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Abstract:

Abe, Nuida, and Numata (2009) describe a large class of free multiplicities on

the braid arrangement arising from signed-eliminable graphs. On a large cone in the multiplicity
lattice, we prove that these are the only free multiplicities on the braid arrangement. We also
give a conjecture on the structure of all free multiplicities on the braid arrangement.
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1. Introduction. Let V =2 K™! be a vector
space over a field K of characteristic zero, V* its
dual space and S = Sym(V*) = K]z, ...,z¢. For
0<i<j</{, set oy = x; — x; and write H;; for the
corresponding hyperplane. The braid arrangement
of type Ay C 'V is Up<icj<eHij. A multiplicity on A,
is a map m: {H;;} — N; we represent m as the
tuple (m;; = m(H,;)) in the multiplicity lattice Ay =
N(2"). The order of the subscripts is not important,
i.e., m;j = mj;. The pair (4y,m) is called a multi-
braid arrangement; it is free if the module

D(A(g, m)

:= {6 € Der(S) : §(a;;) € ag-l”S,O <i<ji<{}
of multi-derivations is a free module over S. In this
case we call m a free multiplicity.

Write AZZ for the cone of multiplicities in Ay
satisfying the inequalities m;; < my, +my, + 1 for
every triple i, j, k. We call A’,f the balanced cone of
multiplicities since the exponents of every sub-As
multi-arrangement differ by at most one by a result
of Wakamiko [9]. In [2], Abe, Nuida, and Numata
completely characterize free multiplicities m € A}
of the form m;; = n; +n; + ¢, where ng,...,ng €
Z>y and €; € {—1,0,1} for 0 <i < j </ We call a
multiplicity of this kind an ANN multiplicity. In this
note we prove that the free ANN multiplicities are
the only free multiplicities in A;f (partially general-
izing the result of [5]).

To state our result precisely, we need some
notation. It is natural to associate A, to the
complete graph K,;; on the ¢+ 1 vertices
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{vo,...,v¢}, where the hyperplane H;; € A; corre-
sponds to the edge {v;,v,;} € Ki4q1. Then a multi-
plicity m on Ay yields a labeling of the edges of K4
by positive integers; the edge {v;, v;} is labeled by
my;. We call a three-cycle in K,y with edges
{vi,v;}, {vj, v}, {vg, vi} an odd three-cycle of m if
mi; +my, +my; is an odd integer. Given a four-
cycle C with edges {v;,v;}, {vj, vs}, {vs, ve}, {ve, v}
in Kiq, we put m(C) = |mjj — mjs + mg — myl.
Notice that m(C') does not depend on a particular
ordering of the edges of C, so it is well-defined.

Given a subset U C {vp,...,vs} of size at least
four, write my for the restriction of m to the subset
{H;; : {vi,v;} CU}. We define the deviation of m
overU as DV(my) =3 m(C)?, where the index
runs over all four-cycles of Ky 1 which are contained
in U. Moreover, we define gy to be the number of
odd three-cycles of m contained in U. Our main
result is:

Theorem 1.1. Suppose (Ay,m) is a multi-
braid arrangement with m € Ab. The following are
equivalent.

(1) (Ag,m) is free.
(2) DV(my) < q(|U| —1) for every subset U C

{vo, ..., v} where |U| > 4.

(3) m is a free ANN multiplicity.

The proof of Theorem 1.1 is at the end of §5. In
86 we also introduce the notion of a free verter and
present a conjecture about the structure of all free
multiplicities on braid arrangements.

2. Examples. Weillustrate Theorem 1.1 for
the Az arrangement, which corresponds to the
complete graph Kjy. Write m for a multiplicity
and vy, v1,v9,v3 for the vertices of K. Since there
are only four vertices, the criterion (2) in Theorem
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Fig. 1. The multiplicity m; in Example 2.1.
U1
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Vo 9
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Fig. 2. The multiplicity my in Example 2.2.

1.1 only needs to be considered for U =
{vp,v1,v9,v3}. There are three four-cycles with
edges:

o C) : {vg, v}, {va,v1}, {v1,vs3}, {vs, v}
o Cy:{vyg,va}, {va,v3}, {vs,v1},{v1,v0}
o O3 : {vo,v3}, {vs, va}, {va, 01}, {v1, 00},
so DV(m) = |m(C))|* 4+ |m(Cy)|* 4+ |m(Cs)|?. Hence

DV(m) = (mgy — mya + miz — mogz)”
+ (mo2 — maz + Mz — mol)2
+ (mo3 — ma3 + myy — m01)2.

Moreover, there are four three-cycles of Kj.

Example 2.1. Consider the multiplicity m,
defined by mop = Ma3 = 2 and mp2 = M3 = M1 =
my3 = 1, shown in Figure 1. We can check that
m; € AY. We compute m(C;) =0 and m(Cy) =
m(C3) =2, so DV(m;) =8. Also, there are no
odd three-cycles, so gy = 0. Since DV(m;) >0 =
qu - -(JU| — 1), (A3, m;) is not free by Theorem 1.1.

Example 2.2. Consider the multiplicity msy
defined by mgy; = mp2 = me3 = 2 and myy3 = mis =
mi3 = 1, shown in Figure 2. We can check that
m; € AY. We compute m(C;) =m(Cy) =1 and
m(C;) =2, so DV(my) = 6. Also, there are two
odd three-cycles, so qy =2. Since DV(my) =
6<2-3=gqy- (U —1), (A3,my) is free by Theo-
rem 1.1.

3. Mixed products in the balanced cone.
We will prove the implication (1) = (2) in Theo-

Inequalities for free multi-braid arrangements 37

rem 1.1 using the notion of local and global mixed
products from [3], which we now explain. If
D(Ay,m) is free we list its (non-zero) exponents as
a non-increasing sequence (di,...,ds). Put |m|=
> 0<i<j<eMij- Then Zf;l d; = |m| by Saito’s crite-
rion. For a free multi-arrangement, the kth global
mized product is GMP(k) => d; d;, ---d;,, where
the sum runs across all k-tuples satisfying 1 <
ih <---<ip <l Now write L=L(A;) for the
intersection lattice of A, (all intersections among
the hyperplanes H;;) and L; for those intersections
of codimension k. The kth local mixed product is
LMP(k) = Y ey, di¥dy - - dif, where dff, ..., d are
the (non-zero) exponents of the closed rank k
sub-arrangement (Ay)y (this is the arrangement
consisting of all hyperplanes containing X). By
[3, Corollary 4.6], if (As,m) is free then GMP(k) =
LMP(k) for every 2 < k < /.

Recall that if {v;,v;, v;} are vertices of K1 so
that m;; + my, + my; is odd then we call the cycle
traversing these vertices an odd three-cycle of m.

Proposition 3.1. Let (4A;,m) be a multi-
braid arrangement with m € Alg. Set myji = my; +
mji, + my and write g for the number of odd three-
cycles of m. Then

LMP(2)

= Z (mijk/Q)Q + Z

0<i<j<k<t {i,5}N{s,}=0

mijmg — q/4

and

2) 2

Proof. We prove the formula for LMP(2) first.
If X €Ly, then either (1): X =H;jNH; for a
pair of non-adjacent edges {i,j} and {s,t} or
(2): X=H;NHjynNH; for a three-cycle on
{vi,vj,v5}. In the first case the arrangement is
boolean with (non-zero) exponents (m;;,mg), con-
tributing m;;mg to LMP(2). In the second case
the arrangement is an A, braid arrangement and
a result of Wakamiko [9] shows the exponents are
(mije/2,miji/2) if myy is even and  ((mgj +
1)/2, (mj — 1)/2) if myy is odd (since m € Ab).
The former contributes m7;, /4 to LMP(2) while the
latter contributes m?; /4 —1/4. This yields the
expression for LMP(2).

The inequality for GMP(2) is immediate since
the real-valued function Zngjgl x;xj subject to the
restrictions z; > 0 fori =1,...,¢ and Zle x; = |m|

GMP(2) < <£) m
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attains an absolute maximum of (é) % when 4. From deviations to ANN multiplici-

Ty ==z = @ O ties. Recall that m is an ANN multiplicity on A,

In the statement of the next result, DV(m)
denotes DV(my) when U = {vy, ..., v¢}.

Theorem 3.2. Suppose (Ay,m) is a multi-
braid arrangement with m € Af,f and write q for the
number of odd three-cycles of m. If DV (m) > ¢,
then m is not a free multiplicity.

Remark 3.3. Theorem 3.2 generalizes [5,
Theorem 4.12] to higher braid arrangements.

Proof. By Proposition 3.1, we know that

IMP(2) —GMP(2) > 3 (miye/2)?
0<i<j<k<t

jm[*
2

14
{i.j}n{s,t}=0

Our primary claim is

(1) DV(m)=4¢ > (mu/2)°

0<i<j<k<t

Y 2

{i,j}n{s,t}=0
Once Eq. (1) is proved, notice that

40(LMP(2) — GMP(2)) > DV(m) — ¢/.

Then [3, Corollary 4.6] immediately yields Theo-
rem 3.2. So we prove Eq.(1). By definition
DV(m) =3, m(C)%; expanding this yields
{—1 5
(2) DV(m) =2( ", > omi
0<i<j<t
+4 Z Mgt
{i.gtn{st}=0
—2(£-2) Z (migma + migme, + mikmjk).

0<i<j<k<t

Re-writing the right-hand side of Eq. (1) using the
two expressions
2
= Y w2 Y
0<i<j<t (i} {s.t)=0

+2 E (migmr + migmg, + migmyy)
0<i<j<k<t

MyjMst

and
2 2
Z mi, = (£ —=1) Z my;
0<i<j<k<tl 0<i<j<t

+2 E (mijmar + migmg, + mimyy)
0<i<j<k<l

now yields the right-hand side of Eq. (2). (]

if me Al} and there exist non-negative integers
ng,...,ne and ¢; € {—1,0,1} so that m;; =n; +
nj+€; for 0 <4 < j < /£ In this section we prove
the first part of the implication (2) = (3) in
Theorem 1.1. Namely, we prove that if m € Alé7
then the inequalities DV(m) < gy (|U] — 1) guaran-
tee that m is an ANN multiplicity.

Lemma 4.1. Suppose m is a multiplicity on
Az with q odd three-cycles and DV (m) < 3q. Then
m(C) < 2 for each four-cycle C in K.

Proof. There are three four-cycles. Set 171 =
me1 — M1z + Ma3z — Moz, 1o = M3 — mo1 + Moz —
mes, and T =my3 —myy +mo2 —mg3. Notice
T+ T, =T;, and DV(m)=T?+T5+T;. Now,
suppose without loss that |T3| > 3. Then either
|T1| > 2 or |Ty| > 2. But then DV(m) > 13, contra-
dicting that DV(m) < 3¢ < 12 (since ¢ < 4). O

Proposition 4.2. Let (A;,m) be a multi-
braid arrangement so that m € A} and DV (my) <
3qu for every subset U C {vo,...,v} with |U| =4.
Then m is an ANN multiplicity.

Proof. We need to show that there exist non-
negative integers n; for i =0,...,¢ and integers
€; € {—1,0,1} for 0<i<j<{ so that m; =
n; +n;+¢;. By Lemma4.1, we must have
m(C) < 2 for every four-cycle C' € Cy(Ky1). Using
this condition, we give an inductive algorithm to
construct the integers ng, ..., ny.

If £ =2, set ng = [(mo1 +mo2 — m12)/2],n1 =
[(mo1 +mia —mg2)/2], and ny = [(me2 + mi2 —
mo1)/2]. Since m € A}, n; >0 for i = 0,1,2. More-
over, m;; = n; + n; + €, where €ij € {—1,0}.

Now assume ¢ > 2. We make an initial guess
at what the non-negative integers ng,...,n, and €;
should be, and then adjust as necessary. By
induction on ¢, there exist non-negative integers
Ty - oy Top—1 and gij S {—1, 0, 1} such that m;j = n; +
nj+€; for 0<i<j<f—1. Let ny be a non-
negative integer satisfying ny,4+mn; > m; — 1 and
set €0 =mi — (n; +1y) for every i < ¥, so my =
n; + ng + €. By the choice of ny, we have €, <1 for
all ¢ < /.

Now suppose there is an index 0 < j < £ so that
€jr < —2. Our goal is to decrease either ny or 7; by
one, thereby increasing €, without disturbing any
of the hypotheses made so far, namely

ﬁi—&—ﬁj—&—gij:mijforallO§i<j§€,



No. 4]

n; >0forall0<i</,
(¥) ép<lforalli</,
€t €{—1,0,1} forall0 <s<t<l—1.

First we assume n, >0 and try to decrease ny
by one. We can do this without disturbing
assumptions (x) provided there is no index s so
that e, = 1. So, assume that there is an index 0 <
s < £sothat e, = 1. We claim that in this situation,
est > 0 for every t # s. Suppose to the contrary that
there is an index ¢ so that ¢, = —1 and consider the
four-cycle C': vy — vy — vy — v; — vp. Then

m(C) =€y —€r+ € —€x| >1+2+€p+1>3,

since € € {—1,0,1} by the inductive hypothesis.
This contradicts our assumption that m(C) < 2. So
it follows that €4 € {0,1} for all . Thus we may
increase s by one, thereby decreasing €, by one for
every t # s, without disturbing the hypothesis that
€st € {—1,0,1}. Since we can apply this argument at
every index s so that €,y = 1, we may assume €54 < 0
for every 0 < s < ¢. Hence, if iy > 0, it is now clear
that we can decrease 7y by one without disturbing
assumptions ().

Now assume that ny, = 0. Then, for any s < /£,

Mg+ mje —myjs = (75 + &) + (71 + €je)
— (R + 15+ €5)
= gslf + gj/,‘ - gjs
<0-2—¢5 <1,

since €;; € {—1,0,1} by the inductive hypothesis.
Since m € Alg, we must have an equality for all of
these, so ¢j, = —1 for every s # j, s < £. If n; =0 as
well, then mj = n; +ny + ¢ < -2, contradicting
that mj, is non-negative. Hence 7; > 0 and we can
decrease 7n; by one without disturbing any of
assumptions (*).

In either case, we have shown how to increase
€j¢ if €y < —2 without disturbing assumptions (x).
So we iterate the above arguments until €;; > —1 for
every j < ¢, then set n; =n,; for 0 <4 </ and €; =
€jj for 0 <7 < j < £. This completes the algorithm
and the proof. O

5. Detecting signed-eliminable graphs.
In this section we finish the proof of the implication
(2) = (3) in Theorem 1.1. We will use the charac-
terization of free ANN multiplicities given in [2],
which involves signed-eliminable graphs. We follow
the presentation from [2,8].

A signed graph G on £+ 1 vertices is a graph
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whose edge set Eg is the disjoint union of a set £,
of edges assigned + and a set E of edges assigned
—. Clearly if G is a signed graph on £+ 1 vertices
and ng,...,ne € Z>o then we can define a multi-
plicity m =mg(ng,...,n¢) on Ay by my =n, +
n; + €;;, where

1 {1}1‘, 1}‘7'} S Eg
{7)1‘7 ’Uj} S EC_J
O {’L}qj, ’Uj} ¢ EG.

The graph G is signed-eliminable with signed-
elimination ordering v:V(G) — {0,...,¢} if v is
bijective and, for every three vertices w;,vj, v) €
V(G) with v(v;),v(vj) < v(vg), the induced sub-
graph G|, , ,, satisfies:

e Foro e {+,—},if {v;, v} and {vj, v} are edges

in EY then {v;,v;} € EZ.

e For o e {+,—}, if {vp,v;} € EZ and {v;,v;} €

Eég then {Uk,’Uj} € Eg.

According to [2, Theorem 0.3], an ANN multiplicity
of the form mg(ng, . ..,ny) is free if and only if G is
signed-eliminable.

Remark 5.1. In [2, Theorem 0.3], it is not
stated that m € AI;. However, this is a necessary
and sufficient condition for the proofs; see Appendix
A of [1). Tt is straightforward to check that
condition (3) in the revised statement of Theo-
rem 0.3 in Appendix A of [1] coincides with m € AJ.

Definition 5.2. A graph with (¢ + 1) verti-
ces vy, v1,...,v and £ > 3 is a

(1) o-mountain, where o € {4+, -}, if {vy,v;} € EZ
for i=2,...,0—1, {’Ui,’l)zqu} € Eég for i=

€ij = -1

1,...,£—1, and no other pair of vertices is
joined by an edge;
(2) a o-hill, where oe{+,-}, if {wvy,uv}€

EZ, {vo,vi} € EL fori=2,...,0—1, {v,v} €

E? for i=3,...,4, {vi,vin1} € E;7 for i=

2,...,£—1, and no other pair of vertices is

joined by an edge;

(3) a o-cycle if {vj,vi1} € EZ for i =0,...,0—1,
{vo, v/} € EZ, and no other pair of vertices is
joined by an edge.

Theorem 5.3 ([8, Theorem 5.1]). A signed
graph is signed-eliminable if and only if it has no
induced sub-graph which is a graph on four vertices
which is not signed-eliminable, a o-cycle, a o-moun-
tain, or a o-hill.

Remark 5.4. Theorem 5.3 is not precisely
Nuida’s characterization, but it is easily deduced
from it (this is implicit in [2]).
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Proposition 5.5. Suppose ng,...,ny are
non-negative integers, G is a signed graph on
Vo, .., 0, and m=mg(ng,...,ng). If G is not
signed-eliminable, then there is a subset U C
{0,...,€} so that DV (my) > qu - (U] — 1).

Proof. It follows from the definitions that
DV(my) and gu¢ may be determined after replacing
mi; by €. We write DV(Gy) for DV(my) to
emphasize dependence only on G and the subset
U. If G is not signed eliminable then by Theorem
5.3 G contains an induced sub-graph H which is a
signed graph on four vertices which is not signed-
eliminable, a o-cycle of length > 3, a o-hill, or a
o-mountain. We assume G = H and show that
DV(G) > ¢¢ in each of these cases.

The inequality DV(G) > 3g can easily be
verified by hand for each graph on four vertices
which is not signed-eliminable (this is also done
explicitly in [5, Corollary 6.2]). If G is a o-cycle,
o-mountain, or o-hill on (¢4 1) vertices then a
straightforward but tedious computation yields
that DV(G) = — 20> — ¢ +2 and ¢=¢*—2(—3.
Notice that this proves the result since DV(G) =
@ +2(£+1) > gL. Since it is long and not partic-
ularly enlightening, we will not give further details
here for the computation of DV(G) and ¢ for the
o-cycle, o-hill, and o-mountain. The interested
reader can find more details on the author’s
website, https://math.okstate.edu/ mdipasq, under
the Research tab in the section headed ‘Free
Multiplicities on Braid and Graphic Arrangements.’
Click on the link titled ‘Supplemental computations
for sigma cycles, mountains, and hills.’ O

Remark 5.6. Theorem 1.1 implicitly gives
an additional characterization of signed-eliminable
graphs. Namely, a signed graph G is signed-
eliminable if and only if DV(Gy) < qu(|JU| — 1) for
every subset U of V(G) of size at least four.

Proof of Theorem 1.1. The direction (3) =
(1) is trivial, so we prove (1) = (2) = (3).

(1) = (2): Suppose m € A} and (A,m) is
free. Let U C {wvo,...,v¢} with |U| > 4. Write Ay
for the closed sub-arrangement of A, with hyper-
planes {H;; : {v;,v;} C U}. By [4, Proposition 1.7],
(Ay, my) is free. Hence by Theorem 3.2, DV (my) <
qu(|U| — 1). Since U was arbitrary, we are done.

(2) = (3): Suppose that me A} and
DV(my) < qu(JU| —1) for every U C {v,...,v}
with |U| > 4. By Proposition 4.2, m is an ANN
multiplicity. By Proposition 5.5, m = mg(ng, ...,
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ny) for some signed-eliminable graph G. By
[1, Appendix A, Theorem 0.3], m is a free multi-
plicity on Ay (see Remark 5.1). O

6. Free vertices and a conjecture. In this
final section we discuss free wertices of a multi-
plicity on a graphic arrangement and present a
conjecture on the structure of free multiplicities
on braid arrangements. Given a graph G = (Vg, E¢)
on ¢+ 1 vertices (in bijection with the variables
xg, - .., %¢), the corresponding graphic arrangement
is Ag = Uy, v;)eB; Hij- Just as for the braid arrange-
ment, an edge {v;,v;} of G corresponds to the form
H;; =V(x; — x;), and the graphic multi-arrange-
ment (Ag,m) can be identified with the edge-
labeled graph (G,m) where the label on {v;,v;} is
m(H;;) =my;. If HCG is a subgraph, then we
denote by my the restriction of m to Ey.

Definition 6.1. Suppose G is a graph. A
vertex v; € Vi is a simplicial vertex if the sub-graph
of GG induced by v; and its neighbors is a complete
graph. Given a multi-arrangement (Ag, m) and the
corresponding edge-labeled graph (G,m), a vertex
v; is a free vertex of (G, m) if it is a simplicial vertex
and for every triangle with vertices v;, vj, v we have
mij + Mg < myp + 1.

Theorem 6.2. Suppose G is a graph, v; is a
free vertex of (G,m), and G’ is the induced sub-
graph on the verter set Vg \ {v;}. Then (Ag, m) is
free if and only if (Ag, me) is free.

Proof of Theorem 6.2. We use a result whose
proof we omit since it is virtually identical to the
proof of [4, Theorem 5.10]. Recall that a flat X € L
is called modular if X+Y € L for every Y € L,
where X + Y is the linear span of X, Y considered as
linear sub-spaces of V = K1,

Theorem 6.3. Suppose (A,m) is a central
multi-arrangement of rank £ > 3 and X is a modular
flat of rank € —1. Suppose (Ax,my) is free with
exponents (di,...,de-1,0) and for all He A\ Ax
and H' € Ax, set Y := HN H'. If one of the follow-
ing two conditions is satisfied:

(1) Ay=HUH or

() m(H)> ¥ m(H) -1,
HeA\A
Then (A,m) is free with exponents (di,...,

dg-1, m| — [m’).

Now suppose G is a graph on £+ 1 vertices
{vg,...,v} and Ag is the associated graphic
arrangement. Further suppose that v; is a free
vertex of (G, m), and G’ is the induced sub-graph on
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the vertex set Vi \ {v;}, along with the isolated
vertex v;. Set m’ = me. By [4, Proposition 1.7], if

(Ag, m’) is not free, then neither is (Ag, m).
Suppose now that (Ag,m’) is free. We show

that (Ag, m) is free using Theorem 6.3. Write H;; =

V(x; — z;). Since v; is a simplicial vertex of G, the

flat X = My, 4,0, Hji. is modular and has rank £ — 1.
The sub-arrangement (Ag) y is the graphic arrange-
ment Ae. Suppose H = H;j € Ag \ Ag, H = Hy €
Ae, and set Y = H;;NHg. If {s,t} N{i,j} =0,
then Ay = H;; U Hy. Otherwise, suppose s=j.

Since v; is a simplicial vertex, {i,t} € Eg, so Ay =

H;j U Hy U Hj,. Since v; is a free vertex, m;; + my <

mj; + 1, which is condition (2) from Theorem 6.3.
Hence (Ag, m) is free by Theorem 6.3. O

We use Theorem 6.2 to inductively construct
two types of free multiplicities. Given a graph G,
an elimination ordering is an ordering vy, ..., vy of
the vertices Vi so that v; is a simplicial vertex of
the induced sub-graph on vy,...,v; for every i =
1,...,¢. It is known that V;; admits an elimination
ordering if and only if G is chordal [6].

Corollary 6.4. Suppose (G,m) is an edge-
labeled chordal graph with elimination ordering
vy, ...,V Satisfying that v; is a free vertex of the
induced sub-graph on {vg,...,v;} for every i > 2.
Then (Ag, m) is free.

Corollary 6.5. Let (Ay,m) be a multi-braid
arrangement corresponding to the complete graph
K1 on (04 1) vertices. Suppose that Kypq admits
an ordering {vo,...,vs} so that:

(1) For some integer 0 < k < ¢, the induced sub-
graph G’ on {vy,...,v;} satisfies that mg is a
free ANN multiplicity.

(2) For k+1<i</{, v; is a free vertex of the
induced graph on {vy,...,v;}.

Then (Ag,m) is free.

We conjecture that all free multi-braid ar-
rangements take the form of Corollary 6.5.

Conjecture 6.6. The multi-braid arrange-
ment (Ay,m) is free if and only if it is one of the
multi-braid arrangements constructed in Corollary
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6.5. Equivalently, by Theorem 6.2, if (A;, m) is free
then either m is a free ANN multiplicity or m has a
free vertex. Using Theorem 1.1, this is equivalent to
the following statement: if m is a free multiplicity
and m ¢ Al, then m has a free vertex.

Remark 6.7. Conjecture 6.6 is proved for
the As braid arrangement in [5]. Using Macau-
lay2 [7], we have verified Conjecture 6.6 for many
multiplicities on the A, arrangement.
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