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Abstract:

For a prime number p, we say that a number field F' satisfies the Hilbert-Speiser

condition (H,) if each tame cyclic extension N/F of degree p has a normal integral basis. In this
note, we determine the real abelian number fields satisfying (H),) for odd prime numbers p with

hMQ(y/=p)) = 1.

Key words:

1. Introduction. We say that a finite Ga-
lois extension N/F of a number field F' with group
G has a normal integral basis (NIB for short) when
Oy is cyclic over the group ring Op[G]. Here, Op
denotes the ring of integers of F. It is well known
that N/F is necessarily tame if it has an NIB. Let p
be a prime number, and T = (Z/pZ)" be a cyclic
group of order p. We say that a number field F
satisfies the Hilbert-Speiser condition (H,) when
each tame I'-extension N/F has an NIB. There are
several results on number fields satisfying (H,). In
particular, all the abelian fields F' satisfying (Hj)
are determined in Carter [3] and the author [10]
when [F:Q] =2, and by Yoshimura [20] when
[F': Q] > 2. The imaginary abelian fields satisfying
(Hp) for the case p > 5 are determined in [11-13].
The number of real (resp. imaginary) abelian fields
satisfying (Hj3) is 18 (resp. 9). The numbers of
imaginary abelian fields satisfying (H,) are 3, 1 and
0 when p =5, 7, and p > 11, respectively. The main
tools are (i) a theorem of McCulloh [15], (ii) a
theorem of Greither et al. [6, Corollary 7], and (iii)
the complex conjugation acting on several objects
associated to the base field F. The first one is of
quite fundamental nature and it describes, in the
locally free class group Cl(Op[I']) associated to the
group ring Op[T'], the subset of the classes [Oy] for
all tame I'-extensions N/F. The second one was
obtained from this theorem studying the Swan
submodule of Cl(Op[I']), and it implies that when
p > 5, an imaginary abelian field F' satisfies (H,)
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only when F/Q is unramified at p. (See [8,Prop-
osition 3.4], [11, Lemma 2.2], [5, Theorem 1.3]).

Recently, Greither and Johnston ([5, Theorem
1.1]) proved that if p > 7, a totally real number field
F satisfies (H,) only when F'/Q is unramified at
p, using [15] with detailed analysis of the group
Cl(Op[I']) and ramification index. The main pur-
pose of this note is to deal with real abelian fields
satisfying (H,) for those odd prime numbers p with
h(Q(y/=p)) =1, where h(Q(,/=p)) is the class
number of Q(,/=p). As is well known, the condition
on p implies that

p=3, 7, 11, 19, 43, 67, 163.

For this, see Cox [4, Theorem 7.30] for instance.
First, we show the following result using [15].

Proposition 1. Let p be a prime number
with p =3 mod 4. Let F be a number field unrami-
fied at p, and let N = F(\/=p). If F satisfies (H,),
then the exponent of the ideal class group Cly of N
divides h(Q(/=p)).
As we mentioned above, the abelian number fields
satisfying (Hs) are already determined. So, we let
p>7. From Proposition 1 and [5, Theorem 1.1]
mentioned above, we obtain the following assertion
using some computational results on abelian fields.

Proposition 2. Letp > 7 be a prime number
with h(Q(\/=p)) = 1. When p =7 (resp. 11), a real
abelian field F satisfies (Hp) if and only if F =
Q(V5) or Q(v13) (resp. F = Q(cos2r/7)). When
p =19, 43, 67 or 163, there is no real abelian field
satisfying (H,).

Remark 1. When p =2, it is known that a
number field F satisfies (H») if and only if the ray
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class group of F defined modulo 2 is trivial
([9, Proposition 2]). Imaginary abelian fields satis-
fying (Hs) are determined in [3] and [20].

2. Proof of Proposition 1. First, we recall
the theorem of McCulloh mentioned in §1. Let G =
(Z/pZ)”" be the multiplicative group, which we
naturally identify with the Galois group
Gal(Q(¢,)/Q). Here, ¢, is a primitive pth root of
unity. We put

184

g ==> ao,' €Q[G]
pa:l

where 0, =a mod p € G. Then the Stickelbeger
ideal S¢ of the group ring Z[G] is defined by

Sg = Z[G] n Z[G]Hg.

For a number field F, let Clrp be the ideal class
group of F. Further, we denote by R(Og[l]) the
subset of CI(Op[I']) consisting of the locally free
classes [Oy] for all tame I'-extensions N/F, and
denote by CI°(Op[[]) the kernel of the map
Cl(Op[I']) — Clp induced from the augmentation
map Op[l'] = Op. It is known that R(Op[l]) C
CI°(Op[l]) and that F satisfies (H,) if and only if
R(Op[l']) = {0}. The group ring Z[G] acts on
CI°(Op[l]) through the natural action of G =
(Z/pZ)* on the additive group I' = (Z/pZ)". Let
CI(Op[I))%¢ denote the subgroup of CI°(Op[I))
generated by the classes ¢ for all ¢ € CI°(Of[l])
and a € Sg. The main theorem of [15] asserts that

(1) R(Op([I]) = CI°(Op[T))%.

Let k be an imaginary subfield of Q(¢,), and
let A=Ay be the quotient of G = Gal(Q({,)/Q)
corresponding to k; A = Gal(k/Q). We denote by
Sa the image of the ideal S under the restriction
map Z[G] — Z[A]. Let s¢ € Z|G] (resp. sa € Z[A)])
be the sum of all elements of G (resp. A). Denote by
Ag (resp. Aa) the elements a of Z[G] (resp. Z][A])
such that a(l+J) =a-sqg (resp. a-sa) for some
a € Z. Here, J is the complex conjugation in G
(resp. A). The ideal S¢ (resp. Sa) is contained in
Ag (resp. Aa) by Sinnott [16, Lemma 2.1]. Denote
by hj; the class number of a number field M, and
by hj; the relative class number when M is an
imaginary abelian field. We set h, = h), when M =
Q(¢y). By [16, Theorem 2.1], we have the following
class number formulas:

(2) [AG : Sg] = h; and [AA : SA] =hy.
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We see that Ax = Z[A] when and only when p =
3 mod 4 and k = Q(,/=p). This is a key point of the
following argument.

Proof of Proposition 1. Let p and F be as in
Proposition 1. Assume that F' satisfies (H,); namely
that R(Op[I']) = {0}. Put K =F(({,), and w=
w, = (¢, — 1. Since F/Q is unramified at p, we see
that Gal(K/F) is naturally identified with G =
Gal(Q(¢,)/Q) and that CI°(Op[I)) is isomorphic,
as a Z[GJ-module, to the ray class group Clg o of K
defined modulo wOf by Brinkhuis [1, Proposition
2.1];

(3) CI'(OF[T) = Clg .

Therefore, by (1) and R(Op[l']) = {0}, the Stick-
elberger ideal S¢ annihilates Clk . In particular, it
annihilates the absolute class group Cly. Let k =
Q(y/~p) and A = Gal(k/Q). We have N = Fk,
and A = Gal(N/F) under the identification G =
Gal(K/F). It follows that Sa annihilates Cly since
the norm map Clx — Cly is surjective by Wash-
ington [17, Theorem 10.1]. In our situation, we have
Ap = Z[A] as we mentioned above. Therefore, it
follows from (2) that h(Q(y/=p)) € Sa. Thus,
multiplication by h(Q(y/=p)) annihilates Cly. O

Corollary. Letp and F be as in Proposition
1. Assume that F satisfies (Hp). Then hp =1 if
we further assume that h(Q(,/=p)) and p—1 are
relatively prime.

Proof. It follows from Proposition 1 that the
exponent of Clp divides h(Q(,/=p)) since the norm
map Cly — Cly is surjective. On the other hand,
we see that

Sq = ZCT = (1 + J,l)gg € Sq.
oeG

Since F satisfies (H)), the ideal S¢ annihilates Clx
as we have seen in the proof of Proposition 1. In
particular, sg annihilates Clg. This implies that the
exponent of Clp divides p — 1 since the norm map
Clx — Clp is surjective. Now, we obtain hp =1
from the second assumption. ([l

Remark 2. At present, we have no example
of an abelian field F' which satisfies (H,) for some p
but hp > 1. On the other hand, Byott et al. [2, §6.3]
give an example of a non-Galois number field F
satisfying (Hs) but hp = 2. It is of degree 4 and
unramified at 5 over Q, and has exactly 2 real
infinite places.

3. Proof of Proposition 2. The following
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lemmas are consequences of (1), and were shown
in [12,Proposition 6] and in [11,Lemma 5.1], re-
spectively.

Lemma 1 ([12]). Let F be a totally real
number field, p a prime number and K = F((,). If
F satisfies (Hp), then the exponent of the minus class
group Cly divides 2h,, .

Lemma 2 ([11]). Let p be a prime number
with p =3 mod 4, and let g= (p—1)/2. Let F be a
totally real number field unramified at p, and let N =
F(\/=p) and K = F((,). Assume that the following
conditions are satisfied:

(I) ¢ is a prime number.

(II) The prime number 2 remains prime in Q({,).
(IIT) hy = hy = 2071,

(IV) hy = 1.

(V) (Ok/w)* = OF mod w where @ = ¢, — 1.
Then F satisfies the condition (H,).

Proof of Proposition 2. We use the same
notation as in §2. Let p > 7 be a prime number
with h(Q(y/=p)) = 1. Let I’ be a real abelian field
satisfying (H,), and N = F(,/=p), K = F((,). Then
F/Q is unramified at p by [5, Theorem 1.1], and
hy =1 by Proposition 1. All imaginary abelian
fields M with hy; = 1 are determined by Yamamura
[18]. In our setting where M = N = F(,/=p), we see
that F'/Q is unramified at p and hy = 1 if and only
if (i) p = 7 and F equals Q(v/5), Q(v/13), Q(v/61) or
the cubic cyclic field of conductor 9 or 13 or (ii)
p=11 and F equals Q(v/2), Q(v/17) or the cubic
cyclic field of conductor 7.

For each of the above 8 pairs (p, F'), we check
whether or not the condition (H,) is satisfied. For
these pairs, we have p =7 or 11, and hence h, = 1.
Therefore, by Lemma 1, hj; is necessarily a power of
2 if the condition (H,) is satisfied. Among the 8
pairs, hy is a power of 2 only when p =7 and F' =
Q(W5) or Q(v13) or when p=11 and F=
Q(cos27/7). We can check this by a table of Hasse
[7, Tafel II] (see resp. Yoshino and Hirabayashi
[21,22]) on relative class numbers of imaginary
abelian fields of conductor f with f <100 (resp.
100 < f < 200), except for the case where p = 7 and
F = Q(V/61). For the exceptional case, we see that
hx =19 by a large table of Yamamura [19] on
relative class numbers of imaginary abelian fields of
non prime power conductor < 10000. For this case,
see also Remark 3.

Let us deal with the remaining three cases.
When p =11 and F = Q(cos27/7), we have already
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shown in [11,p. 93] that (H,) is satisfied using
Lemma 2. Let us deal with the case where p = 7 and
F=Q(V5) or Q(13). As p=7 remains prime
in F, the multiplicative (Og/w)* = (Op/7)" is a
cyclic group of order 48. Let e = (1++/5)/2 or
(3++13)/2, and £ =1+¢; (=2 mod w@). These
are units of K. We easily see that the orders of
the classes [e] and [¢] in (Ox /@)™ are equal to 16
and 3, respectively. Thus, the condition (V) in
Lemma 2 is satisfied in both cases. When F =
Q(V/5), we have hx = 1 by [18], and hence the ray
class group Cli is trivial as (V) is satisfied.
Therefore, F satisfies (H7) by (1) and (3). Finally,
let F = Q(+/13). The conditions (I) and (II) in
Lemma 2 are clearly satisfied. We have hx+ = 1 and
hr = 2% by Miki [14,p. 74] and [7, Tafel II], re-
spectively. Here, K is the maximal real subfield of
K. Further, hy =1 by [18]. Hence, the conditions
(IIT) and (IV) are satisfied. Therefore, F satisfies
(H7) by Lemma 2. O

Remark 3. Let K =Q(V61,(;). We can
also show that hj is not a power of 2 as follows:
Let hN;—( be the narrow class number of the maximal
real subfield K*. We have hj; = 1 by [14,p. 88]. As
K/K" is ramified only at the unique prime ideal of
Kt over 7 and the infinite prime divisors, we can
show that hyx is odd. However, we have hg > 1
by [18], and hence we see that hy (= hk) is not a
2-power.
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