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Abstract: We prove for n � 3 that every nonatomic ergodic measure of an n-dimensional

flow whose Lyapunov exponents off the flow direction are all negative is supported on an

attracting periodic orbit.
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1. Introduction. It is well known that ev-

ery ergodic measure whose Lyapunov exponents are

all negative of a C1þ� diffeomorphism is supported

on an attracting periodic orbit (cf. Corollary S.5.2

in [6]). This result was extended to C1 diffeo-

morphisms by Araujo [1]. In the case of flows,

Campanino [3] proved that every nonatomic ergodic

measure whose Lyapunov exponents off the flow

direction are all negative of a C1þ� flow is supported

on an attracting periodic orbit. The methods in [10]

imply that this is also true in the C1 class but for

star flows, i.e., flows which cannot be C1 approxi-

mated by ones with nonhyperbolic critical elements.

In this paper we will extend Campanino’s

result to general C1 n-dimensional flows with n �
3. More precisely, we will prove for all such flows

that every nonatomic ergodic measure whose

Lyapunov exponents off the flow direction are all

negative is supported on an attracting periodic

orbit. Let us state our result in a precise way.

Hereafter the term n-dimensional flow will

mean a C1 vector field X defined on a compact

connected boundaryless Riemannian manifold M

of dimension n 2 Nþ. The one-parameter group of

diffeomorphisms generated by X will be denoted by

Xt, t 2 R. We say that x 2M is a periodic point of

X if there is a minimal positive number �ðxÞ (called

period) such that X�ðxÞðxÞ ¼ x. Notice that if x is a

periodic point, then 1 is an eigenvalue of the

derivative DX�ðxÞðxÞ with eigenvector XðxÞ. The

remainders eigenvalues of DX�ðxÞðxÞ will be referred

to as the eigenvalues of x. We say that a periodic

orbit OðxÞ ¼ fXtðxÞ : t 2 Rg is attracting if every

eigenvalue of x has a modulus less than 1.

Let � be a Borel probability measure of M. We

say that � is nonatomic if it has no points with

positive mass. We say that � is supported on H �
M if suppð�Þ � H, where suppð�Þ denotes the

support of �. We say that � is invariant if

�ðXtðAÞÞ ¼ �ðAÞ for every Borelian A and every

t 2 R. An invariant Borel probability measure is

ergodic if every measurable invariant set has

measure 0 or 1.

Oseledets’s Theorem [11] ensures that every

ergodic measure � is equipped with a full measure

set R, a positive integer k and real numbers �1 <

�2 < � � � < �k such that for every x 2 R there is

a measurable splitting TxM ¼ E1
x � � � � � Ek

x such

that DXtðxÞðEi
xÞ ¼ Ei

XtðxÞ (8t 2 R) and

lim
t!�1

1

t
log kDXtðxÞeik ¼ �i;

for every x 2 R; ei 2 Ei
x n f0g; 1 � i � k. Such num-

bers are so-called the Lyapunov exponents of �.

Similar definitions and results hold for C1 diffeo-

morphisms.

With these definitions we can state our result.

Theorem 1. Let � be a nonatomic ergodic

measure of an n-dimensional flow with n � 3. If the

Lyapunov exponents of � off the flow direction are

all negative, then � is supported on an attracting

periodic orbit.

2. Proof. We divide the proof of Theorem 1

into three parts according to the following sub-

sections.

2.1. Linear Poincaré flow. Given a flow X

we denote by SingðXÞ the set of singularities (i.e.

zeroes) of X. Define M� ¼M n SingðXÞ as the set of

regular (i.e. nonsingular) points of X. To any x 2
M� we define Nx � TxM as the set of tangent
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vectors which are orthogonal to XðxÞ. Denote by

N ¼
S
x2M� Nx the vector bundle so induced and,

correspondingly, denote by � : TM�M ! N the or-

thogonal projection. Define the linear Poincaré flow

as Pt : N ! N by PtðxÞ ¼ �XtðxÞ 	DXtðxÞ.
We will need the following lemmas about Pt. It

is here where the hypothesis n � 3 is used in the

proof of Theorem 1.

Lemma 2. For every n-dimensional flow X

with n � 3 and every T 2 R there exists K > 0 such

that kPT ðxÞk � K for every x 2M�.
Proof. Otherwise, there exists a sequence

xk 2M� such that kPT ðxkÞk ! 0 as k!1. By

compactness we can assume xk ! � for some

� 2M. Since kPT ðxkÞk ! 0, � is a singularity and

so XT ðxkÞ ! � too. Again by compactness we can

assume that EX
xk
! L and EX

XT ðxkÞ ! L0 for some

one-dimensional subspaces L and L0 of T�M, where

EX is the one-dimensional subbundle of TM�M

generated by X. Since Nxk ? EX
xk

for all k and

EX
xk
! L, Nxk converges to the orthogonal comple-

ment N of L in T�M. Similarly, NXT ðxkÞ converges

to the orthogonal complement N 0 of L0 in T�M.

It follows that DXT ðxkÞjNxk
! DXT ð�ÞjN and

�XT ðxkÞ ! �N 0 where �N 0 : T�M ! N 0 is the or-

thogonal projection. Since PT ðxkÞ ¼ �XT ðxkÞ 	
DXT ðxkÞjNxk

, we conclude that PT ðxkÞ ! �N 0 	
DXT ð�ÞjN as k!1. Since kPT ðxkÞk ! 0 as k!
1, we obtain �N 0 	DXT ð�ÞjN ¼ 0 which is equiv-

alent to DXT ð�ÞN � L0. However, n � 3 and

dimðLÞ ¼ 1, so dimðNÞ � 2, thus dimðDXT ð�ÞNÞ �
2. Since dimðL0Þ ¼ 1 and DXT ð�ÞN � L0, we obtain

a contradiction. This ends the proof. �

Lemma 3. Let � be a nonatomic ergodic

measure of a flow X. If the Lyapunov exponents of

� off the flow direction are all negative, then there is

T0 > 0 such that � is an ergodic measure of XT0
andR

log kPT0
kd� < 0.

Proof. First we prove �ðSingðXÞÞ ¼ 0. Other-

wise, �ðSingðXÞÞ ¼ 1 since � is ergodic and SingðXÞ
is closed invariant. Since every Lyapunov exponent

of � off the flow direction is negative, every

Lyapunov exponent of � is therefore negative (and

so different from zero). In such a case, the results

in p. 632 of [4] imply that � is supported on a

singularity. However, this contradicts that � is

nonatomic. Hence, �ðSingðXÞÞ ¼ 0.

Let us continue with the proof. Since � is

ergodic and �ðSingðXÞÞ ¼ 0, Oseledets’s Theorem

for the linear Poincaré flow (cf. Theorem 2.2 in [2])

implies that there exist a full measure set R �M�,
a Pt-invariant splitting NR ¼ N1 � � � � �Np and

real numbers ��1 < � � � < ��p such that

lim
t!�1

1

t
log kPtðxÞvik ¼ ��i;

for every x 2 R; vi 2 Ni
x; 1 � i � p. Again by

Oseledets’s which is now applied to the flow X,

we also have an invariant measurable splitting

E1 � � � � � Ek over R with Lyapunov exponents

�1 < � � � < �k of � as an ergodic measure of X. Since

every Lyapunov exponent of � off the flow direction

is negative, �k ¼ 0 and so �k
1 < 0.

Take v 2 Ni
x for some x 2 R and 1 � i � p.

Write v ¼
P

j2J vj for some J � f1; � � � ; k
 1g and

vj 2 Ej
x for all j 2 J . Then,

1

t
log kPtðxÞvk �

log k

t
þmax

j2J

1

t
log kDXtðxÞvjk:

Letting t!1 we get ��i � maxf�1; � � � ; �k
1g ¼
�k
1 < 0. Hence the numbers f��1; � � � ; ��pg are all

negative too.

By [9] we can fix T1 > 0 such that � is totally

ergodic for XT1
(i.e. � is ergodic for XnT1

, 8n 2 Nþ).

Additionally, it follows from the definitions that

kPT1
ðxÞk � kDXT1

ðxÞk for every x 2M�. These,

Lemma 2 and �ðM�Þ ¼ 1 imply that there is K >

0 such that logK � log kPT1
ðxÞk � log kDXT1

ðxÞk
for �-a.e. x 2 X. From this we obtain log kPT1

k 2
L1ðM;�Þ.

Now, let A ¼ fAn : n 2 Nþg be the sequence of

linear maps An : N ! N defined by

AnðxÞ ¼ PnT1
ðxÞ ¼ PT1

ðXðn
1ÞT1
ðxÞÞ 	 � � � 	 PT1

ðxÞ

whenever x 2M�. Since M� is open and X of class

C1, we have that A is measurable. Since

log kPT1
k 2 L1ðM;�Þ, the Furstenberg-Kesten The-

orem implies that there is � 2 R such that

lim
n!1

1

n
log kPnT1

ðxÞk ¼ �; �-a.e. x 2M:ð1Þ

Moreover, � is the upper Lyapunov exponent of A
(cf. p. 150 in [12]). Since the Lyapunov exponents

f��1; � � � ; ��pg of A are all negative, we get � < 0.

Next consider the sequence of functions fn :

M ! �R given by

fnðxÞ ¼
1

n
log kPnT1

ðxÞk if x =2 SingðXÞ


1 otherwise:

8<
:
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Since M� is open and X of class C1, fn is a sequence

of measurable functions. Moreover, (1) implies

jfnj � 2� for large n. Since the constant map x 7!
2� is integrable (because �ðMÞ ¼ 1), (1) and the

Dominated Convergence Theorem imply

lim
n!1

Z
1

n
log kPnT1

kd� ¼
Z
�d� ¼ �:

Pick 0 < � < 
� so �þ � < 0. The above limit

implies that there is n 2 Nþ such thatZ
log kPnT1

kd� < nð�þ �Þ < 0:

As � is totally ergodic for XT1
, � is ergodic for XnT1

.

Then, we are done by taking T0 ¼ nT1. �

In what follows we will denote by Bðx; 	Þ and

B½x; 	� the open and closed balls of radius 	 of M

centered at x 2M respectively.

Recall that the support of a Borel probability

measure � is the set suppð�Þ of points x 2M such

that �ðBðx; 	ÞÞ > 0 for every 	 > 0. For every flow

X and x 2M we define the omega-limit set as

!XðxÞ ¼
n
y 2M : y ¼ lim

k!1
XtkðxÞ

for some sequences tk !1
o
:

We say that � �M is a transitive set of X if � ¼
!XðxÞ for some x 2 �.

Lemma 3 and a result by Liao [5] imply

Theorem 1 when the involved measure has no

singularities in its support. More precisely, we have

the following result.

Corollary 4. Let � be a nonatomic ergodic

measure of a flow X with suppð�Þ \ SingðXÞ ¼ ;. If

the Lyapunov exponents of � off the flow direction

are all negative, then � is supported on an attracting

periodic orbit.

Proof. By Lemma 3 there exists T0 > 0 such

that
R

log kPT0
kd� < 0. Then, by a result of Liao

(Lemma 3.2 in [5]) we have that suppð�Þ contains

an attracting periodic orbit of X. Since suppð�Þ
is ergodic, suppð�Þ is transitive and so � is

supported on that periodic orbit. This completes

the proof. �

2.2. Scaled Poincaré flow and ð�;T0Þ�-con-

tractible orbits. Liao defined the scaled linear

Poincaré flow by

P �t ðxÞ ¼
kXðxÞk
kXðXtðxÞÞk

PtðxÞ; 8x 2M�:

By an orbit of X we mean O ¼ fXtðxÞ : t 2 Rg. In

such a case we say that O is the orbit through x. The

orbit O is regular if XðxÞ 6¼ 0.

Given 
 > 0 and T0 > 0 we call a regular orbit

O eventually ð
; T0Þ�-contractible if there are x 2 O
and nx 2 Nþ such that

1

nT0

Xn
1

i¼0

log kP �T0
ðXiT0

ðxÞÞk � 

; 8n � nx:ð2Þ

If above nx can be chosen as 1, then O is called

ð
; T0Þ�-contractible [7]. Clearly every ð
; T0Þ�-con-

tractible orbit is eventually ð
; T0Þ�-contractible. As

in [7], in each case we call x reference point of O.

Given x 2M we define W staðxÞ as the set of

points y 2M for which there exists a continuous

monotonic function h : ½0;1½! ½0;1½ with hð0Þ ¼ 0

such that

lim
t!1

dðXtðxÞ; XhðtÞðyÞÞ ¼ 0:

By Proposition 6.1 of Liao [7] for every flow X and

every pair of numbers 
; T0 > 0 there exists � > 0

such that if O is a ð
; T0Þ�-contractible orbit with

reference point x, then Bðx; �kXðxÞkÞ � W staðxÞ.
The proof is based on the following statistical

property (see (1.3) in p. 3 of [8]):

lim sup
n!1

1

nT0

Xn
1

i¼0

log kP �T0
ðXiT0

ðxÞÞk < 0:

Since this statistical property is also true for

eventually ð
; T0Þ�-contractible orbits with refer-

ence point x (just take a limit superior in (2)),

Proposition 6.1 in [7] is also true in the eventual

case as well. Specifically, we have the following

result.

Lemma 5. For every flow X and every pair

of numbers 
; T0 > 0 there exists � > 0 such that if

O is an eventually ð
; T0Þ�-contractible orbit with

reference point x, then Bðx; �kXðxÞkÞ � WstaðxÞ.
We say that x is recurrent if x 2 !XðxÞ. Denote

by RðXÞ the set of recurrent points of X. A similar

definition holds for diffeomorphisms. The following

lemma is a consequence of Lemma 3.

Lemma 6. Let � be a nonatomic ergodic

measure of a flow X. If the Lyapunov exponents of

� off the flow direction are all negative, then there

are 
; T0 > 0 and an orbit O which is eventually

ð
; T0Þ�-contractible with reference point x 2
RðXÞ \ suppð�Þ.

Proof. Applying Lemma 3 there are 
0; T0 > 0
such that � is an ergodic measure of XT0

and

No. 10] Ergodic measures with negative Lyapunov exponents 133



R
log kPT0

kd� < 

0. As log kPT0
k 2 L1ðM;�Þ,

Birkhoff’s ergodic theorem implies

lim
n!1

1

nT0

Xn
1

i¼0

log kPT0
ðXiT0

ðxÞÞk < 

;

�-a.e. x 2M, where 
 ¼ 
0

T0
. However,

lim
n!1

1

nT0
ðlog kXðXnT0

ðxÞÞk 
 log kXðxÞkÞ ¼ 0

for any x 2M�. So, the previous inequality yields

the following one:

lim
n!1

1

nT0

Xn
1

i¼0

log kP �T0
ðXiT0

ðxÞÞk < 

;

�-a.e. x 2M. By Poincaré recurrence there is x 2
RðXT0

Þ \ suppð�Þ satisfying the latter inequality.

From this it follows that the orbit O through x is

eventually ð
; T0Þ�-contractible with reference point

x. Since RðXT0
Þ � RðXÞ, we get x 2 RðXÞ \ suppð�Þ

and we are done. �

2.3. Proof of Theorem 1. Let � be a

nonatomic ergodic measure of an n-dimensional

flow X with n � 3. Suppose that the Lyapunov

exponents off the flow direction of � are all negative.

Then, by Lemma 6, there are 
; T0 > 0 and an

orbit O which is eventually ð
; T0Þ�-contractible

with reference point x 2 RðXÞ \ suppð�Þ. By put-

ting such 
 and T0 in Lemma 5 we obtain � > 0
such that Bðx; �kXðxÞkÞ � WstaðxÞ. Taking 2	 ¼
�kXðxÞk we get 	 > 0 satisfying Bðx; 2	Þ � WstaðxÞ.

It follows that for every y 2 B½x; 	� there is a

continuous monotonic function hy : ½0;1½! ½0;1½
with nyð0Þ ¼ 0 such that

lim
t!1

dðXtðxÞ; XhyðtÞðyÞÞ ¼ 0:

Since x 2 RðXÞ, we have x 2 !XðxÞ and so there

is a sequence tk !1 such that XtkðxÞ ! x as

k!1. Then, by replacing t ¼ tk in the previous

limit we obtain XhyðtkÞðyÞ ! x for every y 2 B½x; 	�.
It follows that for every y 2 B½x; 	� there are

ky 2 Nþ and 	y > 0 such that dðx;Xhyðtky ÞðzÞÞ <
	
2

for every z 2 Bðy; 	yÞ. Since hy is monotonic and

B½x; 	� has no singularities, we can assume that

hyðtkyÞ > 0 for every y 2 B½x; 	�. Notice that

fBðy; 	yÞ : y 2 B½x; 	�g is an open covering of

B½x; 	�. Since B½x; 	� is compact, there are fi-

nitely many points y1; � � � ; yl 2 B½x; 	� such that

fBðyi; 	yiÞ : i ¼ 1; � � � ; lg is an open covering of

B½x; 	�. Take z 2 B½x; 	�. Then, z 2 Bðyi; 	yiÞ for

some i ¼ 1; � � � ; l so Xhyi ðtkyi ÞðzÞ 2 B½x;
	
2�. Hence, the

numbers ti ¼ hyiðtkyi Þ for 1 � i � l are all positive

satisfying

B½x; 	� �
[l
i¼1

Xti B x;
	

2

� �� �
:ð3Þ

Now define

K ¼
[
t�0

XtðB½x; 	�Þ:

Since

X
sðKÞ ¼
[
t�0

Xt
sðB½x; 	�Þ ¼
[
t�
s

XtðB½x; 	�Þ � K

8s � 0, we obtain that K is positively invariant, i.e.,

XsðKÞ � K for every s � 0.

We also have that Bðx; 	2Þ � IntðKÞ and so

x 2 IntðKÞ. Since x 2 suppð�Þ we conclude that

suppð�Þ \ IntðKÞ 6¼ ;.
We claim that

K ¼
[

0�t�maxft1;���;tlg
XtðB½x; 	�Þ:ð4Þ

Indeed, take z 2 K. Hence there are t � 0 and y 2
B½x; 	� such that z ¼ XtðyÞ. Since y 2 B½x; 	�, (3)

implies that there is a sequence ij 2 f1; � � � ; lg such

that

XPr

j¼1
tij
ðyÞ 2 B x;

	

2

� �
; 8r ¼ 1; 2; � � � :ð5Þ

Since each ti > 0, there is r 2 Nþ such that

Xr
i¼1

tij � t �
Xr
i¼1

tij þmaxft1; � � � ; tlg:

By taking this r in (5) we get XtðyÞ ¼ Xsð�yÞ where

s ¼ t

Xr
i¼1

tij 2 ½0;maxft1; � � � ; tlg�

and

�y ¼ XPr

j¼1
tij
ðyÞ 2 B½x; 	�:

It follows that

z ¼ XtðyÞ ¼ Xsð�yÞ 2
[

0�t�maxft1;���;tlg
XtðB½x; 	�Þ

and so

K �
[

0�t�maxft1;���;tlg
XtðB½x; 	�Þ:

Since the reversed inclusion is obvious, we obtain

(4).
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It follows from (4) that K is compact. Since � is

ergodic, suppð�Þ is a transitive set. Since suppð�Þ \
IntðKÞ 6¼ ;, the positive orbit of q eventually meets

IntðKÞ. Since K is compact and positively invari-

ant, suppð�Þ � K.

On the other hand, it is easy to see that

SingðXÞ \K ¼ ; (otherwise there would be some

singularities in B½x; 	� contradicting that x is

regular). Since suppð�Þ � K, we obtain suppð�Þ \
SingðXÞ ¼ ;. Then, � is supported on an attracting

periodic orbit by Corollary 4. This completes the

proof. �
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