}^{G}=$ $\Omega_{k}(A) B_{1}$ is abelian.

We let $A=\langle x\rangle$ and see, by Lemma 2 , that $B^{G}=\left\langle B, B^{x}\right\rangle$. Now B is abelian, so $B \cap B^{x} \leqslant Z$. Since $B^{G} \leqslant \Omega_{k+1}(A) B$ and $\Omega_{1}(A) \leqslant B$, we apply Lemma 3 to see that $\left|B: B \cap B^{x}\right| \leq p^{k}$. It follows that

$$
|B: B \cap Z| \leq p^{k}
$$

Now suppose that $\exp \left(B \Omega_{1}(Z) / \Omega_{1}(Z)\right) \leq p^{k-1}$. Then, by induction, we see that $\Omega_{k-1}\left(A \Omega_{1}(Z) /\right.$ $\left.\Omega_{1}(Z)\right) B \Omega_{1}(Z) / \Omega_{1}(Z) \unlhd G / \Omega_{1}(Z)$. But $\quad \Omega_{1}(Z) \leqslant$ $\Omega_{k}(A) B$ and $A \cap \Omega_{1}(Z)=\Omega_{1}(A)$. Hence, by Lemma $1, \Omega_{k}(A) B \unlhd G$.

We thus may assume that there exists $y \in B$ such that $y^{p^{k-1}} \notin \Omega_{1}(Z)$. Since $\exp (B) \leq p^{k}$, it follows that $y^{p^{k-1}} \notin Z$. Thus $o(y)=p^{k}$ and $\langle y\rangle \cap(B \cap$ $Z)=1$. But $|B: B \cap Z| \leq p^{k}$, so $B=\langle y\rangle(B \cap Z)$. Hence $B Z=\langle y\rangle Z$ and $B Z / Z \cong\langle y\rangle /(\langle y\rangle \cap Z) \cong$ $\langle y\rangle \cong C_{p^{k}}$. Thus G / Z is the product of the nontrivial cyclic subgroups $A Z / Z$ and $B Z / Z$.

Now G / Z is a finite p-group, so $A Z / Z$ is normalised by a non-trivial subgroup of $B Z / Z$. Hence $\Omega_{1}(B Z / Z)$ normalises $A Z / Z$. But $A Z / Z$ is cyclic and $\Omega_{1}(B Z / Z) \cong C_{p}$. Since p is odd we see, by considering the action of $\Omega_{1}(B Z / Z)$ on $A Z / Z$, that $\Omega_{1}(A Z / Z) \Omega_{1}(B Z / Z) \unlhd \Omega_{1}(B Z / Z) A Z / Z$. We similarly have $\Omega_{1}(A Z / Z) \Omega_{1}(B Z / Z) \unlhd \Omega_{1}(A Z / Z) B Z / Z$. Hence

$$
\Omega_{1}(A Z / Z) \Omega_{1}(B Z / Z) \unlhd G / Z
$$

In addition, since $B Z$ is abelian, we have $A \cap$ $B Z \leqslant Z(G) \cap B Z \leqslant Z$. It follows that $A Z / Z \cap B Z /$ $Z=1_{G / Z}$.

We let r be such that $\Omega_{1}(A Z / Z)=\Omega_{r}(A) Z / Z$. Since $\Omega_{1}(A) \leqslant Z$ and $\Omega_{k}(A) \notin Z$, we have $2 \leq$ $r \leq k$. We further let $y_{1}=y^{p^{k-1}}$. Then $\left\langle y_{1}\right\rangle=$ $\Omega_{1}(\langle y\rangle)$ and $\Omega_{1}(B Z / Z)=\left\langle y_{1}\right\rangle Z / Z$. From above, we then have

$$
\Omega_{r}(A) Z\left\langle y_{1}\right\rangle \unlhd G
$$

But $\Omega_{1}(A Z / Z)$ and $\Omega_{1}(B Z / Z)$ both centralise each other and $A Z / Z \cap B Z / Z=1_{G / Z}$, so

$$
\Omega_{r}(A) Z\left\langle y_{1}\right\rangle / Z=\Omega_{r}(A) Z / Z \times\left\langle y_{1}\right\rangle Z / Z \cong C_{p} \times C_{p}
$$

Now $\Omega_{r}(A) Z\left\langle y_{1}\right\rangle / Z$ is abelian, so $\left[\Omega_{r}(A)\right.$, $\left.\left\langle y_{1}\right\rangle\right] \leqslant Z$. Since $r \leq k$, we have $\Omega_{r}(A) Z\left\langle y_{1}\right\rangle \leqslant B^{G}$, so $Z \leqslant Z\left(\Omega_{r}(A) Z\left\langle y_{1}\right\rangle\right)$. Hence, by Corollary 5 , we have

$$
\Omega_{1}\left(\Omega_{r}(A) Z\left\langle y_{1}\right\rangle\right)=\Omega_{1}\left(\Omega_{r}(A) Z\right)\left\langle y_{1}\right\rangle
$$

In addition, $\Omega_{1}(B) Z / Z \leqslant \Omega_{1}(B Z / Z)=\left\langle y_{1}\right\rangle Z / Z$, so

$$
\Omega_{1}(B) \leqslant\left\langle y_{1}\right\rangle Z
$$

We let $N=\Omega_{1}\left(\Omega_{r}(A) Z\left\langle y_{1}\right\rangle\right)$ and note that $\Omega_{1}(A) \leqslant N$. We let $\Omega_{2}(A)=\left\langle x_{1}\right\rangle$, where $o\left(x_{1}\right)=$ p^{2}. Now $\Omega_{r}(A) Z$ is abelian, so $\Omega_{1}\left(\Omega_{r}(A) Z\right)$ is elementary abelian. Hence $x_{1} \notin \Omega_{1}\left(\Omega_{r}(A) Z\right)$. If $A \cap$ $N \neq \Omega_{1}(A)$, then $x_{1} \in N$. Thus there exist $g \in$ $\Omega_{1}\left(\Omega_{r}(A) Z\right)$ and $1 \neq \widetilde{y} \in\left\langle y_{1}\right\rangle$ such that $x_{1}=g \widetilde{y}$. It follows that $\widetilde{y}=g^{-1} x_{1} \in \Omega_{1}\left(\Omega_{r}(A) Z\right) \Omega_{2}(A) \leqslant$ $\Omega_{r}(A) Z$. Since $\widetilde{y} \neq 1$, we have $\left\langle y_{1}\right\rangle=\langle\widetilde{y}\rangle \leqslant \Omega_{r}(A) Z$, which is a contradiction since the order of $\Omega_{r}(A) Z\left\langle y_{1}\right\rangle / Z$ is p^{2}.

We thus have $A \cap N=\Omega_{1}(A)$. Since $\Omega_{r}(A) Z\left\langle y_{1}\right\rangle \unlhd G$, we have $N \unlhd G$. From above, we have $\Omega_{1}(B) \leqslant \Omega_{1}\left(\left\langle y_{1}\right\rangle Z\right) \leqslant N$, so $\exp (B N / N) \leq$ p^{k-1}. We once more apply induction to see that $\quad \Omega_{k-1}(A N / N) B N / N \unlhd G / N$. Noting that $\Omega_{r}(A) Z\left\langle y_{1}\right\rangle \leqslant \Omega_{k}(A) B, \quad$ a final application of Lemma 1 allows us to conclude that $\Omega_{k}(A) B \unlhd G$.

Example 7. Letting p be an odd prime and $n>k \geq 1$, we let G be the semi-direct product of a cyclic group of order p^{n} by a cyclic group of order p^{k} as follows:

$$
G=\left\langle x, y, \mid x^{p^{n}}=y^{p^{k}}=1, x^{y}=x^{1+p^{n-k}}\right\rangle .
$$

Then $G=A B$, where $A=\langle x\rangle \cong C_{p^{n}}$ and $B=\langle y\rangle \cong$ $C_{p^{k}}$. This example shows that Theorem 6 is the best one can expect, in the sense that $B^{G}=\left\langle x^{p^{n-k}}, y\right\rangle=$ $\Omega_{k}(A) B$, so $\Omega_{s}(A) B \notin G$ for $s<k$.

Acknowledgement. The author is indebted to the referee, whose comprehensive and thoughtful report helped to improve this paper and, in particular, helped to simplify the proof of Theorem 6.

References

[1] B. Amberg, S. Franciosi and F. de Giovanni, Products of groups, Oxford Mathematical

Monographs, The Clarendon Press, Oxford University Press, New York, 1992.
[2] N. Blackburn, Über das Produkt von zwei zyklischen 2-Gruppen, Math. Z. 68 (1958), 422-427.
[3] M. D. E. Conder and I. M. Isaacs, Derived subgroups of products of an abelian and a cyclic subgroup, J. London Math. Soc. 69 (2004), no. 2, 333-348.
[4] R. B. Howlett, On the exponent of certain factorizable groups, J. London Math. Soc. 31 (1985), no. 2, 265-271.
[5] B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1953), 243-264.
[6] N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400-401.
[7] N. Itô, Über das Produkt von zwei zyklischen 2-Gruppen, Publ. Math. Debrecen 4 (1956), 517-520.
[8] N. Itô and A. Ôhara, Sur les groupes factorisables par deux 2-groupes cycliques. I. Cas où leur groupe des commutateurs est cyclique, Proc. Japan Acad. 32 (1956), 736-740.
[9] N. Itô and A. Ôhara, Sur les groupes factorisables par deux 2 -groupes cycliques. II. Cas où leur groupe des commutateurs n'est pas cyclique, Proc. Japan Acad. 32 (1956), 741-743.
[10] B. McCann, On products of cyclic and elementary abelian p-groups, Publ. Math. Debrecen 91 (2017), no. 1-2, 185-216.

[^0]: 2010 Mathematics Subject Classification. Primary 20D40, 20D15.

