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Abstract: In this note, we shall define the balancing Wieferich prime which is an analogue

of the famous Wieferich primes. We prove that, under the abc conjecture for the number field

Qð
ffiffiffi
2
p
Þ, there are infinitely many balancing non-Wieferich primes. In particular, under the

assumption of the abc conjecture for the number field Qð
ffiffiffi
2
p
Þ there are at least Oðlogx=log logxÞ

such primes p � 1ðmod kÞ for any fixed integer k > 2.
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1. Introduction. It is well known that if p

is a prime and a is any integer not divisible by p,

then

ap�1 � 1ðmod pÞ:ð1:1Þ

The quotient qpðaÞ ¼ ap�1�1
p is called the Fermat

quotient for p with base a. These quotients have

been studied by several authors. However, while

doing the first case of Fermat’s last theorem,

Wieferich used the Fermat’s quotient with base 2

and proved the following theorem.

Theorem 1.1. Let p be an odd prime, and

x; y; z be integers, not divisible by p, satisfying the

equation

xp þ yp ¼ zp:ð1:2Þ

Then

2p�1 � 1ðmod p2Þ:ð1:3Þ

Primes satisfying (1.3) are called Wieferich primes

with base 2. Till today two Wieferich primes are

known for the base 2, that are 1093 and 3511, found

respectively by Meissner in 1913 and by Beegner in

1922.

Before going to the analogue theory of

Wieferich primes for the sequence of balancing

numbers, our foremost task is to discuss the concept

of balancing numbers. A balancing number is a

positive integer n which is a solution of the

Diophantine equation

1þ 2þ � � � þ ðn� 1Þð1:4Þ
¼ ðnþ 1Þ þ ðnþ 2Þ þ � � � þm

for some natural number m [1,3]. Equivalently, the

solutions ðx; yÞ of the Pell’s equation 8x2 þ 1 ¼ y2

are called balancing and Lucas balancing numbers.

Let us denote the n-th balancing and Lucas

balancing numbers by Bn and Cn respectively.

Balancing numbers can also be obtained from the

recurrence relation Bnþ1 ¼ 6Bn �Bn�1 for n � 1

with initial values B0 ¼ 0, B1 ¼ 1 [3] and the Binet

formula for balancing number is

Bn ¼
�n � �n

�� � ;ð1:5Þ

where � ¼ 3þ 2
ffiffiffi
2
p

and � ¼ 1=�. Panda and Rout

[4] studied the periodicity of balancing number

sequences and proved that ðBn mod mÞ1m¼0 is peri-

odic. It is also known that for any odd prime p,

B
p�ð8pÞ

� 0 ðmod pÞ, where ð8pÞ denotes the Jacobi

symbol [4]. A prime p is called a balancing Wieferich

prime if

B
p�ð8pÞ

� 0 ðmod p2Þ:ð1:6Þ

Though Panda and Rout [4] did not discuss the

balancing Wieferich primes but they formulated a

conjecture that there are three primes 13, 31, and

1546463 such that periods of balancing sequence

modulo these three primes are equal to the periods

modulo its square. Hence, these are the three

balancing Wieferich primes. Sun and Sun [7] proved

that if the first case of Fermat’s last theorem fails

for an odd prime p then F
p�ð5pÞ

� 0 ðmod p2Þ, where
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Fn is the n-th Fibonacci number. However, the

finiteness or infinitude of the balancing Wieferich

primes are still unknown. Also we do not know

whether there are infinitely many balancing non-

Wieferich primes or not.

The objective of this paper is to show that, for

any arbitrary integer k > 2, there are infinitely

many balancing non-Wieferich primes p with p �
1 ðmod kÞ under the assumption of the abc con-

jecture. Our proof closely follows the paper of

Graves and Ram Murty [2].

2. Preliminaries. Let us start with defini-

tion of radical of a number and cyclotomic poly-

nomial.

Definition 2.1. The radical of a positive

integer n is defined as the product of the distinct

prime numbers dividing n, i.e.,

radðnÞ ¼
Y
pjn

p prime

p:

Definition 2.2. Given an integer x, x ¼Q
p p

�, where the product is over the distinct primes

p j x, we define its powerful part as the product of

prime powers such that p�kx with � � 2.

Definition 2.3. For any integer m � 1, the

m-th cyclotomic polynomial can be defined as

�mðXÞ ¼
Y
ðd;mÞ¼1
0<d<m

ðX � �dmÞ;ð2:1Þ

where �m is the primitive m-th root of unity.

We now state the following generating formula

for cyclotomic polynomials

�mðXÞ ¼
Xm � 1Y
|{z}
djm

0<d<m

�dðXÞ
:ð2:2Þ

We need the following estimate of Thangadurai and

Vatwani [8] which relates the cyclotomic polyno-

mial �nðxÞ with the Euler totient function �.

Proposition 2.4. For all integers n � 2 and

b � 2,

�nðbÞ �
1

2
b�ðnÞ:

The proof of the following result is available

in [5].

Proposition 2.5. If p j �nðbÞ, then either

p j n or p � 1 ðmod nÞ.
We need the following important inequality

due to Rosser [6].

Proposition 2.6. The n-th prime is strictly

greater than n logn.

In 1980, Masser and Oesterlé formulated the

following abc conjecture.

Conjecture 2.7. Let a; b; c be mutually co-

prime integers satisfying aþ b ¼ c and let � > 0 be

given. Then there is a constant �ð�Þ such that

maxðjaj; jbj; jcjÞ � �ð�ÞðradðabcÞÞ1þ�:ð2:3Þ

From the Binet formula of Bn in (1.5), one can

observe that, the ring Z is not sufficient for our

purpose. Instead, we will work in a larger ring Z½
ffiffiffi
2
p
�

as Z½
ffiffiffi
2
p
� is the ring of integers of the number field

Qð
ffiffiffi
2
p
Þ.

2.1. The abc conjecture in number fields

(See [9]). Let K be an algebraic number field and

OK be its ring of integers. Let VK be the set of primes

on K, that is v 2 VK is an equivalence class of non-

trivial norms on K (finite or infinite). Let kxkv :¼
NK=QðpÞ�vpðxÞ if v is the prime defined by a prime

ideal p of OK and vp is the corresponding valuation.

Let kxkv :¼ j�ðxÞje for all non-conjugate embeddings

� : K ! C with e ¼ 1 if �ðKÞ � R and e ¼ 2 other-

wise. Then height of any triple ða; b; cÞ 2 ðK	Þ3 is

HKða; b; cÞ :¼
Y
v2VK

maxðkakv; kbkv; kckvÞ:ð2:4Þ

Suppose IKða; b; cÞ is the set of all prime ideals p of

OK for which kakv; kbkv; kckv are not equal. Then

the radical of the triple ða; b; cÞ is given by

radKða; b; cÞ :¼
Y

p2IKða;b;cÞ
NK=QðpÞ:ð2:5Þ

Conjecture 2.8. For any � > 0, there exists

a positive constant CK;� such that for all a; b; c 2 K	
satisfying aþ bþ c ¼ 0, we have

HKða; b; cÞ � CK;�ðradKða; b; cÞÞ1þ�:ð2:6Þ

We would like to give the definition of rank of

apparition of a number in an integer sequence which

will play a vital role in proving some lemmas. The

rank of apparition of k in an integer sequence fUng
is the least index t such that Ut 6¼ 0 and k j Ut. We

denote the rank of apparition of p for balancing

sequence as �ðpÞ if it exists. An important property

of balancing number is Bn � 0 ðmod pÞ if and only if

n � 0 ðmod �ðpÞÞ.
Lemma 2.9. For n � 2 and � ¼ 3þ 2

ffiffiffi
2
p

,

the n-th balancing number satisfies the following
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inequality

�n�1 < Bn < �n:

Proof. This inequality can be easily obtained

by using induction on n. �

A similar type of inequality also holds if we

replace the integer b with real number b in

Proposition 2.4 and hence the following lemma.

Lemma 2.10. For any real number b with

jbj > 1, there exists C > 0 such that

j�nðbÞj � C � jbj�ðnÞ:

Proof. From the proof of Proposition 2.4, we

will find that

S ¼ �nðbÞ
b�ðnÞ

¼
Y
djn

1�
1

bd

� �	ðn=dÞ
:

Now, j
Q

djnð1� 1
bd
Þ	ðn=dÞj >

Q1
d¼1ð1� 1

jbjdÞ. Then tak-

ing logarithm we have

log jSj > log
Y1
d¼1

1�
1

jbjd

 !
¼
X1
d¼1

log 1�
1

jbjd

 !
:

Now using the following expansion for x 2 ½0; 1Þ

logð1� xÞ ¼ � xþ
x2

2
þ
x3

3
þ � � �

� �
� �ðxþ x2 þ x3 þ � � �Þ;

we get

log jSj > �
X1
d¼1

1

jbjd
¼
�1

jbj � 1
:

Taking exponentiation of the above inequality we

conclude jSj > e�1=ðjbj�1Þ and this completes the

proof. �

Lemma 2.11. Let p be an odd prime. Sup-

pose Bn � 0 ðmod pÞ and Bn 6� 0 ðmod p2Þ. Then

B�ðpÞ 6� 0 ðmod p2Þ.
Proof. Since Bn � 0 ðmod pÞ we must have

�ðpÞ j n. Thus n ¼ �ðpÞe for some e � 1. Assume

on the contrary that B�ðpÞ � 0 ðmod p2Þ. Thus

B�ðpÞ ¼ pl where p j l. Using the De-Moivres theo-

rem for balancing numbers [3], i.e.,

C�ðpÞe þ
ffiffiffi
8
p

B�ðpÞe ¼ ðC�ðpÞ þ
ffiffiffi
8
p

B�ðpÞÞe;

we have

Bn ¼ B�ðpÞe ¼
e

1

� �
Ce�1
�ðpÞB�ðpÞ

þ e

3

� �
Ce�3
�ðpÞB

3
�ðpÞ þ � � � þ 8

p�1
2 Be

�ðpÞ

¼ pl
e

1

� �
Ce�1
�ðpÞ þ p3l3

e

3

� �
Ce�3
�ðpÞ þ � � � þ 8

p�1
2 pele

� pleCe�1
�ðpÞðmod p2Þ:

Since p j l, Bn � 0 ðmod p2Þ, which is a contra-

diction to our hypothesis. �

Lemma 2.12. Suppose Bn is factored into

XnYn, where Xn is the squarefree part of Bn and Yn
is the powerful part of Bn. If p j Xn, then

B
p�ð8pÞ

6� 0 ðmod p2Þ:

Proof. Since gcdðXn; YnÞ ¼ 1 and p j Xn, we

have pkBn. Thus, by Lemma 2.11, p2 - B�ðpÞ. Since

B
p�ð8pÞ

� 0 ðmod pÞ we have �ðpÞ j ðp� ð8pÞÞ. Write

ðp� ð8pÞÞ ¼ �ðpÞf . Also B�ðpÞ ¼ pl where p - l. Hence

B
p�ð8pÞ

¼ B�ðpÞf

� plfCf�1
�ðpÞðmod p2Þ:

As p - l and gcdðf; pÞ ¼ 1 as f j p� 1 or f j pþ 1

implies p2 - plf . Using B�ðpÞ � 0 ðmod pÞ in C2
�ðpÞ ¼

8B2
�ðpÞ þ 1 we conclude that C�ðpÞ � 
1 ðmod pÞ.

Therefore, B
p�ð8pÞ

6� 0 ðmod p2Þ. �

Lemma 2.12 says that if p divides Xn (i.e.,

squarefree part of Bn) then p is a balancing non-

Wieferich prime.

3. Main results.

Theorem 3.1. If abc conjecture for the

number field Qð
ffiffiffi
2
p
Þ is true and k � 2 is an integer

then there are infinitely many primes p such that

B
p�ð8pÞ

6� 0 ðmod p2Þ and p � 1 ðmod kÞ:

Proof. Let us denote the n-th prime number by

pn which is relatively prime to k. Also, write Bpnk ¼
XpnkYpnk where Ypnk is the powerful part of Bpnk.

Using the Binet formula for balancing numbers in

(1.5) we have,

4
ffiffiffi
2
p

Bpnk � �pnk þ �pnk ¼ 0:

Thus, the abc conjecture in (2.6) with K ¼ Qð
ffiffiffi
2
p
Þ,

implies that, for any � > 0, there exists a constant

C� such that

Hð4
ffiffiffi
2
p

Bpnk;��pnk; �pnkÞð3:1Þ
� C�ðradð4

ffiffiffi
2
p

Bpnk;��pnk; �pnkÞÞ
1þ�:

Now from the definition of the height in (2.4) we

have,

Hð4
ffiffiffi
2
p

Bpnk;��pnk; �pnkÞ
¼ maxfj4

ffiffiffi
2
p

Bpnkj; j � �pnkj; j�pnkjg
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�maxfj � 4
ffiffiffi
2
p

Bpnkj; j � �pnkj; j�pnkjg

� j4
ffiffiffi
2
p

Bpnkj � j � 4
ffiffiffi
2
p

Bpnkj
¼ 32B2

pnk
¼ 32X2

pnk
Y 2
pnk
:

Since � and � are units, all prime factors are coming

from 4
ffiffiffi
2
p

Bpnk. Therefore, we have

radð4
ffiffiffi
2
p

Bpnk;��pnk; �pnkÞ ¼
Y

pj4
ffiffi
2
p

Bpnk

NðpÞ

� 8X2
pnk
Ypnk:

Thus from (3.1),

32X2
pnk
Y 2
pnk
� C�ð8X2

pnk
YpnkÞ

1þ�

which implies that

4Ypnk � C�ð2X2
pnk
YpnkÞ

�

and hence we conclude

Ypnk �� B
2�
pnk
:ð3:2Þ

Let us take

X0pnk ¼ gcdðXpnk;�pnkð�=�ÞÞ

and

Y 0pnk ¼ gcdðYpnk;�pnkð�=�ÞÞ:

From (2.2), we have

�pnkð�=�Þ j
�

�

� �pnk
� 1

 !
�pnk�1:

Therefore,

�pnkð�=�Þ j
�

�

� �
� 1

� �
Bpnk ¼ �1ð�=�ÞXpnkYpnk:

As gcdð�pnk;�1Þ ¼ 1 and gcdðXpnk; YpnkÞ ¼ 1, we

conclude that

�pnkð�=�Þ j Xpnk or �pnkð�=�Þ j Ypnk:

Thus, X0pnk ¼ �pnkð�=�Þ and Y 0pnk ¼ 1 in the former

case and X0pnk ¼ 1 and Y 0pnk ¼ �pnkð�=�Þ in the latter

case. Therefore in any case we have

X0pnkY
0
pnk
¼ �pnkð�=�Þ:ð3:3Þ

Using � ¼ 1=� in (3.3) and then from Lemma 2.10,

jX0pnkY
0
pnk
j ¼ j�pnkð�2Þj � C � j�j2�ðpnkÞ:

Since fBpnkg is a positive integer sequence and using

Lemma 2.9,

X0pnkY
0
pnk
� C � �2�ðpnkÞ � C � B2�ðpnÞ

�ðkÞ :ð3:4Þ

Thus, from (3.2) and (3.4),

X0pnkB
2�
pnk
� X0pnkY

0
pnk
� C � B2�ðpnÞ

�ðkÞ ;

which will be further simplified as

X0pnk � B
2ð�ðpnÞ��Þ
�ðkÞ :

Choosing � < 1
2 and using Proposition 2.6

X0pnk � B
2�ðpnÞ�1
�ðkÞ � Bn logn

�ðkÞ :ð3:5Þ

But since we know that X0pnk is a product of distinct

primes from (3.5) we get

lim
n!1

#fprimes p : p j X0pik; i � ng ¼ 1:

From (3.3) we know that if the prime p divides X0pnk
then it also divides �pnkð�=�Þ and hence by

Proposition 2.5, p is congruent to 1 modulo pnk.

Also from Lemma 2.12, if p divides Xpnk then

B
p�ð8pÞ

6� 0 ðmod p2Þ. Thus there are infinitely many

primes p such that B
p�ð8pÞ

6� 0 ðmod p2Þ and p �
1 ðmod kÞ. �

Theorem 3.2. Let k > 2 and n > 1 be the

positive integers and also assume the abc conjecture

for the number field Qð
ffiffiffi
2
p
Þ. Then

#fprimes p � x : p � 1 ðmod kÞ;
B
p�ð8pÞ

6� 0 ðmod p2Þg

�
logx

log logx
:

Proof. From the proof of Theorem 3.1, we get

X0pnk � Bpnk:

We also know that if p j X0pnk then B
p�ð8pÞ

6� 0

ðmod p2Þ. Now our aim is to count the number of

primes p such that p divides X0pnk � x. To achieve

this, we first show that for all large n, there exists a

prime p such that p j X0pnk but p - X0pik for i < n.
Let us assume on the contrary, i.e., p j X0pnk and

p j X0pik for i < n. Then

X0pnk �
Yn�1

i¼1

gcdðX0pik; X
0
pnk
Þ:ð3:6Þ

Also X0pik j Bpik and X0pnk j Bpnk, thus

gcdðX0pik; X
0
pnk
Þ j gcdðBpik; BpnkÞ:

As the sequence of balancing numbers is a strongly

divisible sequence, i.e., gcdðBm;BnÞ ¼ Bgcdðm;nÞ [3],

we have gcdðX0pik; X
0
pnk
Þ j Bgcdðpik;pnkÞ ¼ Bk. Now

from (3.6) and Lemma 2.9, we conclude that
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X0pnk � B
n�1
k < �kðn�1Þ:ð3:7Þ

Again from (3.5) and (3.7), we have

�kðn�1Þ > Bn logn
�ðkÞ :

Then using the lower bound of B�ðkÞ given in

Lemma 2.9,

�kðn�1Þ > �ð�ðkÞ�1Þn logn:ð3:8Þ

Taking logarithm on both sides of (3.8), we get

kn > kðn� 1Þ > ð�ðkÞ � 1Þn logn, i.e.,

k

�ðkÞ � 1
> logn

which is not true for large n. Therefore, if p j X0pnk
then p - X0pik for i < n.

As p j X0pnk and X0pnk < Bpnk � x,

#fprimes p � X0pnk : p � 1 ðmod kÞ;
B
p�ð8pÞ

6� 0 ðmod p2Þg

� n:

Also it is easy to realize that,

maxfn � 0 : �n � xg �
logx

logð�Þ :

Since Bk < �k, therefore the largest n such that

Bpnk � x is � logx
log logx. Thus,

#fprimes p � x : p � 1 ðmod kÞ;

B
p�ð8pÞ

6� 0 ðmod p2Þg

�
log x

log logx
: �

Acknowledgment. It is a pleasure to thank

the anonymous referee for the valuable suggestions

which improved the presentation of the paper to a

great extent.

References

[ 1 ] R. Finkelstein, The house problem, Amer. Math.
Monthly 72 (1965), 1082–1088.

[ 2 ] H. Graves and M. Ram Murty, The abc conjecture
and non-Wieferich primes in arithmetic pro-
gressions, J. Number Theory 133 (2013), no. 6,
1809–1813.

[ 3 ] G. K. Panda, Some fascinating properties of
balancing numbers, Congr. Numer. 194
(2009), 185–189.

[ 4 ] G. K. Panda and S. S. Rout, Periodicity of
balancing numbers, Acta Math. Hungar. 143
(2014), no. 2, 274–286.

[ 5 ] M. Ram Murty, Problems in analytic number
theory, 2nd ed., Graduate Texts in Mathemat-
ics, 206, Springer, New York, 2008.

[ 6 ] B. Rosser, The n-th prime is greater than n logn,
Proc. London Math. Soc. S2-45 (1939), no. 1,
21–44.

[ 7 ] Z. H. Sun and Z. W. Sun, Fibonacci numbers and
Fermat’s last theorem, Acta Arith. 60 (1992),
no. 4, 371–388.

[ 8 ] R. Thangadurai and A. Vatwani, The least prime
congruent to one modulo n, Amer. Math.
Monthly 118 (2011), no. 8, 737–742.

[ 9 ] P. Vojta, Diophantine approximations and value
distribution theory, Lecture Notes in Mathe-
matics, 1239, Springer, Berlin, 1987.

116 S. S. ROUT [Vol. 92(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9

