Mod 3 Chern classes and generators

By Masaki Kameko
Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan

(Communicated by Kenji Fukaya, M.J.A., June 13, 2017)

Abstract

We show the non-triviality of the mod 3 Chern class of degree 324 of the adjoint representation of the exceptional Lie group E_{8}.

Key words: Chern class; exceptional Lie group; complex representation.

1. Introduction. Let p be a prime number. In the study of $\bmod p$ cohomology of the classifying space of a simply-connected, simple, compact connected Lie group G, Stiefel-Whitney classes and Chern classes play an important role. For example, the $\bmod 2$ cohomology of the classifying space of the exceptional Lie group E_{6} is generated by two generators of degree 4 and of degree 32 as an algebra over the mod 2 Steenrod algebra, and Toda pointed out that the generator of degree 32 could be given as the Chern class of an irreducible representation $\rho_{6}: E_{6} \rightarrow S U(27)$ in [12]. Mimura and Nishimoto [8], Kono [7] and the author [5] proved that StiefelWhitney classes $w_{16}\left(\rho_{4}\right), w_{128}\left(\rho_{8}\right)$ and Chern classes $c_{16}\left(\rho_{6}\right), c_{32}\left(\rho_{7}\right)$ are algebra generators of the $\bmod 2$ cohomology of the classifying space $B G$ for $G=$ $F_{4}, E_{8}, E_{6}, E_{7}$, where ρ_{4}, ρ_{8} are real irreducible representations of dimension 26,248 , and ρ_{6}, ρ_{7} are complex irreducible representations of dimension 27,56 , respectively. For $G=F_{4}, E_{6}, E_{7}$, the $\bmod 2$ cohomology of the classifying space is generated by two elements, that is, one is the element of degree 4 and the other is $w_{16}\left(\rho_{4}\right), c_{16}\left(\rho_{6}\right)$, $c_{32}\left(\rho_{7}\right)$, respectively. In the case $G=E_{8}$ and $p=$ 2,3 , the $\bmod p$ cohomology of the classifying space is not yet computed. Since the non-triviality of the Stiefel-Whitney class $w_{128}\left(\rho_{8}\right)$ tells us that the differentials in the spectral sequence vanish on the corresponding element, we expect that it not only gives us a nice description for the generator but also helps us in the computation of the $\bmod 2$ cohomology of $B E_{8}$.

This paper is the sequel of [5] in the sense that we consider the mod 3 analogue of the above results.

[^0]In particular, we prove the non-triviality of the $\bmod 3$ Chern class $c_{162}\left(\rho_{8}\right)$ of degree 324 . For an odd prime number p and for a simply-connected, simple, compact connected Lie group, the RothenbergSteenrod spectral sequence collapses at the E_{2}-level and so at least additively the $\bmod p$ cohomology is isomorphic to the cotorsion product of the $\bmod p$ cohomology of G except for the case $p=3, G=E_{8}$. In [6], we proved that there exists an algebra generator of degree greater than or equal to 324 in the mod 3 cohomology ring of $B E_{8}$. On the other hand, in $[9,10]$, Mimura and Sambe proved that the E_{2}-term of the Rothenberg-Steenrod spectral sequence is generated as an algebra by elements of degree less than or equal to 168 . Hence the spectral sequence must not collapse at the E_{2}-level. We expect that, in the mod 3 cohomology, the mod 3 Chern class $c_{162}\left(\rho_{8}\right)$ plays an important role similar to that of the Stiefel-Whitney class $w_{128}\left(\rho_{8}\right)$ in the $\bmod 2$ cohomology.

Now, we state our main theorem. Let T be a fixed maximal torus of the exceptional Lie group F_{4}. We choose a maximal non-toral elementary abelian 3 -subgroup A of F_{4} so that $T \cap A$ is nontrivial. We refer the reader to the paper of Andersen, Grodal, Møller and Viruel [2, Section 8] for the details of non-toral elementary abelian p-subgroups of exceptional Lie groups and their Weyl groups. Let μ be a subgroup of $T \cap A$ of order 3 . The group μ is the cyclic group of order 3 . We consider the following diagram of inclusion maps.

We denote by $\iota: \mu \rightarrow G$ the inclusion map of μ to $\quad G=F_{4}, E_{6}, E_{7}, E_{8}$. The $\bmod 3$ cohomology $H^{*}(B \mu ; \mathbf{Z} / 3)$ of the classifying space $B \mu$ is isomorphic to

$$
\mathbf{Z} / 3\left[u_{2}\right] \otimes \Lambda\left(u_{1}\right),
$$

where u_{2} is the image of the $\bmod 3$ Bockstein homomorphism of a generator u_{1} of $H^{1}(B \mu ; \mathbf{Z} / 3)=$ $\mathbf{Z} / 3$. From now on, we consider complex representations only and we denote complexifications of real representations ρ_{4}, ρ_{8} by the same symbols ρ_{4}, ρ_{8}, respectively.

Theorem 1.1. The total Chern classes $c\left(\iota^{*}\left(\rho_{i}\right)\right)$ of the above induced representations $\iota^{*}\left(\rho_{i}\right)$, where $i=4,6,7,8$, are as follows:

$$
\begin{aligned}
& c\left(\iota^{*}\left(\rho_{4}\right)\right)=1-u_{2}^{18}, \\
& c\left(\iota^{*}\left(\rho_{6}\right)\right)=1-u_{2}^{18}, \\
& c\left(\iota^{*}\left(\rho_{7}\right)\right)=\left(1-u_{2}^{18}\right)^{2}=1+u_{2}^{18}+u_{2}^{36}, \\
& c\left(\iota^{*}\left(\rho_{8}\right)\right)=\left(1-u_{2}^{18}\right)^{9}=1-u_{2}^{162} .
\end{aligned}
$$

As a corollary of this theorem, using Lemma 3.1, we have the following

Corollary 1.2. The Chern classes $c_{18}\left(\rho_{4}\right)$, $c_{18}\left(\rho_{6}\right), \quad c_{18}\left(\rho_{7}\right), \quad c_{162}\left(\rho_{8}\right)$ are nontrivial in $H^{*}\left(B F_{4} ; \mathbf{Z} / 3\right), \quad H^{*}\left(B E_{6} ; \mathbf{Z} / 3\right), \quad H^{*}\left(B E_{7} ; \mathbf{Z} / 3\right)$, $H^{*}\left(B E_{8} ; \mathbf{Z} / 3\right)$, respectively. Moreover, the Chern classes $c_{18}\left(\rho_{4}\right), c_{18}\left(\rho_{6}\right), c_{18}\left(\rho_{7}\right)$ are indecomposable, so that they are algebra generators.

This paper is organized as follows: In Section 2, we recall complex representations $\rho_{4}, \rho_{6}, \rho_{7}, \rho_{8}$ and their restrictions to $\operatorname{Spin}(8)$. In Section 3, we prove Theorem 1.1. We end this paper by showing the non-triviality of the $\bmod 5$ Chern class $c_{100}\left(\rho_{8}\right)$ of $B E_{8}$ in the appendix.
2. Complex representations. In this section, we consider complex representations ρ_{4}, ρ_{6}, ρ_{7}, ρ_{8} in Theorem 1.1 and the complexification ρ_{4}^{\prime} of the adjoint representation of F_{4} and their restrictions to $\operatorname{Spin}(8)$. For the details of representation rings of Spin groups and cyclic groups, we refer the reader to standard textbooks on representation theory, e.g. Husemoller's book [4] and/or the book of Bröcker and tom Dieck [3].

First, we recall the complex representation ring of $\operatorname{Spin}(2 n)$. Let us consider the following pull-back diagram.

where $S O(2 n)$ is the special orthogonal group, π : $\operatorname{Spin}(2 n) \rightarrow S O(2 n)$ is the universal covering, T^{n} is the maximal torus of $S O(2 n)$ consisting of matrices of the form

$$
\left(\begin{array}{rr|r|l}
\cos \theta_{1} & -\sin \theta_{1} & & \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right) ~ \begin{aligned}
& \\
& \hline
\end{aligned}
$$

k_{n} is the inclusion map and \tilde{T}^{n} is a maximal torus of $\operatorname{Spin}(2 n)$. The complex representation ring of

$$
S^{1}=\left\{\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right\}
$$

is $R\left(S^{1}\right)=\mathbf{Z}\left[z, z^{-1}\right]$ where z is represented by the canonical complex line bundle. Considering T^{n} as the product of n copies of S^{1} 's, let $p_{i}: T^{n} \rightarrow S^{1}$ be the projection to the i-th factor. We denote by z_{i} the element $p_{i}^{*}(z), \pi^{*}\left(p_{i}^{*}(z)\right)$ in $R\left(T^{n}\right), \quad R\left(\tilde{T}^{n}\right)$, respectively, so that $\pi^{*}\left(z_{i}\right)=z_{i}$. Then, we have

$$
\begin{aligned}
& R\left(T^{n}\right)=\mathbf{Z}\left[z_{1}, \ldots, z_{n},\left(z_{1} \cdots z_{n}\right)^{-1}\right] \\
& R\left(\tilde{T}^{n}\right)=\mathbf{Z}\left[z_{1}, \ldots, z_{n},\left(z_{1} \cdots z_{n}\right)^{-1 / 2}\right]
\end{aligned}
$$

and the complex representation ring of $\operatorname{Spin}(2 n)$ is

$$
\mathbf{Z}\left[\lambda_{1}, \ldots, \lambda_{n-1}, \Delta^{+}, \Delta^{-}\right]
$$

where

$$
\begin{aligned}
\tilde{k}_{n}^{*}\left(\lambda_{1}\right) & =\sum_{i=1}^{n}\left(z_{i}+z_{i}^{-1}\right) \\
\tilde{k}_{n}^{*}\left(\lambda_{2}\right) & =\sum_{1 \leq i<j \leq n}\left(z_{i}+z_{i}^{-1}\right)\left(z_{j}+z_{j}^{-1}\right) \\
\tilde{k}_{n}^{*}\left(\Delta^{+}\right) & =\sum_{\varepsilon_{1} \cdots \varepsilon_{n}=1}\left(z_{1}^{\varepsilon_{1}} \cdots z_{n}^{\varepsilon_{n}}\right)^{1 / 2} \\
\tilde{k}_{n}^{*}\left(\Delta^{-}\right) & =\sum_{\varepsilon_{1} \cdots \varepsilon_{n}=-1}\left(z_{1}^{\varepsilon_{1}} \cdots z_{n}^{\varepsilon_{n}}\right)^{1 / 2}
\end{aligned}
$$

and $\varepsilon_{i} \in\{ \pm 1\}$. For the sake of notational simplicity, from now on, we write Δ for $\Delta^{+}+\Delta^{-}$. Let $i: \mu \rightarrow$ S^{1} be the inclusion map. We denote by z the
generator $i^{*}(z)$ of $R(\mu)$. Then, it is also known that $R(\mu)=\mathbf{Z}[z] /\left(z^{3}\right)$.

Next, we recall complex representations $\rho_{4}, \rho_{6}, \rho_{7}, \rho_{8}$ of dimension $26,27,56,248$ in Section 1 and the complexification ρ_{4}^{\prime} of the adjoint representation of F_{4}. We consider the following commutative diagram.

where

$$
i_{2 n-2}: \operatorname{Spin}(2 n-2) \rightarrow \operatorname{Spin}(2 n)
$$

is the obvious inclusion map. For $\rho_{4}, \rho_{4}^{\prime}$, we refer the reader to Yokota's paper [14]. For ρ_{6}, ρ_{7}, we refer the reader to Adams' book [1, Corollaries 8.3, 8.2]. For E_{8}, from the construction of E_{8} in Adams [1, Section 7] and the fact that the adjoint representation of $\operatorname{Spin}(2 n)$ is the second exterior power of the standard representation, we have the following proposition.

Proposition 2.1. We have

$$
\begin{aligned}
j_{8}^{*}\left(\rho_{4}\right) & =2+\lambda_{1}+\Delta \\
j_{8}^{*}\left(\rho_{4}^{\prime}\right) & =4+\lambda_{1}+\Delta+\lambda_{2} \\
j_{10}^{*}\left(\rho_{6}\right) & =1+\lambda_{1}+\Delta^{+} \\
j_{12}^{*}\left(\rho_{7}\right) & =2 \lambda_{1}+\Delta^{-} \\
j_{16}^{*}\left(\rho_{8}\right) & =8+\lambda_{2}+\Delta^{+}
\end{aligned}
$$

in $\quad R(\operatorname{Spin}(8)), \quad R(\operatorname{Spin}(8)), \quad R(\operatorname{Spin}(10))$, $R(\operatorname{Spin}(12)), R(\operatorname{Spin}(16))$, respectively.

Since the induced homomorphism $i_{2 n-2}^{*}$ maps $\lambda_{1}, \lambda_{2}, \Delta^{+}, \Delta^{-}, \Delta$ to $2+\lambda_{1}, 2 \lambda_{1}+\lambda_{2}, \Delta, \Delta, 2 \Delta$, respectively, we have the following proposition.

Proposition 2.2. For $G=F_{4}, E_{6}, E_{7}, E_{8}$, let $j: \operatorname{Spin}(8) \rightarrow G$ be the inclusion map. In $R(\operatorname{Spin}(8))$, we have

$$
\begin{aligned}
& j^{*}\left(\rho_{4}\right)=2+\lambda_{1}+\Delta, \\
& j^{*}\left(\rho_{6}\right)=3+\lambda_{1}+\Delta, \\
& j^{*}\left(\rho_{7}\right)=8+2 \lambda_{1}+2 \Delta, \\
& j^{*}\left(\rho_{8}\right)=32+8 \lambda_{1}+8 \Delta+\lambda_{2} .
\end{aligned}
$$

3. Mod 3 Chern classes. In this section, we prove Theorem 1.1. We consider the following diagram of inclusion maps.

The maximal torus \tilde{T}^{4} of $\operatorname{Spin}(8)$ is the maximal torus T of F_{4} we mentioned in Section 1. By abuse of notation, we denote both the inclusion map of μ to \tilde{T}^{4} and its composition with \tilde{k}_{4} by the same symbol ι_{0}. Let $\sqrt{0}$ be the nilradical of $H^{*}(B A ; \mathbf{Z} / 3)$ and $H^{*}(B \mu ; \mathbf{Z} / 3)$, so that we have the induced homomorphism
$\iota_{1}^{*}: H^{*}(B A ; \mathbf{Z} / 3) / \sqrt{0} \rightarrow H^{*}(B \mu ; \mathbf{Z} / 3) / \sqrt{0}=\mathbf{Z} / 3\left[u_{2}\right]$.
Lemma 3.1. The image of the induced homomorphism

$$
\iota^{*}: H^{*}\left(B F_{4} ; \mathbf{Z} / 3\right) \rightarrow H^{*}(B \mu ; \mathbf{Z} / 3) / \sqrt{0}
$$

is in $\mathbf{Z} / 3\left[u_{2}^{18}\right]$, i.e. $\operatorname{Im} \iota^{*} \subset \mathbf{Z} / 3\left[u_{2}^{18}\right] \subset \mathbf{Z} / 3\left[u_{2}\right]$.
Proof. It is well-known that the Weyl group $W(A)=N(A) / C(A)$ of A in F_{4} is isomorphic to the special linear group $S L_{3}(\mathbf{Z} / 3)$. See the paper of Andersen, Grodal, Møller and Viruel [2, Section 8]. Moreover, $H^{*}(B A ; \mathbf{Z} / 3) / \sqrt{0}$ is a polynomial algebra with 3 variables of degree 2 and $S L_{3}(\mathbf{Z} / 3)$ acts in the usual manner. The ring of invariants is also a polynomial algebra

$$
\left(H^{*}(B A ; \mathbf{Z} / 3) / \sqrt{0}\right)^{W(A)}=\mathbf{Z} / 3\left[e_{3}, c_{3,1}, c_{3,2}\right]
$$

The invariants $e_{3}^{2}=c_{3,0}, c_{3,1}, c_{3,2}$ are known as Dickson invariants and their degrees are $52,48,36$, respectively. Moreover, the induced homomorphism ι_{1}^{*} maps $c_{3,0}, c_{3,1}, c_{3,2}$ to $0,0, u_{2}^{18}$, respectively. See Wilkerson's paper [13, Corollary 1.4] for the details. Since the induced homomorphism ι^{*} factors through

$$
\left(H^{*}(B A ; \mathbf{Z} / 3) / \sqrt{0}\right)^{W(A)} \rightarrow H^{*}(B \mu ; \mathbf{Z} / 3) / \sqrt{0}
$$

the lemma follows.
Next, we compute the total Chern class $c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)$.

Proposition 3.2. The total Chern class $c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)$ is equal to $1-u_{2}^{18}$.

Proof. Since $\operatorname{dim}\left(\lambda_{1}+\Delta\right)=24$, and since $c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)=c\left(\iota^{*}\left(\rho_{4}\right)\right) \in \mathbf{Z} / 3\left[u_{2}^{18}\right]$ by Lemma 3.1, $c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)$ is equal to $1+\alpha u_{2}^{18}$ for some $\alpha \in \mathbf{Z} / 3$. On the other hand, ι_{0}^{*} maps z_{i} to $z^{\alpha_{i}}$ for some $\alpha_{i} \in \mathbf{Z} / 3$ and, since ι_{0} is the inclusion map, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \neq(0,0,0,0)$. So,

$$
c\left(\iota_{0}^{*}\left(\lambda_{1}\right)\right)=\prod_{i=1}^{4}\left(1-\alpha_{i}^{2} u_{2}^{2}\right)
$$

and $\alpha_{i} \neq 0$ for some i. Hence, $c\left(\iota_{0}^{*}\left(\lambda_{1}\right)\right)$ is divisible by $1-u_{2}^{2}$. Therefore,

$$
c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)=c\left(\iota_{0}^{*}\left(\lambda_{1}\right)\right) c\left(\iota_{0}^{*}(\Delta)\right)
$$

is also divisible by $1-u_{2}^{2}$ and so $\alpha=-1$ in $\mathbf{Z} / 3$.
Next, we compute the total Chern class $c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)$.

Proposition 3.3. The total Chern class $c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)$ is equal to $1-u_{2}^{18}$.

Proof. As in the proof of the previous proposition, assume that $\iota_{0}^{*}\left(z_{i}\right)=z^{\alpha_{i}}$. Let

$$
\begin{aligned}
& f_{i j}=\left(1-\left(\alpha_{i}+\alpha_{j}\right) u_{2}\right)\left(1-\left(\alpha_{i}-\alpha_{j}\right) u_{2}\right) \\
& \quad\left(1-\left(-\alpha_{i}+\alpha_{j}\right) u_{2}\right)\left(1-\left(-\alpha_{i}-\alpha_{j}\right) u_{2}\right) .
\end{aligned}
$$

Then,

$$
c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)=\prod_{1 \leq i<j \leq 4} f_{i j}
$$

and

$$
f_{i j}=1-2\left(\alpha_{i}^{2}+\alpha_{j}^{2}\right) u_{2}^{2}+\left(\alpha_{i}^{2}-\alpha_{j}^{2}\right)^{2} u_{2}^{4}
$$

For $\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(1,1)$, we have

$$
f_{i j}=1-u_{2}^{2} .
$$

For $\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(1,0)$ or $(0,1)$, we have

$$
f_{i j}=1-2 u_{2}^{2}+u_{2}^{4}=\left(1-u_{2}^{2}\right)^{2} .
$$

Since $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \neq(0,0,0,0)$, there exists (i, j) such that $\left(\alpha_{i}, \alpha_{j}\right) \neq(0,0)$. Hence the total Chern class $c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)$ is not trivial and it is divisible by $1-u_{2}^{2}$.

Let us consider the total Chern class $c\left(\iota^{*}\left(\rho_{4}^{\prime}\right)\right)$. By Lemma 3.1, it is in $\mathbf{Z} / 3\left[u_{2}^{18}\right]$ and by Proposition 3.2, we have

$$
\begin{aligned}
c\left(\iota^{*}\left(\rho_{4}^{\prime}\right)\right) & =c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right) c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right) \\
& =c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)\left(1-u_{2}^{18}\right) .
\end{aligned}
$$

So, $c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)$ is also in $\mathbf{Z} / 3\left[u_{2}^{18}\right]$. Since $\operatorname{dim} \lambda_{2}=$ $24, c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)=1+\alpha u_{2}^{18}$ for some $\alpha \in \mathbf{Z} / 3$. Since $c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)$ is divisible by $1-u_{2}^{2}, \alpha=-1$ as in the proof of the previous proposition.

Finally, we prove Theorem 1.1.
Proof of Theorem 1.1. Using Propositions 2.1, 2.2 and using Propositions 3.2, 3.3 above, we have

$$
\begin{aligned}
& c\left(\iota^{*}\left(\rho_{4}\right)\right)=c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)=1-u_{2}^{18}, \\
& c\left(\iota^{*}\left(\rho_{6}\right)\right)=c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)=1-u_{2}^{18},
\end{aligned}
$$

$$
\begin{aligned}
c\left(\iota^{*}\left(\rho_{7}\right)\right) & =c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)^{2}=\left(1-u_{2}^{18}\right)^{2} \\
c\left(\iota^{*}\left(\rho_{8}\right)\right) & =c\left(\iota_{0}^{*}\left(\lambda_{1}+\Delta\right)\right)^{8} c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right) \\
& =\left(1-u_{2}^{18}\right)^{9} .
\end{aligned}
$$

A. Mod 5 Chern classes. Let p be an odd prime number. Let G be a simply-connected, simple, compact connected Lie group. If the integral homology of G has no p-torsion, then the $\bmod p$ cohomology ring of its classifying space is a polynomial algebra and it is well-known. See, for example, the book of Mimura and Toda [11]. The integral homology of G has p-torsion if and only if (G, p) is one of $\left(F_{4}, 3\right),\left(E_{6}, 3\right),\left(E_{7}, 3\right),\left(E_{8}, 3\right)$ and $\left(E_{8}, 5\right)$. We dealt with the cases for $p=3$ in this paper. For completeness, in this appendix, we deal with the remaining case, $p=5, G=E_{8}$, that is, we prove the non-triviality of the mod 5 Chern class $c_{100}\left(\rho_{8}\right)$ of the complexification of the adjoint representation ρ_{8} of the exceptional Lie group E_{8}.

The $\bmod 5$ analogue of Corollary 1.2 is as follows:

Theorem A.1. The mod 5 Chern class $c_{100}\left(\rho_{8}\right)$ is non-trivial. Moreover, the mod 5 Chern class $c_{100}\left(\rho_{8}\right)$ is indecomposable in $H^{*}\left(B E_{8} ; \mathbf{Z} / 5\right)$.

To prove this theorem, we need the $\bmod 5$ analogue of Lemma 3.1. As in the case $p=3, G=$ F_{4}, there exists a non-toral maximal elementary abelian 5 -subgroup of rank 3 in the exceptional Lie group E_{8}. We choose the maximal torus T of E_{8}. If necessary, by replacing A by its conjugate, we may assume that $A \cap T$ is non-trivial. We choose a subgroup μ of $A \cap T$ of order 5 . Indeed, it is the cyclic group of order 5 . We denote by $\iota: \mu \rightarrow E_{8}$ the inclusion map. The mod 5 cohomology of $B \mu$ is

$$
H^{*}(B \mu ; \mathbf{Z} / 5)=\mathbf{Z} / 5\left[u_{2}\right] \otimes \Lambda\left(u_{1}\right),
$$

where u_{1} is a generator of $H^{1}(B \mu ; \mathbf{Z} / 5)=\mathbf{Z} / 5$ and u_{2} is its image by the mod 5 Bockstein homomorphism. As in the previous section, we denote the nilradical by $\sqrt{0}$ and we denote the inclusion map of μ to A by $\iota_{1}: \mu \rightarrow A$.

Lemma A.2. The image of the induced homomorphism

$$
\iota^{*}: H^{*}\left(B E_{8} ; \mathbf{Z} / 5\right) \rightarrow H^{*}(B \mu ; \mathbf{Z} / 5) / \sqrt{0}
$$

is in $\mathbf{Z} / 5\left[u_{2}^{100}\right] \subset H^{*}(B \mu ; \mathbf{Z} / 5) / \sqrt{0}$.
Proof. Since the induced homomorphism ι^{*} factors through

$$
\iota_{1}^{*}:\left(H^{*}(B A ; \mathbf{Z} / 5) / \sqrt{0}\right)^{W(A)} \rightarrow H^{*}(B \mu ; \mathbf{Z} / 5) / \sqrt{0}
$$

all we need to do is to recall the fact that the Weyl group $W(A)$ of A in E_{8} is $S L_{3}(\mathbf{Z} / 5)$, that

$$
\left(H^{*}(B A ; \mathbf{Z} / 5) / \sqrt{0}\right)^{W(A)}=\mathbf{Z} / 5\left[e_{3}, c_{3,2}, c_{3,1}\right]
$$

and that the above induced homomorphism ι_{1}^{*} maps $e_{3}, c_{3,1}, c_{3,2}$ to $0,0, u_{2}^{100}$, respectively. We find these facts in [2, Section 8] and in [13, Corollary 1.4].

To compute $\iota^{*}\left(\rho_{8}\right)$, we need the following commutative diagram similar to the diagram in Section 3. However, in this case, the map j_{16} : $\operatorname{Spin}(16) \rightarrow E_{8}$ is not injective.

We choose the maximal torus T of E_{8} so that $j_{16}\left(\tilde{T}^{8}\right)=T$. Then, since $\tilde{T}^{8} \rightarrow T$ is a double cover and since μ is of order 5 , there exists a map ι_{0} : $\mu \rightarrow \tilde{T}^{8}$ such that the above diagram commutes.

We use the following propositions to prove Theorem A.1.

Proposition A.3. The total mod 5 Chern class of $\iota_{0}^{*}\left(\lambda_{2}\right)$ is a product of copies of $1-u_{2}^{2}$ and $1+u_{2}^{2}$. Moreover, it is non-trivial.

Proof. Let

$$
\begin{aligned}
& f_{i j}=\left(1-\left(\alpha_{i}+\alpha_{j}\right) u_{2}\right)\left(1-\left(-\alpha_{i}+\alpha_{j}\right) u_{2}\right) \\
& \quad\left(1-\left(\alpha_{i}-\alpha_{j}\right) u_{2}\right)\left(1-\left(-\alpha_{i}-\alpha_{j}\right) u_{2}\right)
\end{aligned}
$$

Then, we have

$$
c\left(\iota_{0}^{*}\left(\lambda_{2}\right)\right)=\prod_{1 \leq i<j \leq 8} f_{i j}
$$

and

$$
f_{i j}=1-2\left(\alpha_{i}^{2}+\alpha_{j}^{2}\right) u_{2}^{2}+\left(\alpha_{i}^{2}-\alpha_{j}^{2}\right)^{2} u_{2}^{4}
$$

In $\mathbf{Z} / 5, \alpha_{i}^{2}=0$ or ± 1. So,

$$
\begin{array}{ll}
f_{i j}=1+u_{2}^{2} & \text { for }\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(1,1), \\
f_{i j}=1-u_{2}^{2} & \text { for }\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(-1,-1), \\
f_{i j}=\left(1-u_{2}^{2}\right)^{2} & \text { for }\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(1,0),(0,1), \\
f_{i j}=\left(1+u_{2}^{2}\right)^{2} & \text { for }\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(-1,0),(0,-1), \\
f_{i j}=1 & \text { for }\left(\alpha_{i}^{2}, \alpha_{j}^{2}\right)=(0,0) .
\end{array}
$$

Since μ is a non-trivial subgroup of $\tilde{T}^{8}, \alpha_{i}$ is nonzero for some i. So, the total Chern class is not equal
to 1 and so we have the proposition.
Proposition A.4. The total mod 5 Chern class of $\iota_{0}^{*}\left(\Delta^{+}\right)$is also a product of copies of $1-u_{2}^{2}$ and $1+u_{2}^{2}$.

Proof. Suppose that $i_{0}^{*}: R(\operatorname{Spin}(16)) \rightarrow R(\mu)$ maps $\left(z_{1}^{\varepsilon_{1}} \cdots z_{8}^{\varepsilon_{8}}\right)^{1 / 2}$ to $z^{\alpha_{\varepsilon_{1} \ldots \varepsilon_{8}}}$. Then, it maps $\left(z_{1}^{\varepsilon_{1}^{\prime}} \cdots z_{8}^{z_{8}}\right)^{1 / 2}$ to $z^{-\alpha_{\varepsilon_{1} \ldots \varepsilon_{8}}}$, where $\varepsilon_{i}^{\prime}=-\varepsilon_{i}$, and we have

$$
c\left(\iota_{0}^{*}\left(\Delta^{+}\right)\right)=\prod_{\varepsilon_{1}=1, \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{8}=1}\left(1-\alpha_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{8}}^{2} u_{2}^{2}\right) .
$$

Since $\alpha_{\varepsilon_{1} \ldots \varepsilon_{8}}^{2}=0$ or ± 1, we have the desired result. \square
Now we complete the proof of Theorem A.1.
Proof of Theorem A.1. By Propositions A.3, A.4, the total Chern class $c\left(\iota^{*}\left(\rho_{8}\right)\right)$ is a product of copies of $1-u_{2}^{2}$ and $1+u_{2}^{2}$ and it is non-trivial. On the other hand, by Lemma A.2, since $\operatorname{dim}\left(\lambda_{2}+\right.$ $\left.\Delta^{+}\right)=240$,

$$
c\left(\iota^{*}\left(\rho_{8}\right)\right)=1+\alpha u_{2}^{100}+\beta u_{2}^{200}
$$

for some $\alpha, \beta \in \mathbf{Z} / 5$ and $(\alpha, \beta) \neq(0,0)$. Since it is divisible by $1-u^{2}$ or $1+u_{2}^{2}$, we have $1+\alpha+\beta=0$ in $\mathbf{Z} / 5$ and

$$
\begin{aligned}
c\left(\iota^{*}\left(\rho_{8}\right)\right) & =1+(-\beta-1) u_{2}^{100}+\beta u_{2}^{200} \\
& =\left(1-u_{2}^{100}\right)\left(1-\beta u_{2}^{100}\right)
\end{aligned}
$$

Since it is a product of copies of $1-u_{2}^{2}$ and $1+u_{2}^{2}$, $1+\beta u_{2}^{100}$ is also divisible by $1-u_{2}^{2}$ or $1+u_{2}^{2}$ if $\beta \neq 0$. So, $\beta=0$ or -1 and we have that $c\left(\iota^{*}\left(\rho_{8}\right)\right)$ is equal to $1-u_{2}^{100}$ or $\left(1-u_{2}^{100}\right)^{2}$. In particular, $c_{100}\left(\rho_{8}\right)=-u_{2}^{100}$ or $-2 u_{2}^{100}$ and by Lemma A.2, it is indecomposable in $H^{*}\left(B E_{8} ; \mathbf{Z} / 5\right)$.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number JP25400097.

References

[1] J. F. Adams, Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
[2] K. K. S. Andersen, J. Grodal, J. M. Møller and A. Viruel, The classification of p-compact groups for p odd, Ann. of Math. (2) 167 (2008), no. 1, 95-210.
[3] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, translated from the German manuscript, corrected reprint of the 1985 translation, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995.
[4] D. Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, 20, Springer-Verlag, New York, 1994.
[5] M. Kameko, Chern classes and generators, Proc.

Japan Acad. Ser. A Math. Sci. 88 (2012), no. 1, 21-23.
[6] M. Kameko and M. Mimura, On the RothenbergSteenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E_{8}, in Proceedings of the Nishida Fest (Kinosaki, 2003), 213-226, Geom. Topol. Monogr., 10, Geom. Topol. Publ., Coventry, 2007.
[7] A. Kono, A note on the Stiefel-Whitney classes of representations of exceptional Lie groups, J. Math. Kyoto Univ. 45 (2005), no. 1, 217-219.
[8] M. Mimura and T. Nishimoto, On the StiefelWhitney classes of the representations associated with $\operatorname{Spin}(15)$, in Proceedings of the School and Conference in Algebraic Topology (Hanoi, 2004), 141-176, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, 2007.
[9] M. Mimura and Y. Sambe, On the cohomology $\bmod p$ of the classifying spaces of the exceptional Lie groups. II, J. Math. Kyoto Univ. 20
(1980), no. 2, 327-349.
[10] M. Mimura and Y. Sambe, On the cohomology $\bmod p$ of the classifying spaces of the exceptional Lie groups. III, J. Math. Kyoto Univ. 20 (1980), no. 2, 351-379.
[11] M. Mimura and H. Toda, Topology of Lie groups. I, II, translated from the 1978 Japanese edition by the authors, Translations of Mathematical Monographs, 91, American Mathematical Society, Providence, RI, 1991.
[12] H. Toda, Cohomology of the classifying space of exceptional Lie groups, in Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), 265271, Univ. Tokyo Press, Tokyo, 1975.
[13] C. Wilkerson, A primer on the Dickson invariants, in Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), 421434, Contemp. Math., 19, Amer. Math. Soc., Providence, RI, 1983.
[14] I. Yokota, Representation ring of Lie group F_{4}, Proc. Japan Acad. 43 (1967), 858-860.

[^0]: 2010 Mathematics Subject Classification. Primary 55R40, 55R35.

