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1. Introduction. The purpose of this note

is to give a formula of the hyperbolic volume of

a knot complement using twisted Alexander invar-

iants.
A twisted Alexander polynomial was first

defined in [3] for knots in the 3-sphere, and Wada

([10]) generalized this work and showed how to

define a twisted Alexander polynomial given only a

presentation of a group and representations to Z

and GLðV Þ where V is a finite dimensional vector

space over a field. In [2], Kitano proved that in the

case of knot groups the twisted Alexander poly-

nomial can be regarded as a Reidemeiser torsion.

Let M be a compact and oriented 3-manifold

whose interior admits a finite volume hyper-

bolic structure. Porti ([8]) has investigated the

Reidemeister torsion of M associated with the

adjoint representation Ad�HolM of its holonomy

representation HolM : �1ðMÞ ! PSLð2;CÞ, and

then Yamaguchi showed in [13] a relationship

between the Porti’s Reidemeister torsion and the

twisted Alexander invariant explicitly.

Müller’s work ([7]) provides the relation be-

tween the Ray-Singer torsion and the hyperbolic

volume of a compact hyperbolic 3-manifold. By

another work ([6]) of Müller on the equivalence

between the Reidemeister torsion and the Ray-

Singer torsion for unimodular representations, we

know the hyperbolic volume of a compact 3-mani-

fold can be expressed using a Reidemeister torsion.

After the works, Menal-Ferrer and Porti ([5])

obtained a formula of the volume of a cusped

hyperbolic 3-manifold M using ‘Higher-dimensional

Reidemeister torsion invariants’, which are associ-

ated with representations �n : �1ðMÞ ! SLðn;CÞ
corresponding to the holonomy representation

HolM : �1ðMÞ ! PSLð2;CÞ (see Section 3 for the

detail).

In this note, we show that the Yamaguchi’s

method in [12,13] is applicable to Higher-dimen-

sional Reidemeister torsion invariants, so that we

have a formula of the hyperbolic volume of a knot

complement using twisted Alexander invariants.

Let �K;�nðtÞ be the twisted Alexander invariant of

Wada’s notation ([10]). For the integer kð> 1Þ, set

AK;2kðtÞ :¼ �K;�2k
ðtÞ

�K;�2 ðtÞ
and AK;2kþ1ðtÞ :¼ �K;�2kþ1

ðtÞ
�K;�3 ðtÞ

.

Theorem 1.1. Let K be a hyperbolic knot in

the 3-sphere. Then

lim
k!1

log jAK;2kþ1ð1Þj
ð2kþ 1Þ2

¼ lim
k!1

log jAK;2kð1Þj
ð2kÞ2

¼
VolðKÞ

4�
:

In the last section, we give some calculations

for the figure eight knot. The details, including link

case, will be given elsewhere.

2. Reidemeister torsions and twisted

Alexander invariants. Following [9] and [13],

we review some definitions and conventions in this

section.

Let F be a field and C� ¼ ðC�; @Þ a chain

complex of finite dimensional F-vector spaces:

0! Cd !
@
Cd�1 !

@ � � � !@ C0 ! 0:

For each i, we denote by Bi ¼ ImðCiþ1 !
@
CiÞ, Zi ¼

kerðCi !
@
Ci�1Þ, and the homology is denoted by

Hi ¼ Zi=Bi. By the definition of Zi, Bi and Hi, we

obtain the following exact sequence:

0! Zi ! Ci !
@
Bi�1 ! 0;

0! Bi ! Zi ! Hi ! 0:
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Let eBi�1 be a lift of Bi�1 to Ci, and eHi a lift of Hi to

Zi. Then we can decompose Ci as follows:

Ci ¼ Zi � eBi�1

¼ Bi � eHi � eBi�1:

Let ci be a basis for Ci and c the collection

fcigi�0. Similarly, let hi be a basis for Hi, if nonzero,

and h the collection fhigi�0. We choose bi a basis of

Bi. Let eb i�1 be a lift of bi�1 to Ci, and ehi a lift of hi to

Zi, then we have a new basis bi t eb i�1 t ehi of Ci,

where t means a disjoint union. We denote by

½bi; eb i�1; ehi=ci� the determinant of the transforma-

tion matrix from the basis ci to bi t eb i�1 t ehi.
Definition 2.1. The torsion of the chain

complex C� with basis c and h for Hi is:

torðC�; c;hÞ ¼
Yd
i¼0

½bi; eb i�1; ehi=ci�ð�1Þiþ1

2 F�=f	1g:

It is known that torðC�; c;hÞ is independent of

the choice of bi and the lifts eb i�1 and ehi.
Remark 2.2. In [5], Menal-Ferrer and Porti

use ð�1Þi instead of ð�1Þiþ1 in Definition 2.1. Then

the sign of the right-hand side of the equation in

Theorem 7.1 in [5] becomes opposite. See Remark

2.2 and Theorem 4.5 in [9].

Let W be a finite CW-complex, and

� : �1ðW; �Þ ! SLðn;FÞ a representation of its fun-

damental group. Consider the chain complex of

vector spaces

C�ðW; �Þ :¼ Fn 
� C�ð eW ; ZÞ

where C�ð eW;ZÞ denotes the simplicial complex of

the universal covering of W and 
� means that one

takes the quotient of Fn 
Z C�ð eW ; ZÞ by Z-module

generated by

�ð�Þ�1v
 c� v
 � � c:

Here, v 2 Fn, � 2 �1ðW; �Þ and c 2 C�ð eW ; ZÞ.
Namely,

v
 � � c ¼ �ð�Þ�1v
 c 8� 2 �1ðW; �Þ:

The boundary operator is defined by linearity and

@ðv
 cÞ ¼ ðId
 @Þðv
 cÞ ¼ v
 @c. We denote by

H�ðW; �Þ the homology of this complex.

Let fv1; . . . ; vng be a basis of Fn and let

ci1; . . . ; ciki denote the set of i-dimensional cells of

W . We take a lift ~cij of the cell cij in eW . Then,

for each i, ~ci ¼ f~ci1; . . . ; ~cikig is a basis of the

Z½�1ðWÞ�-module Cið eW ; ZÞ. Thus we have the

following basis of CiðW; �Þ:

ci ¼ fv1 
 ~ci1; v2 
 ~ci1; . . . ; vn 
 ~cikig:

Suppose HiðW; �Þ 6¼ 0, and let hi be a basis of

HiðW ; �Þ. We denote by h the basis fh0; . . . ; hdimWg
of H�ðW; �Þ. Then torðC�ðW; �Þ; c;hÞ ð2 F�=f	1gÞ
is well defined. Note that it does not depend on the

lifts of the cells ~ci since det � ¼ 1. Further, if the

Euler characteristic of W is equal to zero (e.g. the

case that W corresponds to a knot exterior), it does

not depend on the choice of a basis fv1; . . . ; vng (cf.

Lemma 2.4.2 in [13]).

Remark 2.3. The Reidemeister torsion is

independent of the choice of a base point � of the

fundamental group �1ðW; �Þ. Furthermore, it is

known that the Reidemeister torsion is an invariant

under subdivision of the cell decomposition of W

with �-coefficients up to factor 	1.

Remark 2.4. Let K be a knot in the 3-

sphere S3 and MK ¼ S3 � intNðKÞ. We denote by

GðKÞ the fundamental group of MK . From the

result of Waldhausen ([11]), the Whitehead group

WhðGðKÞÞ is trivial. In such a case, the

Reidemeister torsion does not depend on the choice

of its CW-structure. Suppose H�ðMK; �Þ ¼ 0. Then

the Reidemeister torsion does not depend on h ¼ ;.
In this case we denote by torðMK; �Þ the Reide-

meister torsion.

Let � be a surjective homomorphism from

�1ðW; �Þ to the multiplicative group hti. Instead of

a representation � : �1ðW; �Þ ! SLðn;FÞ, consider

the twisted representation:

�
 � : �1ðW; �Þ ! GLðFðtÞÞ;

where FðtÞ is the field of fraction of the polynomial

ring F½t�. By the same method as above, we can

define torðC�ðW;�
 �Þ;1
 c;hÞ ð2 F�ðtÞ=f	tnZgÞ.
As the determinant is not one, there is an inde-

pendency factor tnm, for some integer m. More

precisely, we define:

C�ðW;�
 �Þ ¼ FðtÞ 
F Fn 
� C�ð eW ; ZÞ;

where the action is given by f 
 v
 ð� � cÞ ¼ f �
t�ð�Þ 
 �ð�Þ�1v
 c for � 2 �1ðW; �Þ. The boundary

operator is defined by linearity and @ðf 
 v
 cÞ ¼
f 
 v
 @c.

Kitano ([2]) investigated the relationship be-

tween the Reidemeister torsions and the twisted

Alexander invariants for knots. Namely, he proved

Theorem 2.5 ([2]). Let K be a knot in the

3-sphere S3 and MK ¼ S3 � intNðKÞ. Suppose � is a
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non-trivial representation such that H�ðMK; �Þ ¼ 0.

Then, H�ðMK;�
 �Þ ¼ 0 and torðMK;�
 �Þ ¼
�K;�ðtÞ, where �K;�ðtÞ is the twisted Alexander

invariant.

See also Theorem 2.13 in [9]. The twisted

Alexander invariant can be computed using the

Fox calculus ([1,2,10]).

3. Representations of the fundamental

groups of hyperbolic 3-manifolds. Let M be

an oriented, complete, hyperbolic 3-manifold of

finite volume. Then M has the holonomy repre-

sentation: HolM : �1ðM; �Þ ! IsomþH3, where

IsomþH3 is the orientation preserving isometry

group of hyperbolic 3-space H3. Using the upper

half-space model, IsomþH3 is identified with

PSLð2;CÞ ¼ SLð2;CÞ=f	1g. It is known that

HolM can be lifted to SLð2;CÞ, and such lifts are

in canonical one-to-one correspondence with spin

structures on M. Thus, attached to a fixed spin

structure � on M, we get a representation:

HolðM;�Þ : �1ððM; �Þ; �Þ ! SLð2;CÞ:

Let W be a finite CW-complex and � a

representation of �1ðW; �Þ to SLð2;CÞ. Then the

pair ðC2; �Þ is an SLð2;CÞ-representation of

�1ðW; �Þ by the standard action SLð2;CÞ to C2. It

is known that the pair of the symmetric product

Symn�1ðC2Þ and the induced action by SLð2;CÞ
gives an n-dimensional irreducible representation of

SLð2;CÞ. More precisely, let Vn be the vector space

of homogeneous polynomials on C2 with degree

n� 1, that is,

Vn ¼ spanChxn�1; xn�2y; . . . ; xyn�2; yn�1i:

Then the symmetric product Symn�1ðC2Þ can be

identified with Vn and the action of A 2 SLð2;CÞ is

expressed as

A � p
x

y

� �
¼ p A�1 x

y

� �� �

where p
x
y

� �
is a homogeneous polynomial and the

right-hand side is determined by the action of A�1

on the column vector as a matrix multiplication.

We denote by ðVn; �nÞ the representation given by

this action of SLð2;CÞ where �n means the homo-

morphism from SLð2;CÞ to GLðVnÞ. It is known

that each representation ðVn; �nÞ turns into an

irreducible SLðn;CÞ-representation of SLð2;CÞ
and that every irreducible n-dimensional represen-

tation of SLð2;CÞ is equivalent to ðVn; �nÞ. Com-

posing HolðM;�Þ with �n, we obtain the following

representation:

�n : �1ððM; �Þ; �Þ ! SLðn;CÞ:

In the following sections, we will discuss

Reidemeister torsions associated with this repre-

sentation �n. Note that there are several computa-

tions of the Reidemeister torsions associated with

�2k in [14,15].

4. The results of Menal-Ferrer and

Porti. In this note, we focus on a knot comple-

ment. We introduce the results of Menal-Ferrer and

Porti ([4,5]) in this setting.

Let K be a hyperbolic knot in the 3-sphere S3,

that is, S3 �K is an oriented, complete, finite-

volume hyperbolic manifold with only one cusp.

Then, S3 �K may be regarded as the interior of a

compact manifold MK such that @MK ¼ T where

T is homeomorphic to a torus T 2. In what follows,

we consider the compact manifold MK instead of

S3 �K.

By Corollary 3.7 in [4], we have that

dimCH
iðMK; �nÞ ¼ 0 ði ¼ 0; 1; 2Þ if n is even, and

that dimCH
0ðMK; �nÞ ¼ 0, dimCH

1ðMK; �nÞ ¼
dimCH

2ðMK; �nÞ ¼ 1 if n is odd. Further, in [5],

Menal-Ferrer and Porti proved the following. (Note

that Poincaré duality with coefficients in �n holds

(Corollary 3.7 in [5]).)

Proposition 4.1 (Proposition 4.6 in [5]).

Suppose that H�ðT ; �nÞ 6¼ 0. Let G < �1ðMK; �Þ be

some fixed realization of the fundamental group of T

as a subgroup of �1ðMK; �Þ. Choose a non-trivial

cycle � 2 H1ðT ; ZÞ, and a non-trivial vector v 2 Vn
fixed by �nðGÞ. Then the following holds:

(a) A basis for H1ðMK; �nÞ is given by i�ð½v
 e��Þ.
(b) A basis for H2ðMK; �nÞ is given by i�ð½v
 eT �Þ.

Here, i : T ,!MK denotes the inclusion.

Set h1 ¼ i�ð½v
 e��Þ, h2 ¼ i�ð½v
 eT �Þ, and h ¼
fh1; h2g. On the other hand, Menal-Ferrer and Porti

(Theorem 0.2 in [4]) proved that H�ðMK; �2kÞ ¼ 0

for k � 1. Therefore, we may define the following

quotients:

T 2kþ1ðMK; �Þ :¼
torðMK; �2kþ1;hÞ

torðMK; �3;hÞ
2 C�=f	1g;

T 2kðMK; �Þ :¼
torðMK; �2kÞ
torðMK; �2Þ

2 C�=f	1g:

The quantity T 2kþ1 is independent of the spin

structure because of the fact that an odd-dimen-
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sional irreducible complex representation of

SLð2;CÞ factors through PSLð2;CÞ. Since S3 �K
has only one cusp, then all spin structures on MK

are acyclic (Corollary 3.4 in [5]). This means that

the limit of T 2k is also independent of the spin

structure (Theorem 7.1 in [5]). Thus it is not

necessary to consider a spin structure on MK in

our setting. Hence, the above definition may be

simplified to the following form deleting �.

Definition 4.2.

T 2kþ1ðMKÞ :¼
torðMK; �2kþ1;hÞ

torðMK; �3;hÞ
2 C�=f	1g;

T 2kðMKÞ :¼
torðMK; �2kÞ
torðMK; �2Þ

2 C�=f	1g:

Note that it is proved that the quotient is

independent of the choices h (Proposition 4.2

in [5]). Then, we can reduce Theorem 7.1 in [5] to

the following statement:

Theorem 4.3 (Theorem 7.1 in [5]).

lim
k!1

log jT 2kþ1ðMKÞj
ð2kþ 1Þ2

¼ lim
k!1

log jT 2kðMKÞj
ð2kÞ2

¼
VolðKÞ

4�
:

As in Remark 2.2, the sign of the right-hand

side is plus.

5. Proof of Theorem 1.1.

Case 1. Even-dimensional representation �2k

case.

By Theorem 0.2 in [4], H�ðMK; �2kÞ ¼ 0 for

k � 1. Then, by Theorem 2.5, we can prove that

torðMK; �2kÞ ¼ torðMK;�
 �2kÞjt¼1¼�K;�2k
ð1Þ from

the map at the chain level C�ðMK;�
 �2kÞ !
C�ðMK; �2kÞ induced by evaluation t ¼ 1. Then, we

have:

T 2kðMKÞ ¼
torðMK; �2kÞ
torðMK; �2Þ

¼
�K;�2k

ð1Þ
�K;�2

ð1Þ ¼ AK;2k
ð1Þ:

Hence we have done in the case of �2k in Theorem

1.1: lim
k!1

log jAK;2kð1Þj
ð2kÞ2

¼ VolðKÞ
4�

by Theorem 4.3.

Case 2. Odd-dimensional representation �2kþ1

case.

Although the idea of the proof is the same as

Yamaguchi’s one in [12,13], I think it is worth

outlining it here for the convenience of readers. He

investigated the case of the adjoint representation

of SLð2;CÞ, which is essentially equivalent to �3 in

our setting.

The homology group H�ðMK ; ZÞ ¼
H0ðMK ; ZÞ �H1ðMK ; ZÞ has the basis f½p�; ½	�g,
where ½p� is the homology class of a point and ½	�
is that of the meridian of K. Further, H1ð@MK ; ZÞ
has the basis f½	�; ½
�g, where ½
� is the homology

class of a longitude of K. By Proposition 4.1, we

may define h1 ¼ i�ð½v
 e
�Þ, h2 ¼ i�ð½v
 eT �Þ and h ¼
fh1; h2g.

It is known that MK collapses to a 2-dimen-

sional CW-complex W with only one vertex. We

call ’ this deformation. Thus MK is simple homo-

topy equivalent to W . It is enough to prove the

theorem for W since a Reidemeister torsion is a

simple homotopy invariant.

By Proposition 3.5 in [1], we have

H0ðW;�
 �2kþ1Þ ¼ 0. Further, we have the next

lemma by the same argument as Proposition 7

in [12] or Proposition 3.1.1 in [13].

Lemma 5.1. For � ¼ 1; 2, we have:

H�ðMK;�
 �2kþ1Þ ¼ 0.

Proposition 5.2. torðMK;�
 �2kþ1Þ has a

simple zero at t ¼ 1. Moreover the following holds:

torðMK; �2kþ1;hÞ ¼ lim
t!1

torðMK;�
 �2kþ1Þ
t� 1

:

Proof. We define the subchain complex

C0�ðW; �2kþ1Þ of the chain complex C�ðW; �2kþ1Þ by

C02ðW; �2kþ1Þ ¼ spanChv
 g’ðTÞi;
C01ðW; �2kþ1Þ ¼ spanChv
 g’ð
Þi

and C0iðW; �2kþ1Þ ¼ 0 ði 6¼ 1; 2Þ. Note that v is fixed

by �2kþ1ðGÞ, and the boundary operators of

C0�ðW; �2kþ1Þ are zero by the definition. The mod-

ules of this subchain complex are lifts of homology

groups H�ðW; �2kþ1Þ. Similarly, we define the sub-

complex C0�ðW;�
 �2kþ1Þ of C�ðW;�
 �2kþ1Þ by

C02ðW;�
 �2kþ1Þ ¼ spanCðtÞh1
 v
 g’ðTÞi;
C01ðW;�
 �2kþ1Þ ¼ spanCðtÞh1
 v
 g’ð
Þi

and C0iðW;�
 �2kþ1Þ ¼ 0 for i 6¼ 1; 2. Since v is an

invariant vector of �2kþ1ðGÞ, we have:

@ð1
 v
 g’ðTÞÞ ¼ 1
 v
 @ðg’ðTÞÞ
¼ 1
 v
 ð	 � g’ð
ÞÞ � 1
 v
 g’ð
Þ
¼ t
 ��1

2kþ1ð	Þv
 g’ð
Þ
� 1
 v
 g’ð
Þ
¼ t
 v
 g’ð
Þ � 1
 v
 g’ð
Þ
¼ ðt� 1Þð1
 v
 g’ð
ÞÞ:
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Thus the boundary operators of C0�ðW;�
 �2kþ1Þ
are given by

0! C02ðW;�
 �2kþ1Þ �!
t�1

C01ðW;�
 �2kþ1Þ ! 0:

This means that the homology of C0�ðW;�
 �2kþ1Þ
is zero.

By the definition, the chain complex

C0�ðW; �2kþ1Þ has the natural basis:

c0 ¼ fv
 g’ðTÞ; v
 g’ð
Þg:
Let C00� ðW; �2kþ1Þ be the quotient of C�ðW; �2kþ1Þ by

C0�ðW; �2kþ1Þ, c00 a basis of C00� ðW; �2kþ1Þ, and �c00 a lift

of c00 to C�ðW; �2kþ1Þ. By Lemma 5.1, we can apply

Proposition 3.3.1 in [13] to this setting, then we

have:

lim
t!1

torðC�ðW;�
 �2kþ1Þ;1
 c0 t 1
 �c00Þ
torðC0�ðW;�
 �2kþ1Þ;1
 c0Þ

¼ torðC�ðW; �2kþ1Þ; c0 t �c00;hÞ:
By the calculation above, we have

torðC0�ðW;�
 �2kþ1Þ;1
 c0Þ ¼ t� 1, thus we have

this proposition. �

Proof of Theorem 1.1. By Theorem 2.5 and

Lemma 5.1, we have torðMK;�
 �2kþ1Þ ¼
�K;�2kþ1

ðtÞ. We also have �K;�2kþ1
ðtÞ ¼ ðt�

1Þ ~�K;�2kþ1
ðtÞ and torðMK; �2kþ1;hÞ ¼ ~�K;�2kþ1

ð1Þ by

Proposition 5.2, where ~�K;�2kþ1
ðtÞ is a rational

function. Then,

AK;2kþ1ð1Þ ¼
~�K;�2kþ1

ð1Þ
~�K;�3

ð1Þ
¼

torðMK; �2kþ1;hÞ
torðMK; �3;hÞ

¼ T 2kþ1ðMKÞ:
Thus we have Theorem 1.1 by Theorem 4.3. �

6. Some calculations on the figure eight

knot complement. Let K be the figure eight

knot 41. Note that it is known that the volume of K

is 2:02988 � � �. The knot group GðKÞ has the follow-

ing presentation:

GðKÞ ¼ ha; b j ab�1a�1ba ¼ bab�1a�1bi;

where a and b correspond to the meridians of K.

Consider the representation of this fundamental

group:

�ðaÞ ¼
1 1

0 1

� �
; �ðbÞ ¼

1 0

�u 1

� �
;

where u is a complex value satisfying u2 þ uþ
1 ¼ 0. This representation is the holonomy repre-

sentation of GðKÞ. By the definition, we have

p �ðaÞ�1 x
y

� �� �
¼ p x� y

y

� �
, and ðx� yÞ2 ¼ x2 �

2xyþ y2, ðx� yÞy ¼ xy� y2. Hence, we have:

�3ðaÞ ¼
1 0 0

�2 1 0

1 �1 1

0
B@

1
CA:

By the same calculations, we have:

�3ðbÞ ¼
1 u u2

0 1 2u

0 0 1

0
B@

1
CA;

�4ðaÞ ¼

1 0 0 0

�3 1 0 0

3 �2 1 0

�1 1 �1 1

0
BBB@

1
CCCA;

�4ðbÞ ¼

1 u u2 u3

0 1 2u 3u2

0 0 1 3u

0 0 0 1

0
BBB@

1
CCCA; � � � :

Set A ¼ �2ðaÞ ¼ t�ðaÞ�1 ¼ 1 0
�1 1

� �
and B ¼

�2ðbÞ ¼ t�ðbÞ�1 ¼ 1 u
0 1

� �
. Via Fox calculus for

GðKÞ, we obtain the denominator of �K;�2
ðtÞ ¼

detðtB� IÞ ¼ ðt� 1Þ2. On the other hand, the

numerator of �K;�2
ðtÞ ¼ detðI � t�1AB�1A�1 þ

AB�1A�1B� tBþBAB�1A�1Þ¼ 1
t2
ðt�1Þ2ðt2�4tþ

1Þ. Here we use the value u ¼ �1þ
ffiffiffiffiffi
�3
p

2 . Continuing in

this way, we have obtained the following data:

�K;�2
ðtÞ ¼

1

t2
ðt2 � 4tþ 1Þ;

�K;�3
ðtÞ ¼ �

1

t3
ðt� 1Þðt2 � 5tþ 1Þ;

�K;�4
ðtÞ ¼

1

t4
ðt2 � 4tþ 1Þ2;

�K;�5
ðtÞ ¼ �

1

t5
ðt� 1Þðt4 � 9t3 þ 44t2 � 9tþ 1Þ;

4� log jAK;4ðtÞj
42

¼ � log jt2 � 4tþ 1j
4

�!t¼1 � log 2

4
� 0:544397 � � � ;

4� log jAK;5ðtÞj
52

¼
4� log j t4�9t3þ44t2�9tþ1

t2�5tþ1 j
52

�!t¼1 4� log 28
3

52
� 1:12273 � � � :
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These calculations were done by using Wolfram

Mathematica.
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