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Abstract: Given a characteristic, we define a character of the Siegel modular group of

level 2, the computations of their values are obtained. Using our theorems, some key theorems of

Igusa [2] can be recovered.
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1. Introduction. The theta function of a

characteristic m of degree g is the series

�mð�; zÞ :¼
X
p2Zg

exp�i

�
pþ

m0

2
; � pþ

m0

2

� �� �

þ 2 pþ m
0

2
; zþ

m00

2

� ��
;

where � 2 Hg, z 2 Cg, m ¼ m0

m00

� �
2 Z2g, Hg is the

Siegel upper half-plane, m0 and m00 denote vectors

in Zg determined by the first and last g coefficients

of m. If we put z ¼ 0, we get the theta constant

�mð�Þ ¼ �mð�; 0Þ. The study of theta functions and

theta constants has a long history, and they are

very important objects in arithmetic and geometry.

They can be used to construct modular forms and to

study geometric properties of abelian varieties.

Farkas and Kra’s book [1] contains very detailed

descriptions for the case of degree one. In [3], [4],

and [5], Matsuda gives new formulas and applica-

tions. It is Igusa in [2] who began to study the cases

of higher degrees. He used �mð�Þ�nð�Þ to determine

the structure of the graded rings of modular forms

belonging to the group �gð4; 8Þ.
In this note, we will define a character of the

group �gð2Þ, the principal congruence group of

degree g and of level 2. We obtained its computa-

tion formula. Using our results, Igusa’s key Theo-

rem 3 in [2] can be recovered.

2. The Siegel modular group of level 2.

The Siegel modular group Spðg;ZÞ of degree g is the

group of 2g� 2g integral matrices M satisfying

M
0 Ig

�Ig 0

� �
tM ¼

0 Ig

�Ig 0

� �
;

in which tM is the transposition of M, Ig is the

identity of degree g. If we put M ¼ a b
c d

� �
, the

condition for M in Spðg;ZÞ is atd� btc ¼ Ig, atb and

ctd are symmetric matrices. In fact, if M is in

Spðg;ZÞ, then tbd and tac are also symmetric, see

[6, p. 437]. In this paper, we discuss two special

subgroups of the Siegel modular group. The first is

the principal congruence subgroup �gð2Þ of degree g

and of level 2 which is defined by M � I2g (mod 2Þ.
The second is the Igusa modular group �gð4; 8Þ,
which is defined by M � I2g (mod 4Þ and ðatbÞ0 �
ðctdÞ0 � 0 (mod 8Þ. If s is a square matrix, we

arrange its diagonal coefficients in a natural order

to form a vector ðsÞ0. The Siegel modular group

Spðg;ZÞ acts on Hg by the formula

M� ¼ ða� þ bÞðc� þ dÞ�1;

where � 2 Hg, M ¼ a b
c d

� �
2 Spðg;ZÞ. An ele-

ment m 2 Z2g is called a theta characteristic of

degree g. If n is another characteristic, then we have

�mþ2nð�; zÞ ¼ ð�1Þ
tm0n00�mð�; zÞ:

Since

�mð�;�zÞ ¼ ð�1Þ
tm0m00�mð�; zÞ;

m is called even or odd according as tm0m00 is even

or odd. Only for even m, theta constants are none

zero. Given a characteristic m and an element M in

the Siegel modular group, we define

M �m ¼
d �c
�b a

� �
m0

m00

� �
þ
ðctdÞ0
ðatbÞ0

 !
:

doi: 10.3792/pjaa.93.77
#2017 The Japan Academy

2010 Mathematics Subject Classification. 11F46.

No. 8] Proc. Japan Acad., 93, Ser. A (2017) 77

http://dx.doi.org/10.3792/pjaa.93.77


This operation modulo 2 is a group action, i.e.

M1 � ðM2 �mÞ � ðM1M2Þ �m (mod 2Þ. Next we ex-

plain the transformation formulas for theta con-

stants: for any m 2 Z2g and M 2 Spðg;ZÞ, we put

�mðMÞ :¼ �
1

8
ðtm0tbdm0 þ tm00tacm00

� 2tm0tbcm00 � 2tðatbÞ0ðdm0 � cm00ÞÞ;

then we have

�M�mðM�Þ ¼ aðMÞeð�mðMÞÞ detðc� þ dÞ
1
2�mð�Þ;

in which aðMÞ is an eighth root of unity depending

only on M and the choice of square root sign for

detðc� þ dÞ
1
2 , and eð�mðMÞÞ ¼ e2�i�mðMÞ. From now

on, we always discuss the group �gð2Þ, unless

specified. Hence, we can write

�mðMÞ ¼ �
1

8
ðtm0tbdm0 þ tm00tacm00 � 2tðatbÞ0dm0Þ:

3. Main theorems and proofs. The char-

acter mentioned in the abstract is as follows:

Definition. Let m 2 Z2g, M 2 �gð2Þ, we de-

fine �mðMÞ by

�mðM�Þ ¼ aðMÞ�mðMÞ detðc� þ dÞ
1
2�mð�Þ;

where aðMÞ comes from the transformation formu-

las of theta constants.

Theorem 3.1. For a fixed m, �mðMÞ is a

character of �gð2Þ.
The proof of Theorem 3.1 needs two lemmas, in

which �gð2Þ is essential.

Lemma 3.2. If m;n 2 Z2g and m � n
(mod 2Þ, then �mðMÞ � �nðMÞ (mod 1Þ.

Proof. Let m ¼ nþ 2�, then

tm0tbdm0

¼ tðn0 þ 2�0Þtbdðn0 þ 2�0Þ
¼ tn0tbdn0 þ 4t�0tbd�0 þ 2tn0tbd�0 þ 2t�0tbdn0

� tn0tbdn0 (mod 8Þ;
since b � 0 (mod 2Þ and tbd is symmetric, the last

two terms are equal. Similarly, tac is symmetric

which implies that tm00tacm00 � tn00tacn00 (mod 8Þ.
Moreover, 2tðatbÞ0dm0 � 2tðatbÞ0dn0 (mod 8Þ is triv-

ial. By the definition of �mðMÞ, Lemma 3.2 is true.

�

Lemma 3.3. For M;M 0 2 �gð2Þ, we have

�M 0�mðMÞ � �mðMÞ (mod 1Þ.
Proof. This lemma can be proved from the

definition of M 0 �m with M 0 2 �gð2Þ and Lemma

3.2. �

Proof of Theorem 3.1. We firstly give a for-

mula for �mðMÞ. By the definition of the operation

�, we can find a unique n in Z2g with M � n ¼ m.

Define � 2 Z2g by mþ 2� ¼ n, then by Lemma 3.2

and Lemma 3.3, we have

�mðM�Þ
¼ �M�nðM�Þ

¼ aðMÞeð�nðMÞÞ detðc� þ dÞ
1
2�nð�Þ

¼ aðMÞeð�mðMÞÞ detðc� þ dÞ
1
2�nð�Þ

¼ aðMÞeð�mðMÞÞ detðc� þ dÞ
1
2�mþ2�ð�Þ

¼ aðMÞeð�mðMÞÞ detðc� þ dÞ
1
2ð�1Þ

tm0�00�mð�Þ:
Hence,

�mðMÞ ¼ eð�mðMÞÞð�1Þ
tm0�00 :ð1Þ

To prove Theorem 3.1 is equivalent to prove

�mðM1Þ�mðM2Þ ¼ �mðM1M2Þ for any M1;M2 2
�gð2Þ. Now fix M1, M2 and m, define �1, �2 by

mþ 2�1 ¼ n1, M1 � n1 ¼ m; mþ 2�2 ¼ n2, M2 �
n2 ¼ m. Write

M1 ¼
a1 b1

c1 d1

� �
; M2 ¼

a2 b2

c2 d2

� �
;

by (1), we have

�mðM1Þ ¼ eð�mðM1ÞÞð�1Þ
tm0�001

and

�mðM2Þ ¼ eð�mðM2ÞÞð�1Þ
tm0�002 :

In order to compute �mðM1M2Þ, we write � 0 ¼M2� ,

M ¼M1M2 ¼
a b
c d

� �
, and define �3 by mþ

2�3 ¼ �n with M1 � n1 ¼ m, M2 � �n ¼ n1. Then by

Lemmas 3.2 and 3.3, we have

�mðM1M2�Þ
¼ �M1�n1

ðM1�
0Þ

¼ aðM1Þeð�n1
ðM1ÞÞ detðc1�

0 þ d1Þ
1
2�n1
ð� 0Þ

¼ aðM1Þeð�mðM1ÞÞ detðc1�
0 þ d1Þ

1
2�M2��nðM2�Þ

¼ aðM1Þeð�mðM1ÞÞ detðc1�
0 þ d1Þ

1
2aðM2Þeð��nðM2ÞÞ

� detðc2� þ d2Þ
1
2��nð�Þ

¼ aðM1ÞaðM2Þeð�mðM1ÞÞeð�n1
ðM2ÞÞdetðc1�

0 þd1Þ
1
2

� detðc2� þ d2Þ
1
2��nð�Þ
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¼ aðM1ÞaðM2Þeð�mðM1ÞÞeð�mðM2ÞÞ

� detðc� þ dÞ
1
2�mþ2�3

ð�Þ
¼ aðM1M2Þeð�mðM1ÞÞeð�mðM2ÞÞ

� detðc� þ dÞ
1
2ð�1Þ

tm0�003�mð�Þ;
in which, we use c� þ d ¼ ðc1�

0 þ d1Þðc2� þ d2Þ and

aðMÞ ¼ aðM1ÞaðM2Þ, the latter is implied by Igusa’s

Theorem 2 in [2]. Hence,

�mðM1M2Þ ¼ eð�mðM1ÞÞeð�mðM2ÞÞð�1Þ
tm0�003 :

Now we compute

ð�1Þ
tm0�001 ; ð�1Þ

tm0�002 and ð�1Þ
tm0�003 :

From M1 � n1 ¼ m, we get

n1 ¼
ta1m

0 þ tc1m
00 � ta1ðc1

td1Þ0 � tc1ðat1b1Þ0
tb1m

0 þ td1m
00 � tb1ðc1

td1Þ0 � td1ðat1b1Þ0

 !
:ð2Þ

Therefore, from mþ 2�1 ¼ n1, we have

�001 ¼
n001 �m00

2

¼
tb1m

0

2
þ
ðtd1 � IgÞm00

2
�

tb1ðc1
td1Þ0

2
�

td1ðat1b1Þ0
2

�
tb1m

0

2
þ
ðtd1 � IgÞm00

2
�
ðtb1Þ0

2
(mod 2Þ;

by noting that b1 � c1 � 0 (mod 2Þ and a1 � d1 �
Ig (mod 2Þ. So

tm0�001

�
tm0tb1m

0

2
þ

tm0ðtd1 � IgÞm00

2

�
tm0ðtb1Þ0

2
(mod 2Þ

�
tm0ðtd1 � IgÞm00

2
(mod 2Þ;

because
tb1

2 (mod 2Þ is symmetric, which follows

from the fact atb1 is symmetric. Similarly,

tm0�002 �
tm0ðtd2 � IgÞm00

2
(mod 2Þ:

The computation for �003 is more complicated.

Recall that M1 � n1 ¼ m, M2 � �n ¼ n1, mþ 2�3 ¼
�n and (2), we have

n1 �
ta1m

0 þ tc1m
00 � ta1ðc1

td1Þ0
tb1m

0 þ td1m
00 � td1ðat1b1Þ0

 !
(mod 4Þ:

From M2 � �n ¼ n1, we get

�n �
ta2n

0
1 þ tc2n

00
1 � ta2ðc2

td2Þ0
tb2n

0
1 þ td2n

00
1 � td2ðat2b2Þ0

 !
(mod 4Þ:

Therefore,

�n00 � tb2ðta1m
0 þ tc1m

00 � ta1ðc1
td1Þ0Þ þ td2ðtb1m

0

þ td1m
00 � td1ðat1b1Þ0Þ � td2ðat2b2Þ0 (mod 4Þ

� tb2
ta1m

0 þ td2
tb1m

0 þ td2
td1m

00

� td2
td1ðat1b1Þ0 � td2ða2

tb2Þ0 (mod 4Þ:

By the definition of �3, we have

�003 ¼
�n00 �m00

2

�
tb2

ta1m
0

2
þ

td2
tb1m

0

2
þ
ðtd2

td1 � IgÞm00

2

�
td2

td1ðat1b1Þ0
2

�
td2ða2

tb2Þ0
2

(mod 2Þ

�
tb2m

0

2
þ

tb1m
0

2
þ
ðtd2

td1 � IgÞm00

2

� ð
tb1Þ0
2
�
ðtb2Þ0

2
(mod 2Þ;

and

tm0�003

�
tm0tb2m

0

2
þ

tm0tb1m
0

2
þ

tm0ðtd2
td1 � IgÞm00

2

�
tm0ðtb1Þ0

2
�

tm0ðtb2Þ0
2

(mod 2Þ

�
tm0ðtd2

td1 � IgÞm00

2
(mod 2Þ;

by using the expansions of quadratic forms and the

fact that
tb2

2 ,
tb1

2 are symmetric modulo 2. Finally,

the verification of

tm0�003 � tm0�001 þ tm0�002 (mod 2Þ

is easy, which comes from the simple fact

ðtd2 � IgÞðtd1 � IgÞ � 0 (mod 4Þ:

This completes the proof of Theorem 3.1. �

In [2], Igusa gave the generators Aij, Bij, Cij of

�gð2Þ, where

(a) 1 � i 6¼ j � g, Aij ¼
a 0
0 d

� �
, d ¼ ta�1, a is ob-

tained by replacing ði; jÞ-coefficient in Ig by 2;

(b) 1 � i � g, Aii ¼
a 0
0 d

� �
, d ¼ ta�1, a is ob-

tained by replacing ði; iÞ-coefficient in Ig by

�1;
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(c) 1 � i < j � g, Bij ¼
Ig b
0 Ig

� �
, b is obtained

by replacing ði; jÞ- and ðj; iÞ-coefficients in 0 by

2;

(d) 1 � i � g, Bii ¼
Ig b
0 Ig

� �
, b is obtained by

replacing ði; iÞ-coefficient in 0 by 2;

(e) 1 � i � j � g, Cij ¼ tBij.

By noting the computation of �, which depends

on m and M, we find ð�1Þ
tm0�00 ¼ 1 for M ¼ Bij or

Cij, because in these cases, d ¼ Ig, hence tm0�00 ¼ 0.

If M ¼ Aij, it is easy to find that tm0�00 ¼
�m0im00j � m0im00j (mod 2Þ. We can easily compute

�mðMÞ for M ¼ Aij, Bij and Cij. Now the values of

�mðMÞ for the generators are

�mðAijÞ ¼ ð�1Þm
0
im
00
j ; �mðBijÞ ¼ ð�1Þm

0
im
0
j ;

�mðBiiÞ ¼ ð�1Þm
0
i e
�ðm0iÞ

2

4

 !
;

�mðCiiÞ ¼ e
�ðm00i Þ

2

4

 !
; �mðCijÞ ¼ ð�1Þm

00
i m
00
j :

Using the definitions of �mðMÞ and tm0�00, it is easy

to prove �mðMÞ ¼ 1 for M in the Igusa modular

group �gð4; 8Þ. Hence, by the computations above,

we get

Theorem 3.4. Write M in the form

M ¼
Y

1�i;j�g
A
pij
ij

Y
1�i�j�g

B
qij
ij

Y
1�i�j�g

C
rij
ij M

0

with pij, qij, rij 2 Z and M 0 is in the commutator

subgroup of �gð2Þ, which is in �gð4; 8Þ, then

�mðMÞ ¼ ð�1ÞAe �
B

4

� �

with

A ¼
X

1�i;j�g
pijm

0
im
00
j þ

X
1�i�j�g

qijm
0
im
0
j

þ
X

1�i<j�g
rijm

00
i m
00
j ;

B ¼
X

1�i�g
qiiðm0iÞ

2 þ
X

1�i�g
riiðm00i Þ

2:

4. Applications. If we define  ð�Þ ¼
�mð�Þ�nð�Þ, then for M 2 �gð2Þ,
 ðM�Þ ¼ a2ðMÞ�mðMÞ�nðMÞdetðc�þ dÞ�mð�Þ�nð�Þ;

we find �mðMÞ�nðMÞ is exactly the character

defined by Igusa in [2], hence our theorems can

recover Igusa’s Theorem 3 in [2]. Our character

�mðMÞ is more fundamental, moreover we can see

the relations between �mðMÞ and �mðMÞ.
We can use our results to give a more trans-

parent proof of the key part of Theorem 5 in Igusa’s

paper [2]. The key part of Theorem 5 in that paper

is from the invariant condition that �mðM�Þ
�nðM�Þ ¼

�mð�Þ
�nð�Þ

holds for all even m, n to infer M is in �gð4; 8Þ,
where M is in �gð2Þ. By the definition of �mðMÞ,
this is equivalent to the congruence �mðMÞ ¼
�nðMÞ holds for all even m, n, i.e.

eð�mðMÞÞð�1Þ
tm0 ðtd�IgÞm00

2

is equal to

eð�nðMÞÞð�1Þ
tn0 ðtd�IgÞn00

2 :

Let n0 ¼ n00 ¼ 0, we get for any even m,

tm0ðtd� IgÞm00

2
� 0 (mod 2Þ

and

tm0tbdm0 þ tm00tacm00 � 2tðatbÞ0dm0 � 0 (mod 8Þ:

The first congruence implies d � Ig (mod 4Þ, from

atd� btc ¼ Ig, and we get a � Ig (mod 4Þ. In the

second congruence, let m0 ¼ 0, we get tm00tacm00 �
0 (mod 8Þ, this implies tac � 0 (mod 4Þ, hence c �
0 (mod 4Þ, and ðtacÞ0 � 0 (mod 8Þ. If we write ta ¼
Ig þ 4�a, then we have

ðtacÞ0 ¼ ððIg þ 4�aÞcÞ0 � ðcÞ0 � 0 (mod 8Þ:

Let m00 ¼ 0, we get the congruence

tm0tbdm0 � 2tðatbÞ0dm0 � 0 (mod 8Þ;

which is equivalent to the congruence

tm0tbdm0 � 2tðbÞ0m0 � 0 (mod 8Þ:ð3Þ

Write tb ¼ ð2bijÞ and d ¼ Ig þ 4�d, then

tm0tbdm0 � 2tðbÞ0m0

¼ tm02bijðIg þ 4dÞm0 � 2ð2bijÞ0m0

� 2tm0bijm
0 � 4ðbijÞ0m0 (mod 8Þ

� 2b11m
0
1

2 � 4b11m
0
1 (mod 8Þ

by taking tm0 ¼ ðm01; 0; 0; � � � ; 0Þ. Hence (3) implies

b11 � 0 (mod 4Þ. Similarly, we can prove bii �
0 (mod 4Þ holds for each 1 � i � g. Therefore, we

have ðbÞ0 � 0 (mod 8Þ. Combining it with (3), we

find the congruence tm0tbdm0 � 0 (mod 8Þ holds for

any even m0, which implies tbd � 0 (mod 4Þ, hence

b � 0 (mod 4Þ. The analysis above shows that M is

80 X. XIONG [Vol. 93(A),



in �gð4Þ and ðbÞ0 � ðcÞ0 � 0 (mod 8Þ. The observa-

tion of Igusa in [2, p. 222, line 4-line 6] shows M is

in �gð4; 8Þ.
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