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Abstract: We discuss the escape rate of the Brownian motion on a hyperbolic space. We

point out that the escape rate is determined by using the Brownian expression of the radial part

and a generalized Kolmogorov’s test for the one dimensional Brownian motion.
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1. Introduction. Let Hd be the d-dimen-

sional hyperbolic space and M ¼ ðfXtgt�0;

fPxgx2HdÞ the Brownian motion on Hd generated

by the half of the Laplace-Beltrami operator. For a

fixed point o 2 Hd, define P ¼ Po and Rt ¼ dðo;XtÞ,
where d is the distance function of Hd. In this note,

we show

Theorem 1.1. Let gðtÞ be a positive function

on ð0;1Þ such that for some t0 > 0,
ffiffi
t
p
gðtÞ is

nondecreasing and gðtÞ=
ffiffi
t
p

is bounded for all t � t0.

(i) For the function r1ðtÞ :¼ ðd� 1Þt=2þ
ffiffi
t
p
gðtÞ,

P ðthere exists T > 0 such thatð1:1Þ
Rt < r1ðtÞ for all t � T Þ ¼ 1 or 0

according as
Z 1
�
ð1 _ gðtÞÞe�gðtÞ

2=2 dt

t
<1 or ¼ 1:ð1:2Þ

(ii) For the function r2ðtÞ :¼ ðd� 1Þt=2�
ffiffi
t
p
gðtÞ,

P ðthere exists T > 0 such thatð1:3Þ
Rt > r2ðtÞ for all t � T Þ ¼ 1 or 0

according as (1.2) holds.

The function r1ðtÞ is called an upper rate

function for M if the probability in (1.1) is 1. By

the same way, the function r2ðtÞ is called a lower

rate function for M if the probability in (1.3) is 1.

According to Theorem 1.1, we have for c > 0,

. the function rðtÞ :¼ ðd� 1Þt=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct log log t
p

is

an upper rate function for M if and only if

c > 2;

. the function rðtÞ :¼ ðd� 1Þt=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct log log t
p

is

a lower rate function for M if and only if

c > 2.

For the Brownian motions on Riemannian

manifolds, more generally symmetric diffusion

processes generated by regular Dirichlet forms,

upper and lower rate functions are given in terms

of volume growth rate ([1–4,6,11]). As for the upper

rate functions, the results in [2–4,6,11] are appli-

cable to the Brownian motions on Riemannian

manifolds with exponential volume growth rate, as

to M; however, as for the lower rate functions, the

results in [1–3] are not applicable to M because the

doubling condition is imposed on the volume

growth. Grigor’yan and Hsu [4] also discussed the

sharpness of the upper rate functions for M or for

the Brownian motion on a model manifold, that is, a

spherically symmetric Riemannian manifold with a

pole. Using the fact that

lim
t!1

Rt

t
¼
d� 1

2
; P -a.s.ð1:4Þ

(which follows from (2.2) below), they remarked

that the function rðtÞ ¼ ct is an upper rate function

for M if c > ðd� 1Þ=2, and not if 0 < c < ðd� 1Þ=2.

This observation is still valid for the lower rate

functions. See also [7] for the result of the law of the

iterated logarithms-type to the Brownian motions

on model manifolds.

For the proof of Theorem 1.1, we make use of

the Brownian expression of the radial part Rt ((2.2)

below) as in [4,7], together with a generalized

version of Kolmogorov’s test for the one dimen-

sional Brownian motion ([9,10]). In fact, the inte-

gral in (1.2) is the same with that in this test. The

assumption on gðtÞ=
ffiffi
t
p

will be needed in (2.7) and

(2.8) below.

2. Proof of Theorem 1.1. Let B ¼
ðfBtgt�0; P Þ be the one dimensional Brownian

motion starting from the origin. Then a generalized
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Kolmogorov’s test holds:

Theorem 2.1 ([9, Theorem 3.1 and Lemma

3.3] and [10, Theorem 2.1]). Under the full con-

ditions of Theorem 1.1,

P ðthere exists T > 0 such thatð2:1Þ
jBtj <

ffiffi
t
p
gðtÞ for all t � T Þ ¼ 1 or 0

according as (1.2) holds. This assertion is valid even

if jBtj in the equality above is replaced by Bt or �Bt.

By comparison with Kolmogorov’s test (see,

e.g., [8, 4.12]), we do not need to assume that gðtÞ %
1 as t!1 in Theorem 2.1.

Proof of Theorem 1.1. Recall that M ¼
ðfXtgt�0; P Þ is the Brownian motion on Hd starting

from a fixed point o 2 Hd and Rt ¼ dðo;XtÞ is the

radial part of Xt. Then by [5, Example 3.3.3],

Rt ¼ Bt þ
d� 1

2

Z t

0

cothRs ds:ð2:2Þ

Assume the full conditions of Theorem 1.1. We

first discuss the lower bound of Rt. Since cothx � 1

for any x > 0, we obtain by (2.2),

Rt � Bt þ
d� 1

2
t for any t � 0:ð2:3Þ

Hence if the integral in (1.2) is convergent, then the

probability in (1.3) is 1 by Kolmogorov’s test. By

the same way, if the integral in (1.2) is divergent,

then the probability in (1.1) is 0. �

We next discuss the upper bound of Rt. Since

Bt ¼ oðtÞ as t!1, we see by (2.3) that there exists

c > 0 such that P ðAÞ ¼ 1 for

A :¼ fthere exists T1 > 0 such thatð2:4Þ
Rt � ct for all t � T1g:

Under the event A,

cothRs � 1 ¼
2

e2Rs � 1
�

2

e2cs � 1

for any s � T1, which implies that for all t � T1,Z t

0

ðcothRs � 1Þ ds

¼
Z T1

0

ðcothRs � 1Þ dsþ
Z t

T1

ðcothRs � 1Þ ds

�
Z T1

0

ðcothRs � 1Þ dsþ
Z 1
T1

2

e2cs � 1
ds ¼: CT1

:

Since there exists an integer valued random varia-

ble N such that

d� 1

2
CT1
� N;ð2:5Þ

we obtain for such N ,

Rt ¼ Bt þ
d� 1

2
tþ

d� 1

2

Z t

0

ðcothRs � 1Þ dsð2:6Þ

� Bt þ
d� 1

2
tþ d� 1

2
CT1

� Bt þ
d� 1

2
tþN

for all t � T1.

Assume first that the integral in (1.2) is

convergent. Then there exists a positive constant

cn for each n � 1 such that the function h
ðnÞ
1 ðtÞ :¼

gðtÞ � n=
ffiffi
t
p

satisfies
Z 1
�
ð1 _ hðnÞ1 ðtÞÞe�h

ðnÞ
1
ðtÞ2=2 dt

t
ð2:7Þ

� cn
Z 1
�

1 _ gðtÞð Þe�gðtÞ
2=2 dt

t
<1:

Hence Theorem 2.1 implies that for each n � 1,

P ðthere exists T > 0 such that

jBtj < r
ðnÞ
1 ðtÞ for all t � T Þ ¼ 1

for r
ðnÞ
1 ðtÞ :¼

ffiffi
t
p
h
ðnÞ
1 ðtÞð¼

ffiffi
t
p
gðtÞ � nÞ. In particular,

we get P ðB1Þ ¼ 1 for

B1 :¼ ffor each n � 1, there exists Sn > 0

such that jBtj < r
ðnÞ
1 ðtÞ for all t � Sng:

Under the event A \B1, since there exists T2 > 0 for

N � 1 in (2.5) such that

Bt < r
ðNÞ
1 ðtÞ ¼

ffiffi
t
p
gðtÞ �N for all t � T2;

we have by (2.6),

Rt <
d� 1

2
tþ

ffiffi
t
p
gðtÞ for all t � T1 _ T2:

Therefore, the probability in (1.1) is 1.

Assume next that the integral in (1.2) is

divergent. Then by the same way as in (2.7), the

function h
ðnÞ
2 ðtÞ :¼ gðtÞ þ n=

ffiffi
t
p

satisfies for each

n � 1,
Z 1
�
ð1 _ hðnÞ2 ðtÞÞe�h

ðnÞ
2
ðtÞ2=2 dt

t
¼ 1:ð2:8Þ

Hence Theorem 2.1 yields that for each n � 1,

P ðfor any t > 0, there exists T � t
such that BT � �rðnÞ2 ðT ÞÞ ¼ 1
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for r
ðnÞ
2 ðtÞ :¼

ffiffi
t
p
h
ðnÞ
2 ðtÞð¼

ffiffi
t
p
gðtÞ þ nÞ. In particular,

P ðB2Þ ¼ 1 for

B2 :¼ ffor each n � 1, there exists Un � t
for any t > 0 such that BUn � �r

ðnÞ
2 ðUnÞg:

Under the event A \B2, since there exists T3 �
t _ T1 for any t > 0 and N � 1 in (2.5) such that

BT3
� �rðNÞ2 ðT3Þ ¼ �

ffiffiffiffiffi
T3

p
gðT3Þ �N;

we have for such T3,

RT3
�
d� 1

2
T3 �

ffiffiffiffiffi
T3

p
gðT3Þ

by (2.6). Therefore, the probability in (1.3) is 0. �
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