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Abstract: For a prime number p, we say that a number field F satisfies the Hilbert-Speiser

condition ðHpÞ if each tame cyclic extension N=F of degree p has a normal integral basis. In this

note, we determine the real abelian number fields satisfying ðHpÞ for odd prime numbers p with

hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1.
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1. Introduction. We say that a finite Ga-

lois extension N=F of a number field F with group

G has a normal integral basis (NIB for short) when

ON is cyclic over the group ring OF ½G�. Here, OF
denotes the ring of integers of F . It is well known

that N=F is necessarily tame if it has an NIB. Let p

be a prime number, and � ¼ ðZ=pZÞþ be a cyclic

group of order p. We say that a number field F

satisfies the Hilbert-Speiser condition ðHpÞ when

each tame �-extension N=F has an NIB. There are

several results on number fields satisfying ðHpÞ. In

particular, all the abelian fields F satisfying ðH3Þ
are determined in Carter [3] and the author [10]

when ½F : Q� ¼ 2, and by Yoshimura [20] when

½F : Q� > 2. The imaginary abelian fields satisfying

ðHpÞ for the case p � 5 are determined in [11–13].

The number of real (resp. imaginary) abelian fields

satisfying ðH3Þ is 18 (resp. 9). The numbers of

imaginary abelian fields satisfying ðHpÞ are 3, 1 and

0 when p ¼ 5, 7, and p � 11, respectively. The main

tools are (i) a theorem of McCulloh [15], (ii) a

theorem of Greither et al. [6, Corollary 7], and (iii)

the complex conjugation acting on several objects

associated to the base field F . The first one is of

quite fundamental nature and it describes, in the

locally free class group ClðOF ½��Þ associated to the

group ring OF ½��, the subset of the classes ½ON � for

all tame �-extensions N=F . The second one was

obtained from this theorem studying the Swan

submodule of ClðOF ½��Þ, and it implies that when

p � 5, an imaginary abelian field F satisfies ðHpÞ

only when F=Q is unramified at p. (See [8, Prop-

osition 3.4], [11, Lemma 2.2], [5, Theorem 1.3]).

Recently, Greither and Johnston ([5, Theorem

1.1]) proved that if p � 7, a totally real number field

F satisfies ðHpÞ only when F=Q is unramified at

p, using [15] with detailed analysis of the group

ClðOF ½��Þ and ramification index. The main pur-

pose of this note is to deal with real abelian fields

satisfying ðHpÞ for those odd prime numbers p with

hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1, where hðQð ffiffiffiffiffiffiffi�pp ÞÞ is the class

number of Qð ffiffiffiffiffiffiffi�pp Þ. As is well known, the condition

on p implies that

p ¼ 3; 7; 11; 19; 43; 67; 163:

For this, see Cox [4, Theorem 7.30] for instance.

First, we show the following result using [15].

Proposition 1. Let p be a prime number

with p � 3 mod 4. Let F be a number field unrami-

fied at p, and let N ¼ F ð ffiffiffiffiffiffiffi�pp Þ. If F satisfies ðHpÞ,
then the exponent of the ideal class group ClN of N

divides hðQð ffiffiffiffiffiffiffi�pp ÞÞ.
As we mentioned above, the abelian number fields

satisfying ðH3Þ are already determined. So, we let

p � 7. From Proposition 1 and [5, Theorem 1.1]

mentioned above, we obtain the following assertion

using some computational results on abelian fields.

Proposition 2. Let p � 7 be a prime number

with hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1. When p ¼ 7 (resp. 11), a real

abelian field F satisfies ðHpÞ if and only if F ¼
Qð

ffiffiffi
5
p
Þ or Qð

ffiffiffiffiffi
13
p
Þ (resp. F ¼ Qðcos 2�=7Þ). When

p ¼ 19, 43, 67 or 163, there is no real abelian field

satisfying ðHpÞ.
Remark 1. When p ¼ 2, it is known that a

number field F satisfies ðH2Þ if and only if the ray
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class group of F defined modulo 2 is trivial

([9, Proposition 2]). Imaginary abelian fields satis-

fying ðH2Þ are determined in [3] and [20].

2. Proof of Proposition 1. First, we recall

the theorem of McCulloh mentioned in §1. Let G ¼
ðZ=pZÞ� be the multiplicative group, which we

naturally identify with the Galois group

GalðQð�pÞ=QÞ. Here, �p is a primitive pth root of

unity. We put

�G ¼
1

p

Xp�1

a¼1

a��1
a 2 Q½G�

where �a ¼ a mod p 2 G. Then the Stickelbeger

ideal SG of the group ring Z½G� is defined by

SG ¼ Z½G� \ Z½G��G:

For a number field F , let ClF be the ideal class

group of F . Further, we denote by RðOF ½��Þ the

subset of ClðOF ½��Þ consisting of the locally free

classes ½ON � for all tame �-extensions N=F , and

denote by Cl0ðOF ½��Þ the kernel of the map

ClðOF ½��Þ ! ClF induced from the augmentation

map OF ½�� ! OF . It is known that RðOF ½��Þ �
Cl0ðOF ½��Þ and that F satisfies ðHpÞ if and only if

RðOF ½��Þ ¼ f0g. The group ring Z½G� acts on

Cl0ðOF ½��Þ through the natural action of G ¼
ðZ=pZÞ� on the additive group � ¼ ðZ=pZÞþ. Let

Cl0ðOF ½��ÞSG denote the subgroup of Cl0ðOF ½��Þ
generated by the classes c� for all c 2 Cl0ðOF ½��Þ
and � 2 SG. The main theorem of [15] asserts that

RðOF ½��Þ ¼ Cl0ðOF ½��ÞSG:ð1Þ

Let k be an imaginary subfield of Qð�pÞ, and

let � ¼ �k be the quotient of G ¼ GalðQð�pÞ=QÞ
corresponding to k; � ¼ Galðk=QÞ. We denote by

S� the image of the ideal SG under the restriction

map Z½G� ! Z½��. Let sG 2 Z½G� (resp. s� 2 Z½��)
be the sum of all elements of G (resp. �). Denote by

AG (resp. A�) the elements � of Z½G� (resp. Z½��)
such that �ð1þ JÞ ¼ a � sG (resp. a � s�) for some

a 2 Z. Here, J is the complex conjugation in G

(resp. �). The ideal SG (resp. S�) is contained in

AG (resp. A�) by Sinnott [16, Lemma 2.1]. Denote

by hM the class number of a number field M, and

by h�M the relative class number when M is an

imaginary abelian field. We set h�p ¼ h�M when M ¼
Qð�pÞ. By [16, Theorem 2.1], we have the following

class number formulas:

½AG : SG� ¼ h�p and ½A� : S�� ¼ h�k :ð2Þ

We see that A� ¼ Z½�� when and only when p �
3 mod 4 and k ¼ Qð ffiffiffiffiffiffiffi�pp Þ. This is a key point of the

following argument.

Proof of Proposition 1. Let p and F be as in

Proposition 1. Assume that F satisfies ðHpÞ; namely

that RðOF ½��Þ ¼ f0g. Put K ¼ F ð�pÞ, and $ ¼
$p ¼ �p � 1. Since F=Q is unramified at p, we see

that GalðK=F Þ is naturally identified with G ¼
GalðQð�pÞ=QÞ and that Cl0ðOF ½��Þ is isomorphic,

as a Z½G�-module, to the ray class group ClK;$ of K

defined modulo $OK by Brinkhuis [1, Proposition

2.1];

Cl0ðOF ½��Þ ¼	 ClK;$:ð3Þ

Therefore, by (1) and RðOF ½��Þ ¼ f0g, the Stick-

elberger ideal SG annihilates ClK;$. In particular, it

annihilates the absolute class group ClK . Let k ¼
Qð ffiffiffiffiffiffiffi�pp Þ and � ¼ Galðk=QÞ. We have N ¼ Fk,
and � ¼ GalðN=F Þ under the identification G ¼
GalðK=F Þ. It follows that S� annihilates ClN since

the norm map ClK ! ClN is surjective by Wash-

ington [17, Theorem 10.1]. In our situation, we have

A� ¼ Z½�� as we mentioned above. Therefore, it

follows from (2) that hðQð ffiffiffiffiffiffiffi�pp ÞÞ 2 S�. Thus,

multiplication by hðQð ffiffiffiffiffiffiffi�pp ÞÞ annihilates ClN . �

Corollary. Let p and F be as in Proposition

1. Assume that F satisfies ðHpÞ. Then hF ¼ 1 if

we further assume that hðQð ffiffiffiffiffiffiffi�pp ÞÞ and p� 1 are

relatively prime.

Proof. It follows from Proposition 1 that the

exponent of ClF divides hðQð ffiffiffiffiffiffiffi�pp ÞÞ since the norm

map ClN ! ClF is surjective. On the other hand,

we see that

sG ¼
X

�2G
� ¼ ð1þ ��1Þ�G 2 SG:

Since F satisfies ðHpÞ, the ideal SG annihilates ClK
as we have seen in the proof of Proposition 1. In

particular, sG annihilates ClK . This implies that the

exponent of ClF divides p� 1 since the norm map

ClK ! ClF is surjective. Now, we obtain hF ¼ 1

from the second assumption. �

Remark 2. At present, we have no example

of an abelian field F which satisfies ðHpÞ for some p

but hF > 1. On the other hand, Byott et al. [2, §6.3]

give an example of a non-Galois number field F

satisfying ðH5Þ but hF ¼ 2. It is of degree 4 and

unramified at 5 over Q, and has exactly 2 real

infinite places.

3. Proof of Proposition 2. The following
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lemmas are consequences of (1), and were shown

in [12, Proposition 6] and in [11, Lemma 5.1], re-

spectively.

Lemma 1 ([12]). Let F be a totally real

number field, p a prime number and K ¼ F ð�pÞ. If

F satisfies ðHpÞ, then the exponent of the minus class

group Cl�K divides 2h�p .

Lemma 2 ([11]). Let p be a prime number

with p � 3 mod 4, and let q ¼ ðp� 1Þ=2. Let F be a

totally real number field unramified at p, and let N ¼
F ð ffiffiffiffiffiffiffi�pp Þ and K ¼ F ð�pÞ. Assume that the following

conditions are satisfied:

(I) q is a prime number.

(II) The prime number 2 remains prime in Qð�qÞ.
(III) hK ¼ h�K ¼ 2q�1.

(IV) hN ¼ 1.

(V) ðOK=$Þ� ¼ O�K mod $ where $ ¼ �p � 1.

Then F satisfies the condition ðHpÞ.
Proof of Proposition 2. We use the same

notation as in §2. Let p � 7 be a prime number

with hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1. Let F be a real abelian field

satisfying ðHpÞ, and N ¼ F ð ffiffiffiffiffiffiffi�pp Þ, K ¼ F ð�pÞ. Then

F=Q is unramified at p by [5, Theorem 1.1], and

hN ¼ 1 by Proposition 1. All imaginary abelian

fields M with hM ¼ 1 are determined by Yamamura

[18]. In our setting where M ¼ N ¼ F ð ffiffiffiffiffiffiffi�pp Þ, we see

that F=Q is unramified at p and hN ¼ 1 if and only

if (i) p ¼ 7 and F equals Qð
ffiffiffi
5
p
Þ, Qð

ffiffiffiffiffi
13
p
Þ, Qð

ffiffiffiffiffi
61
p
Þ or

the cubic cyclic field of conductor 9 or 13 or (ii)

p ¼ 11 and F equals Qð
ffiffiffi
2
p
Þ, Qð

ffiffiffiffiffi
17
p
Þ or the cubic

cyclic field of conductor 7.

For each of the above 8 pairs ðp; F Þ, we check

whether or not the condition ðHpÞ is satisfied. For

these pairs, we have p ¼ 7 or 11, and hence h�p ¼ 1.

Therefore, by Lemma 1, h�K is necessarily a power of

2 if the condition ðHpÞ is satisfied. Among the 8

pairs, h�K is a power of 2 only when p ¼ 7 and F ¼
Qð

ffiffiffi
5
p
Þ or Qð

ffiffiffiffiffi
13
p
Þ or when p ¼ 11 and F ¼

Qðcos 2�=7Þ. We can check this by a table of Hasse

[7, Tafel II] (see resp. Yoshino and Hirabayashi

[21,22]) on relative class numbers of imaginary

abelian fields of conductor f with f 
 100 (resp.

100 < f < 200), except for the case where p ¼ 7 and

F ¼ Qð
ffiffiffiffiffi
61
p
Þ. For the exceptional case, we see that

h�K ¼ 19 by a large table of Yamamura [19] on

relative class numbers of imaginary abelian fields of

non prime power conductor < 10000. For this case,

see also Remark 3.

Let us deal with the remaining three cases.

When p ¼ 11 and F ¼ Qðcos 2�=7Þ, we have already

shown in [11, p. 93] that ðHpÞ is satisfied using

Lemma 2. Let us deal with the case where p ¼ 7 and

F ¼ Qð
ffiffiffi
5
p
Þ or Qð

ffiffiffiffiffi
13
p
Þ. As p ¼ 7 remains prime

in F , the multiplicative ðOK=$Þ� ¼ ðOF=7Þ� is a

cyclic group of order 48. Let � ¼ ð1þ
ffiffiffi
5
p
Þ=2 or

ð3þ
ffiffiffiffiffi
13
p
Þ=2, and � ¼ 1þ �7 ð� 2 mod $Þ. These

are units of K. We easily see that the orders of

the classes ½�� and ½�� in ðOK=$Þ� are equal to 16

and 3, respectively. Thus, the condition (V) in

Lemma 2 is satisfied in both cases. When F ¼
Qð

ffiffiffi
5
p
Þ, we have hK ¼ 1 by [18], and hence the ray

class group ClK;$ is trivial as (V) is satisfied.

Therefore, F satisfies ðH7Þ by (1) and (3). Finally,

let F ¼ Qð
ffiffiffiffiffi
13
p
Þ. The conditions (I) and (II) in

Lemma 2 are clearly satisfied. We have hKþ ¼ 1 and

h�K ¼ 22 by Mäki [14, p. 74] and [7, Tafel II], re-

spectively. Here, Kþ is the maximal real subfield of

K. Further, hN ¼ 1 by [18]. Hence, the conditions

(III) and (IV) are satisfied. Therefore, F satisfies

ðH7Þ by Lemma 2. �

Remark 3. Let K ¼ Qð
ffiffiffiffiffi
61
p

; �7Þ. We can

also show that h�K is not a power of 2 as follows:

Let ~hþK be the narrow class number of the maximal

real subfield Kþ. We have ~hþK ¼ 1 by [14, p. 88]. As

K=Kþ is ramified only at the unique prime ideal of

Kþ over 7 and the infinite prime divisors, we can

show that hK is odd. However, we have hK > 1

by [18], and hence we see that h�K ð¼ hKÞ is not a

2-power.
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