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Abstract: We study the set G of growth rates of ideal Coxeter groups in hyperbolic 3-

space; this set consists of real algebraic integers greater than 1. We show that (1) G is unbounded

above while it has the minimum, (2) any element of G is a Perron number, and (3) growth rates of

ideal Coxeter groups with n generators are located in the closed interval ½n� 3; n� 1�.
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1. Introduction. Let P be a hyperbolic

Coxeter polytope which is a polytope in hyperbolic

space whose dihedral angles are submultiples of �.

The set S of reflections with respects to facets of P

generates a discrete group � which has P as a

fundamental domain. We call ð�; SÞ the Coxeter

system associated to P . For k 2 N, let ak be the

number of elements of � whose word length with

respects to S is equal to k. Then ð�; SÞ has the

exponential growth rate � ¼ lim supk!1
ffiffiffiffiffi
akk
p

which

is a real algebraic integer bigger than 1 ([5]).

Recently arithmetic properties of the growth rate

of hyperbolic Coxeter groups have attracted con-

siderable attention; for two and three-dimensional

cocompact hyperbolic Coxeter groups, Cannon–

Wagreich and Parry showed that their growth rates

are Salem numbers ([2,12]), where a real algebraic

integer � > 1 is called a Salem number if ��1 is an

algebraic conjugate of � and all algebraic conjugates

of � other than � and ��1 lie on the unit circle. Floyd

also proved that the growth rates of two-dimen-

sional cofinite hyperbolic Coxeter groups are

Pisot–Vijayaraghavan numbers, where a real alge-

braic integer � > 1 is called a Pisot–Vijayaraghavan

number if all algebraic conjugates of � other than �

lie in the open unit disk ([3]). Kellerhals and Perren

conjectured that the growth rates of hyperbolic

Coxeter groups are Perron numbers in general,

where a real algebraic integer � > 1 is called a

Perron number if all algebraic conjugates of � other

than � have moduli less than the modulus of � ([9]).

Komori and Umemoto proved their conjecture for

three-dimensional cofinite hyperbolic Coxeter sim-

plex groups ([10]). In this paper we consider the

growth rate of ideal Coxeter groups in hyperbolic

3-space; a Coxeter polytope P is called ideal if all

vertices of P are located on the ideal boundary of

hyperbolic space. Related to Jakob Steiner’s prob-

lem on the combinatorial characterization of poly-

topes inscribed in the two-sphere S2, ideal poly-

topes in hyperbolic 3-space has been studied

extensively ([4,13]). We consider the distribution

of growth rates of three-dimensional hyperbolic

ideal Coxeter groups; the set G of growth rates will

be shown to be unbounded above while it has the

minimum which is attained by a unique Coxeter

group. Kellerhals studied the same problem for two

and three-dimensional cofinite hyperbolic Coxeter

groups, and Kellerhals and Kolpakov for two and

three-dimensional cocompact hyperbolic Coxeter

groups ([7,8]). We will also prove that any element

of G is a Perron number, which supports the

conjecture of Kellerhals and Perren for three-

dimensional hyperbolic ideal Coxeter groups. More-

over we will show that any ideal Coxeter group �

with n generators has its growth rate � in the closed

interval ½n� 3; n� 1�, and � is right-angled if and

only if � ¼ n� 3. We should remark that Nonaka

also detected the minimum growth rate of ideal

Coxeter groups, and showed all growth rates to be

Perron numbers ([11]). Since we used a criterion for

growth rates to be Perron numbers (Proposition 1)

and a result of Serre (in the proof of Proposition 3),

our arguments are shorter that those of Nonaka.

2. Preliminaries. The upper half space

H3 ¼ fx ¼ ðx1; x2; x3Þ 2 R3 j x3 > 0g with the met-

ric jdxj=x3 is a model of hyperbolic 3-space, so called
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the upper half space model. The Euclidean plane

E2 ¼ fx ¼ ðx1; x2; x3Þ 2 R3 j x3 ¼ 0g and the point

at infinity1 compose the boundary at infinity @H3

of H3. A subset B � H3 is called a hyperplane of H3

if it is a Euclidean hemisphere or a half plane

orthogonal to E2. When we restrict the hyperbolic

metric jdxj=x3 of H3 to B, it becomes a model of

hyperbolic plane. We define a polytope as a closed

domain P of H3 which can be written as the

intersection of finitely many closed half spaces HB

bounded by hyperplanes B, say P ¼
T
HB. In this

presentation of P , FB ¼ P \ B is a hyperbolic

polygon of B. FB is called a facet of P , and B is

called the supporting hyperplane of FB. If the

intersection of two facets FB1
and FB2

of P consists

of a geodesic segment, it is called an edge of P ; the

intersection
T
FB of more than two facets is a point,

then it is called a vertex of P . If FB1
and FB2

intersect only at a point of the boundary @H3 of H3,

it is called an ideal vertex of P . A polytope P is

called ideal if all of its vertices are ideal.

A horosphere � of H3 based at v 2 @H3 is

defined by a Euclidean sphere in H3 tangent to E2

at v when v 2 E2, or a Euclidean plane in H3

parallel to E2 when v ¼ 1. When we restrict the

hyperbolic metric of H3 to �, it becomes a model of

Euclidean plane. Let v 2 @H3 be an ideal vertex of a

polytope P in H3 and � be a horosphere of H3 based

at v such that � meets just the facets of P incident

to v. Then the vertex link LðvÞ :¼ P \ � of v in P is a

Euclidean convex polygon in the horosphere �. If

FB1
and FB2

are adjacent facets of P incident to v,

then the Euclidean dihedral angle between FB1
\ �

and FB2
\ � in � is equal to the hyperbolic dihedral

angle between the supporting hyperplanes B1 and

B2 in H3 (cf. [13, Theorem 6.4.5]).

An ideal polytope P is called Coxeter if the

dihedral angles of edges of P are submultiples of �.

Since any Euclidean Coxeter polygon is a rectangle

or a triangle with dihedral angles ð�=2; �=3; �=6Þ,
ð�=2; �=4; �=4Þ or ð�=3; �=3; �=3Þ, we see that the

dihedral angles of an ideal Coxeter polytope must

be �=2, �=3, �=4 or �=6.

Any Coxeter polytope P is a fundamental

domain of the discrete group � generated by the

set S consisting of the reflections with respects to its

facets. We call ð�; SÞ the Coxeter system associated

to P . In this situation we can define the word length

‘SðxÞ of x 2 � with respect to S by the smallest

integer k � 0 for which there exist s1; s2; � � � ; sk 2 S

such that x ¼ s1s2 � � � sk. The growth function fSðtÞ
of ð�; SÞ is the formal power series

P1
k¼0 akt

k where

ak is the number of elements g 2 � satisfying ‘SðgÞ ¼
k. It is known that the growth rate of ð�; SÞ, � ¼
lim supk!1

ffiffiffiffiffi
akk
p

is bigger than 1 ([5]) and less than

or equal to the cardinality jSj of S from the

definition. By means of Cauchy-Hadamard formula,

the radius of convergence R of fSðtÞ is the reciprocal

of � , i.e. 1=jSj � R < 1. In practice the growth

function fSðtÞ which is analytic on jtj < R extends

to a rational function P ðtÞ=QðtÞ on C by analytic

continuation where P ðtÞ; QðtÞ 2 Z½t� are relatively

prime. There are formulas due to Solomon and

Steinberg to calculate the rational function

P ðtÞ=QðtÞ from the data of finite Coxeter subgroups

of ð�; SÞ ([15,16]. See also [6]).

Theorem 1 (Solomon’s formula). The growth

function fSðtÞ of an irreducible finite Coxeter group

ð�; SÞ can be written as fSðtÞ ¼ ½m1 þ 1;m2 þ 1; � � � ;
mk þ 1� where ½n� ¼ 1þ tþ � � � þ tn�1; ½m;n� ¼
½m�½n�, etc. and fm1;m2; � � � ;mkg is the set of

exponents of ð�; SÞ.
Theorem 2 (Steinberg’s formula). Let ð�; SÞ

be a hyperbolic Coxeter group. Let us denote the

Coxeter subgroup of ð�; SÞ generated by the subset

T � S by ð�T ; T Þ, and denote its growth function by

fT ðtÞ. Set F ¼ fT � S : �T is finiteg. Then

1

fSðt�1Þ ¼
X
T2F

ð�1ÞjT j

fT ðtÞ
:

In this case, t ¼ R is a pole of fSðtÞ ¼
P ðtÞ=QðtÞ. Hence R is a real zero of the denominator

QðtÞ closest to the origin 0 2 C of all zeros of QðtÞ.
Solomon’s formula implies that P ð0Þ ¼ 1. Hence

a0 ¼ 1 means that Qð0Þ ¼ 1. Therefore � > 1, the

reciprocal of R, becomes a real algebraic integer

whose conjugates have moduli less than or equal to

the modulus of � . If t ¼ R is the unique zero of QðtÞ
with the smallest modulus, then � > 1 is a real

algebraic integer whose conjugates have moduli less

than the modulus of � : such a real algebraic integer

is called a Perron number.

The following result is a criterion for growth

rates to be Perron numbers.

Proposition 1 ([10], Lemma 1). Consider

the following polynomial of degree n � 2

gðtÞ ¼
Xn
k¼1

akt
k � 1;

where ak is a non-negative integer. We also assume
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that the greatest common divisor of fk 2 N j ak 6¼ 0g
is 1. Then there is a real number r0, 0 < r0 < 1
which is the unique zero of gðtÞ having the smallest

absolute value of all zeros of gðtÞ.
3. Ideal Coxeter polytopes with 4 or 5

facets in H3. Let p, q, r and s be the number of

edges with dihedral angles �=2, �=3, �=4, and �=6 of

an ideal Coxeter polytope P in H3. By Andreev

theorem [1], we can classify ideal Coxeter polytopes

with 4 or 5 facets, and calculate the growth

functions fSðtÞ of P by means of Steinberg’s formula

and also growth rates, see Table I. Every denom-

inator polynomial has a form ðt� 1ÞHðtÞ and all

coefficients of HðtÞ satisfy the condition of Propo-

sition 1, so that the growth rates of ideal Coxeter

polytopes with 4 or 5 facets are Perron numbers.

As an application of the data of Table I, we

have the following result.

Proposition 2. The set G of growth rates of

three-dimensional hyperbolic ideal Coxeter poly-

topes is unbounded above.

Proof. After glueing m copies of the ideal

Coxeter pyramid with p ¼ r ¼ 4 along their sides

successively, we can construct a hyperbolic ideal

Coxeter polytope Pn with n ¼ mþ 4 facets. In

Fig. 1 we are looking at the ideal Coxeter polytope

P8 with 8 facets from the point at infinity 1, which

consists of 4 copies of ideal Coxeter pyramid with

p ¼ r ¼ 4 whose apexes are located at 1; squares

represent bases of pyramids and disks are support-

ing hyperplanes of these bases. The growth function

of Pn has the following denominator polynomial

ðt� 1ÞHðtÞ ¼ ðt� 1Þð2ðn� 3Þt3

þ ðn� 4Þt2 þ ðn� 3Þt� 1Þ;
from which we see that the growth rate of Pn
diverges when n goes to infinity. �

We should remark that all coefficients of HðtÞ
except its constant term are non-negative. There-

fore we can apply Proposition 1 to conclude that

the growth rate of Pn is a Perron number. Moreover

HðtÞ has a unique zero on the unit interval ½0; 1� and

the following inequalities hold:

H
1

n� 3

� �
¼

n� 2

ðn� 3Þ2
> 0;

H
1

n� 1

� �
¼ �n

2 þ n� 4

ðn� 1Þ3
< 0:

They imply that the growth rate of Pn satisfies

n� 3 5 � 5 n� 1;

which will be generalized in the next section.

4. The growth rates of ideal Coxeter

polytopes in H3. Recall that p, q, r and s be

the number of edges with dihedral angles �=2, �=3,

�=4, and �=6 of an ideal Coxeter polytope P in H3.

By means of Steinberg’s formula, we can calculate

the growth function fSðtÞ of P as

1=fSð1=tÞ ¼ 1� n=½2� þ p=½2; 2�
þ q=½2; 3� þ r=½2; 4� þ s=½2; 6�;

where ½2; 3� ¼ ½2�½3�, etc. It can be rewritten as

1=fSðtÞ ¼ 1� nt=½2� þ pt2=½2; 2� þ qt3=½2; 3�

þ rt4=½2; 4� þ st6=½2; 6� ¼
1

½2; 2; 3; 4; 6�
GðtÞ;

where

GðtÞ ¼ ½2; 2; 3; 4; 6� � nt½2; 3; 4; 6� þ pt2½3; 4; 6�
þ qt3½2; 4; 6� þ rt4½2; 3; 6� þ st6½2; 3; 4�:

Proposition 3. Put a ¼ p=2, b ¼ q=3, c ¼
r=4, d ¼ s=6. Then

aþ bþ cþ d ¼ n� 2:ð1Þ

Proof. By a result of Serre ([14]. See also [6])

Gð1Þ ¼ ½2; 3; 4; 6�ð1Þð2� nþ p=2þ q=3þ r=4þ s=6Þ
¼ 0

�

By using this equality (1) we represent HðtÞ ¼
GðtÞ=ðt� 1Þ as

Table I

ðp; q; r; sÞ Denominator polynomial

ð2; 2; 0; 2Þ ðt� 1Þð3t5 þ t4 þ t3 þ t2 þ t� 1Þ
ð2; 0; 4; 0Þ ðt� 1Þð3t3 þ t2 þ t� 1Þ
ð0; 6; 0; 0Þ ðt� 1Þð3t2 þ t� 1Þ
ð4; 2; 0; 2Þ ðt� 1Þð4t5 þ t4 þ 2t3 þ t2 þ 2t� 1Þ
ð4; 0; 4; 0Þ ðt� 1Þð4t3 þ t2 þ 2t� 1Þ
ð2; 5; 0; 2Þ ðt� 1Þð5t5 þ 2t4 þ t3 þ 3t2 þ 2t� 1Þ

Fig. 1
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HðtÞ ¼ �½2; 3; 4; 6� þ at½3; 4; 6� þ btð2tþ 1Þ½2; 4; 6�
þ ctð3t2 þ 2tþ 1Þ½2; 3; 6�
þ dtð5t4 þ 4t3 þ 3t2 þ 2tþ 1Þ½2; 3; 4�
¼ �1þ ð�4þ aþ bþ cþ dÞt
þ ð�9þ 3aþ 5bþ 5cþ 5dÞt2

þ ð�15þ 6aþ 11bþ 14cþ 14dÞt3

þ ð�20þ 9aþ 17bþ 25cþ 29dÞt4

þ ð�23þ 11aþ 22bþ 33cþ 49dÞt5

þ ð�23þ 12aþ 24bþ 36cþ 66dÞt6

þ ð�20þ 11aþ 23bþ 35cþ 71dÞt7

þ ð�15þ 9aþ 19bþ 31cþ 61dÞt8

þ ð�9þ 6aþ 13bþ 22cþ 40dÞt9

þ ð�4þ 3aþ 7bþ 11cþ 19dÞt10

þ ð�1þ aþ 2bþ 3cþ 5dÞt11:

From this formula we have the following result

(see also [11], Theorem 3).

Theorem 3. The growth rates of ideal Cox-

eter polytopes in H3 are Perron numbers.

Proof. When n the number of facets satisfies

n = 6, the equality (1) of Proposition 3 implies

aþ bþ cþ d ¼ n� 2 = 4. Then all coefficients of

HðtÞ except its constant term are non-negative.

Hence Proposition 1 implies the assertion. For n ¼
4; 5, this claim was already proved in the previous

section. �

Moreover the equality (1) induces the following

two functions H1ðtÞ and H2ðtÞ satisfying H1ðtÞ 5
HðtÞ 5 H2ðtÞ for any t > 0:

H1ðtÞ ¼ �1þ ð�4þ ðn� 2ÞÞtþ ð�9þ 3ðn� 2ÞÞt2

þ ð�15þ 6ðn� 2ÞÞt3 þ ð�20þ 9ðn� 2ÞÞt4

þ ð�23þ 11ðn� 2ÞÞt5 þ ð�23þ 12ðn� 2ÞÞt6

þ ð�20þ 11ðn� 2ÞÞt7 þ ð�15þ 9ðn� 2ÞÞt8

þ ð�9þ 6ðn� 2ÞÞt9 þ ð�4þ 3ðn� 2ÞÞt10

þ ð�1þ ðn� 2ÞÞt11 ¼ ð1þ tÞ2ð�1� 3tþ ntÞ
ð1þ t2Þð1� tþ t2Þð1þ tþ t2Þ2;

H2ðtÞ ¼ �1þ ð�4þ ðn� 2ÞÞtþ ð�9þ 5ðn� 2ÞÞt2

þ ð�15þ 14ðn� 2ÞÞt3 þ ð�20þ 29ðn� 2ÞÞt4

þ ð�23þ 49ðn� 2ÞÞt5 þ ð�23þ 66ðn� 2ÞÞt6

þ ð�20þ 71ðn� 2ÞÞt7 þ ð�15þ 61ðn� 2ÞÞt8

þ ð�9þ 40ðn� 2ÞÞt9 þ ð�4þ 19ðn� 2ÞÞt10

þ ð�1þ 5ðn� 2ÞÞt11

¼ ð1þ tÞ2ð1þ t2Þð1þ tþ t2Þð�1� 3tþ nt� 5t2

þ 2nt2 � 7t3 þ 3nt3 � 9t4 þ 4nt4 � 11t5 þ 5nt5Þ:

Now we assume that n = 6. Then all coeffi-

cients of H1ðtÞ and H2ðtÞ except their constant

terms are non-negative so that each of them has a

unique zero in ð0;1Þ. The following inequalities

H1
1

n� 3

� �
¼ 0; H2

1

n� 1

� �
¼ �

6

ðn� 1Þ5
< 0

guarantee that the zero of HðtÞ is located in

½ 1
n�1 ;

1
n�3�. Combining with the similar result for n ¼

4; 5 in the previous section, we have the following

theorem which is our main result.

Theorem 4. The growth rate � of an ideal

Coxeter polytope with n facets in H3 satisfies

n� 3 5 � 5 n� 1:ð2Þ

Corollary 1. An ideal Coxeter polytope P

with n facets in H3 is right-angled if and only if its

growth rate � is equal to n� 3.

Proof. The factor HðtÞ of the denominator

polynomial GðtÞ ¼ ðt� 1ÞHðtÞ of the growth func-

tion of P is equal to H1ðtÞ if and only if b ¼ c ¼
d ¼ 0, which means that all dihedral angles are �=2.

�

From the inequality (2), we see that the growth

rate � of an ideal Coxeter polytope with n facets

with n = 6 satisfies � = 3. Therefore combining

with the result of growth rates for n ¼ 4; 5 shown

in the previous section, we also have the following

corollary (see also [11], Theorem 4).

Corollary 2. The minimum of the growth

rates of three-dimensional hyperbolic ideal Coxeter

polytopes is 0:492432�1 ¼ 2:03074, which is uniquely

realized by the ideal Coxeter simplex with p ¼ q ¼
s ¼ 2.
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