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Abstract: Recently, the first author [3] classified finite groups obtained as automorphism

groups of smooth plane curves of degree d � 4 into five types. He gave an upper bound of the

order of the automorphism group for each types. For one of them, the type (a-ii), that is given by

maxf2dðd� 2Þ; 60dg. In this article, we shall construct typical examples of smooth plane curve C

by applying the method of Galois points, whose automorphism group has order 60d. In fact, we

determine the structure of the automorphism group of those curves.
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1. Introduction. The purpose of this article

is to give typical examples of smooth plane curve of

degree d whose automorphism group has order 60d.
In fact, we study the structure of that group. Our

method is based on the classification theorem of

automorphism groups by the first author and the

theory of Galois points for smooth plane curves.

First, we recall several definitions of Galois

points in brief. Throughout the present article, we

work over the complex number field C. The concept

of Galois points was introduced by Yoshihara in

1996 (e.g. [6]). Let C � P2 be a smooth plane curve

of degree d ðd � 4Þ and CðCÞ the function field of C.

Let P be a point of P2. Consider the morphism

�P : C ! P1, which is the restriction of the projec-

tion P2 --K P1 with the center P . Then we obtain

the field extension induced by �P , i.e., ��P :
CðP1Þ ,! CðCÞ. Putting KP ¼ ��P ðCðP1ÞÞ, we have

the following definition.

Definition 1. The point P is called a Galois

point for C if the field extension CðCÞ=KP is Galois.

Furthermore, a Galois point is said to be inner

(resp. outer) if P 2 C (resp. P 2 P2 n C). The group

GP ¼ GalðCðCÞ=KP Þ is called the Galois group at

P .

We denote by �ðCÞ (resp. �0ðCÞ) the number of

inner (resp. outer) Galois points for C. There are

many known results on Galois points. We recall

some of them.

Theorem 1 ([6], [7]). Suppose that C is a

smooth plane curve of degree d ðd � 4Þ. Then,

(i) �0ðCÞ ¼ 0; 1 or 3. Further, �0ðCÞ ¼ 3 if and

only if C is projectively equivalent to the

Fermat curve.

(ii) �ðCÞ ¼ 0; 1 or 4 if d ¼ 4. Further, �ðCÞ ¼ 4 if

and only if C is projectively equivalent to the

curve defined by X4 þ Y 4 þ Y Z3 ¼ 0. When

d � 5, we have �ðCÞ ¼ 0 or 1.

Theorem 2 ([7]). Suppose that C is a

smooth plane curve of degree d ðd � 4Þ. If P is an

inner ðresp. outerÞ Galois point, then GP is iso-

morphic to the cyclic group of degree d� 1 (resp. d),

i.e., GP ¼� Zd�1 (resp. Zd).

Remark 1. If C has singularities, then the

theorem above does not hold true. Namely, there

exist a singular plane curve C and a Galois point P

for C such that GP is not cyclic. For example,

see [4].

When C has a Galois point, we can give a

concrete defining equation of C.

Proposition 3 ([7]). By a suitable change of

coordinates, the defining equation of C with an outer

Galois point can be expressed as Zd þ FdðX; Y Þ ¼ 0,

where FdðX; Y Þ is a homogeneous polynomial of

degree d without multiple factors.

Referring to [3], we may infer that plane curves

with �ðCÞ 6¼ 0 or �0ðCÞ 6¼ 0 play an important role

when we classify the automorphism group of

smooth plane curves.

In [3], the first author classified finite groups

obtained as automorphism groups of C into five

types. First of all, we recall several definitions. Let
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G be a group of automorphisms of C. Then, it is

well-known that G is considered as a subgroup of

PGLð3;CÞ ¼ AutðP2Þ. Let Fd be the Fermat curve

Xd þ Y d þ Zd ¼ 0. We denote by Kd a smooth curve

defined by XY d�1 þ Y Zd�1 þ ZXd�1 ¼ 0 (In [3], Kd

is called Klein curve of degree d). For a non-zero

monomial cXiY jZk with c 2 C n f0g, we define its

exponent as maxfi; j; kg. For a homogeneous poly-

nomial F ðX; Y ; ZÞ, the core of F ðX; Y ; ZÞ is defined

as the sum of all terms of F ðX; Y ; ZÞ with the

greatest exponent.

Definition 2. Let C0 be a smooth plane

curve with defining equation F0ðX; Y ; ZÞ ¼ 0. Then

a pair ðC;GÞ of a smooth plane curve C and a

subgroup G � AutðCÞ is said to be a descendent

of C0 if C is defined by a homogeneous polynomial

whose core coincides with F0ðX; Y ; ZÞ and G acts on

C0 in a suitable coordinate system.

Definition 3. We denote by PBDð2; 1Þ the

following subgroup of PGLð3;CÞ:

PBDð2; 1Þ :¼ A ¼
a11 a12 0

a21 a22 0

0 0 �

0B@
1CA2 GLð3;CÞ

8><>:
9>=>;
,

C�:

We remark that there exists a natural group

homomorphism � : PBDð2; 1Þ ! PGLð2;CÞ, i.e.,

A 7! ðaijÞ.
Using these concepts, the first author proved

the following theorem.

Theorem 4 ([3]). Let C be a smooth plane

curve of degree d � 4, G a subgroup of AutðCÞ. Then

one of the following holds:

(a-i) G fixes a point on C and G is a cyclic group

whose order is at most dðd� 1Þ. Furthermore,

if d � 5 and jGj ¼ dðd� 1Þ, then C is projec-

tively equivalent to the curve Y Zd�1 þXd þ
Y d ¼ 0 and AutðCÞ ¼� Zdðd�1Þ.

(a-ii) G fixes a point not lying on C and there exists

a commutative diagram

1 PBD(2, 1)
ρ

PGL(2, ) 1

1 N G G 1,

CC

where N is a cyclic group whose order is a

factor of d and G0 is a subgroup of PGLð2;CÞ,
i.e., a cyclic group Zm, a dihedral group D2m,

the tetrahedral group A4, the octahedral

group S4 or the icosahedral group A5. Fur-

thermore, m � d� 1 and if G0 ¼� D2m then

m j d� 2 or N is trivial. In particular, jGj �
maxf2dðd� 2Þ; 60dg.

(b-i) ðC;GÞ is a descendant of the Fermat curve

Fd : Xd þ Y d þ Zd ¼ 0. In this case jGj � 6d2.

(b-ii) ðC;GÞ is a descendant of the Klein curve

Kd : XY d�1 þ Y Zd�1 þ ZXd�1 ¼ 0. In this

case jGj � 3ðd2 � 3dþ 3Þ if d � 5.

(c) G is conjugate to a finite primitive subgroup

of PGLð3;CÞ. Namely, the icosahedral group

A5, the Klein group of order 168, the alter-

nating group A6, the Hessian group H216 or

its subgroup of order 36 or 72. In particular,

jGj � 360.

2. Remark on (a-i). Let P1; 	 	 	 ; Pm be all

inner and outer Galois points for C and GðCÞ
denote the group generated by GPi ði ¼ 1; 2; . . . ;mÞ.
The group GðCÞ is called the group generated by

automorphisms belonging to all Galois points for C.

In [5], we have studied the difference between

AutðCÞ and GðCÞ. Referring to [2], if �ðCÞ � 1 and

�0ðCÞ � 1, then C is projectively equivalent to the

curve as in Theorem 4 (a-i). We denote the curve by

CðdÞ, i.e., CðdÞ : Y Zd�1 þXd þ Y d ¼ 0. If d � 5,

then P ¼ ð0 : 0 : 1Þ is the only inner Galois point

and Q ¼ ð1 : 0 : 0Þ is the only outer Galois point for

CðdÞ. We put GP ¼ h�i and GQ ¼ h�i. Then

GðCðdÞÞ ¼ h�; �i. In [5], we obtain AutðCðdÞÞ ¼
GðCðdÞÞ. Thus Galois points play an important role

in studying the automorphism groups of smooth

plane curves.

3. Main results. In this section, we first

remark on Theorem 4 (a-ii). In general, we have

2dðd� 2Þ > 60d. However, clearly 2dðd� 2Þ < 60d if

d < 32. Hence we consider the case d < 32, and try

to construct C with jAutðCÞj ¼ 60d.

Let FiðX; Y Þ (i ¼ 1; 2; 3) be the homogeneous

polynomials of X and Y defined by

F30 ¼ X 30 þ 522ðX 25Y 5 � X 5Y 25 Þ �
10005ðX20Y 10 þX10Y 20Þ þ Y 30,

F20 ¼ X 20 � 228ðX 15Y 5 � X 5Y 15 Þ þ
494X10Y 10 þ Y 20 and

F12 ¼ XY ðX10 þ 11X5Y 5 � Y 10Þ.
For these polynomials, we have well-known

facts as follows:

Fact 1. Let �5 be a primitive 5th root of

unity and put

� ¼ � �3
5 0

0 �2
5

 !
; 	 ¼

0 1

�1 0

� �
;
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 ¼
1

�2
5 � �3

5

�5 þ ��1
5 1

1 �ð�5 þ ��1
5 Þ

 !
and I ¼ h�; 	; 
i. Then C½X; Y 
I ¼ C½F30; F20; F12
.
Note that I ¼� SLð2; 5Þ: the binary icosahedral

subgroup of SLð2;CÞ.
Under the situation above, our main results are

stated as follows:

Theorem 5. Let C30, C20 and C12 be the

plane curves defined by

C30:Z30 þ F30ðX; Y Þ ¼ 0,

C20:Z20 þ F20ðX; Y Þ ¼ 0 and

C12:Z12 þ F12ðX; Y Þ ¼ 0.

Then jAutðCdÞj ¼ 60d (d ¼ 30; 20; 12). Further-

more, the following hold:

AutðC30Þ ¼� Z15 � SLð2; 5Þ,
AutðC20Þ ¼� Z5 � ðSLð2; 5Þo Z2Þ and

AutðC12Þ ¼� Z3 � ðSLð2; 5Þo Z2Þ.
4. Proofs of Theorem 5. First of all, we

review Theorem 4 (a-ii) from the viewpoint of

Galois points. Let C be a smooth plane curve of

degree d � 4 with a unique Galois point P , G a

subgroup of AutðCÞ. Then by Proposition 3, we

may assume that the defining equation of C is given

by Zd þ FdðX; Y Þ ¼ 0 for some homogeneous poly-

nomial FdðX; Y Þ of degree d and P ¼ ð0 : 0 : 1Þ. Let

�P : P2 	 	 	 ! P1 be the projection with the center

P . Then �P is represented as �P ððX : Y : ZÞÞ ¼
ðX : Y Þ. The Galois group GP is represented by

GP ¼
1 0 0

0 1 0

0 0 �d

0B@
1CA* +

;

where �d is a primitive d-th root of unity. We denote

by �d this matrix generating GP . Then we get the

following commutative diagram as in Theorem 4

(a-ii):

1 C CPBD(2, 1)
ρ

PGL(2, ) 1

1 N G G 1.

In this case N ¼ GP . Thus we get the exact

sequence

ð]Þ 1! GP ! G!� G0 ! 1;

where G0 � PGLð2;CÞ.
Now, we put

� ¼

�5��4
5ffiffi

5
p �3

5
��2

5ffiffi
5
p 0

�3
5��2

5ffiffi
5
p ��5��4

5ffiffi
5
p 0

0 0 1

0BB@
1CCA; � ¼

�5 0 0

0 1 0

0 0 1

0B@
1CA;

� ¼
�3

5 0 0

0 �2
5 0

0 0 1

0B@
1CA and ’ ¼

�5 0 0

0 1 0

0 0 �

0B@
1CA;

where �12 ¼ �5. We also put

�0 ¼
�

1

0B@
1CA; 	0 ¼ 	

1

0B@
1CA;


0 ¼



1

0B@
1CA 2 GLð3;CÞ:

Referring to [1], we see that the image of I

under the natural homomorphism SLð2;CÞ !
PGLð2;CÞ is isomorphic to A5. Further, we define

Sð2; 1Þ :¼ h�0; 	0; 
0i ¼� I.

First we deal with C30. Put fG0 ¼ h�; �; �30i �
GLð3;CÞ and H ¼ h�; �i. Then we can check that

ð��4Þ2 ¼
�5 0 0
0 �5 0
0 0 1

0@ 1A and � ¼ �
�5 0 0
0 �5 0
0 0 1

0@ 1A2

.

So we have � 2 H. Furthermore, since �0 ¼
ð�2��Þ2�, 	0 ¼ �ð�2��Þ2� and 
0 ¼ �2�, we obtain

H � Sð2; 1Þ.

We also remark that
�1 0 0
0 �1 0
0 0 1

0@ 1A 2 Sð2; 1Þ

and � ¼
�1 0 0
0 �1 0
0 0 1

0@ 1A	0
0, � ¼

�1 0 0
0 �1 0
0 0 1

0@ 1A�0 �5 0 0
0 �5 0
0 0 1

0@ 1A2

. Thus we ob-

tain Sð2; 1Þ;
�5 0 0
0 �5 0
0 0 1

0@ 1A* +
¼ Sð2; 1Þ �

�5 0 0
0 �5 0
0 0 1

0@ 1A* +
¼ H.

Therefore, we have that
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fG0 ¼ H �
1 0 0

0 1 0

0 0 �30

0B@
1CA* +

¼ Sð2; 1Þ �
�5 0 0

0 �5 0

0 0 1

0B@
1CA* +
�

1 0 0

0 1 0

0 0 �30

0B@
1CA* +

:

Put Z :¼ fG0 \

 0 0
0 
 0
0 0 


0@ 1A ����� 
 2 C�

8<:
9=; ¼

�1 0 0
0 �1 0
0 0 �1

0@ 1A; �5 0 0
0 �5 0
0 0 �5

0@ 1A* +
. Then

G0 :¼ fG0=Z � G and

G0 ¼

Sð2; 1Þ �
1 0 0

0 1 0

0 0 �1

0B@
1CA* +

�1 0 0

0 �1 0

0 0 �1

0B@
1CA* +

�

�5 0 0

0 �5 0

0 0 1

0B@
1CA* +
�

1 0 0

0 1 0

0 0 �15

0B@
1CA* +

�5 0 0

0 �5 0

0 0 �5

0B@
1CA* + :

Hence G0 ¼� SLð2; 5Þ � Z15. In particular,

jG0j ¼ 120 	 15 ¼ 1800. On the other hand, we see

that jGj ¼ 30 	 60 ¼ 1800 by ð]Þ. Hence G0 ¼ G,

which completes the proof of this case.

By a similar argument to the above, we can

prove the other cases. So, we give the proofs in brief.

For the curve C20, we put fG0 ¼ h�; �; �20i �
GLð3;CÞ. We see that

fG0 ¼ Sð2; 1Þ �
1 0 0

0 1 0

0 0
ffiffiffiffiffiffiffi
�1
p

0B@
1CA* +

�
�5 0 0

0 �5 0

0 0 1

0B@
1CA* +
�

1 0 0

0 1 0

0 0 �5

0B@
1CA* +

:

Since its center Z is

�1 0 0

0 �1 0

0 0 �1

0B@
1CA; �5 0 0

0 �5 0

0 0 �5

0B@
1CA* +

;

we obtain

G0 ¼

Sð2; 1Þ �
1 0 0

0 1 0

0 0
ffiffiffiffiffiffiffi
�1
p

0B@
1CA* +

�1 0 0

0 �1 0

0 0 �1

0B@
1CA* +

�

�5 0 0

0 �5 0

0 0 1

0B@
1CA* +
�

1 0 0

0 1 0

0 0 �5

0B@
1CA* +

�5 0 0

0 �5 0

0 0 �5

0B@
1CA* + ;

where G0 ¼ fG0=Z � G.

Further, since

SLð2; 5Þ ¼�

Sð2; 1Þ �
1 0 0

0 1 0

0 0 �1

0B@
1CA* +

�1 0 0

0 �1 0

0 0 �1

0B@
1CA* + ;

we have the following exact sequence:

1! SLð2; 5Þ !

Sð2; 1Þ �
1 0 0

0 1 0

0 0
ffiffiffiffiffiffiffi
�1
p

0B@
1CA* +

�1 0 0

0 �1 0

0 0 �1

0B@
1CA* +

!� �1f g ! 1;

where � :
A

�

0B@
1CA 7! �2. The sequence is split

by �1 7!
0 1 0
�1 0 0
0 0

ffiffiffiffiffiffiffi
�1
p

0@ 1A.

Hence G0 ¼� ðSLð2; 5Þo Z2Þ � Z5. In particular,

jG0j ¼ 120 	 2 	 5 ¼ 1200. On the other hand, we see

that jGj ¼ 20 	 60 ¼ 1200 by ð]Þ. Hence G0 ¼ G,

which completes the proof of this case.

Finally, for the curve C12, we put fG0 ¼ h�; ’i,
and K ¼ h�; �i. We can check that K ¼ Sð2; 1Þ.
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Putting " :¼ ð�’4Þ3 ¼
�5 0 0
0 �5 0
0 0 �5

0@ 1A, we obtain

fG0 ¼ hK;�12; "i. Furthermore we getfG0 ¼ hKi � h�12i � h"i

¼ Sð2; 1Þ �
1 0 0

0 1 0

0 0
ffiffiffiffiffiffiffi
�1
p

0B@
1CA* +

�
1 0 0

0 1 0

0 0 !

0B@
1CA* +
�

�5 0 0

0 �5 0

0 0 �5

0B@
1CA* +

;

where ! is a cubic root of unity.

Hence G0 ¼� ðSLð2; 5Þo Z2Þ � Z3. In particular,

jG0j ¼ 120 	 2 	 3 ¼ 720. On the other hand, we see

that jGj ¼ 12 	 60 ¼ 720 by ð]Þ. Hence G0 ¼ G,

which completes the proof of this case. �
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