On the growth rate of ideal Coxeter groups in hyperbolic 3-space

By Yohei Komori and Tomoshige Yukita
Department of Mathematics, School of Education, Waseda University, Nishi-Waseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
(Communicated by Kenji Fukaya, M.J.A., Nov. 12, 2015)

Abstract

We study the set \mathcal{G} of growth rates of ideal Coxeter groups in hyperbolic 3space; this set consists of real algebraic integers greater than 1 . We show that (1) \mathcal{G} is unbounded above while it has the minimum, (2) any element of \mathcal{G} is a Perron number, and (3) growth rates of ideal Coxeter groups with n generators are located in the closed interval $[n-3, n-1]$.

Key words: Coxeter group; growth function; growth rate; Perron number.

1. Introduction. Let P be a hyperbolic Coxeter polytope which is a polytope in hyperbolic space whose dihedral angles are submultiples of π. The set S of reflections with respects to facets of P generates a discrete group Γ which has P as a fundamental domain. We call (Γ, S) the Coxeter system associated to P. For $k \in \mathbf{N}$, let a_{k} be the number of elements of Γ whose word length with respects to S is equal to k. Then (Γ, S) has the exponential growth rate $\tau=\lim \sup _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ which is a real algebraic integer bigger than 1 ([5]). Recently arithmetic properties of the growth rate of hyperbolic Coxeter groups have attracted considerable attention; for two and three-dimensional cocompact hyperbolic Coxeter groups, CannonWagreich and Parry showed that their growth rates are Salem numbers $([2,12])$, where a real algebraic integer $\tau>1$ is called a Salem number if τ^{-1} is an algebraic conjugate of τ and all algebraic conjugates of τ other than τ and τ^{-1} lie on the unit circle. Floyd also proved that the growth rates of two-dimensional cofinite hyperbolic Coxeter groups are Pisot-Vijayaraghavan numbers, where a real algebraic integer $\tau>1$ is called a Pisot-Vijayaraghavan number if all algebraic conjugates of τ other than τ lie in the open unit disk ([3]). Kellerhals and Perren conjectured that the growth rates of hyperbolic Coxeter groups are Perron numbers in general, where a real algebraic integer $\tau>1$ is called a Perron number if all algebraic conjugates of τ other than τ have moduli less than the modulus of $\tau([9])$. Komori and Umemoto proved their conjecture for

[^0]three-dimensional cofinite hyperbolic Coxeter simplex groups ([10]). In this paper we consider the growth rate of ideal Coxeter groups in hyperbolic 3 -space; a Coxeter polytope P is called ideal if all vertices of P are located on the ideal boundary of hyperbolic space. Related to Jakob Steiner's problem on the combinatorial characterization of polytopes inscribed in the two-sphere S^{2}, ideal polytopes in hyperbolic 3 -space has been studied extensively $([4,13])$. We consider the distribution of growth rates of three-dimensional hyperbolic ideal Coxeter groups; the set \mathcal{G} of growth rates will be shown to be unbounded above while it has the minimum which is attained by a unique Coxeter group. Kellerhals studied the same problem for two and three-dimensional cofinite hyperbolic Coxeter groups, and Kellerhals and Kolpakov for two and three-dimensional cocompact hyperbolic Coxeter groups ($[7,8]$). We will also prove that any element of \mathcal{G} is a Perron number, which supports the conjecture of Kellerhals and Perren for threedimensional hyperbolic ideal Coxeter groups. Moreover we will show that any ideal Coxeter group Γ with n generators has its growth rate τ in the closed interval $[n-3, n-1]$, and Γ is right-angled if and only if $\tau=n-3$. We should remark that Nonaka also detected the minimum growth rate of ideal Coxeter groups, and showed all growth rates to be Perron numbers ([11]). Since we used a criterion for growth rates to be Perron numbers (Proposition 1) and a result of Serre (in the proof of Proposition 3), our arguments are shorter that those of Nonaka.
2. Preliminaries. The upper half space $\mathbf{H}^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{3}>0\right\}$ with the metric $|d x| / x_{3}$ is a model of hyperbolic 3 -space, so called
the upper half space model. The Euclidean plane $\mathbf{E}^{2}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{3}=0\right\}$ and the point at infinity ∞ compose the boundary at infinity $\partial \mathbf{H}^{3}$ of \mathbf{H}^{3}. A subset $B \subset \mathbf{H}^{3}$ is called a hyperplane of \mathbf{H}^{3} if it is a Euclidean hemisphere or a half plane orthogonal to \mathbf{E}^{2}. When we restrict the hyperbolic metric $|d x| / x_{3}$ of \mathbf{H}^{3} to B, it becomes a model of hyperbolic plane. We define a polytope as a closed domain P of \mathbf{H}^{3} which can be written as the intersection of finitely many closed half spaces H_{B} bounded by hyperplanes B, say $P=\bigcap H_{B}$. In this presentation of $P, \quad F_{B}=P \cap B$ is a hyperbolic polygon of $B . F_{B}$ is called a facet of P, and B is called the supporting hyperplane of F_{B}. If the intersection of two facets $F_{B_{1}}$ and $F_{B_{2}}$ of P consists of a geodesic segment, it is called an edge of P; the intersection $\bigcap F_{B}$ of more than two facets is a point, then it is called a vertex of P. If $F_{B_{1}}$ and $F_{B_{2}}$ intersect only at a point of the boundary $\partial \mathbf{H}^{3}$ of \mathbf{H}^{3}, it is called an ideal vertex of P. A polytope P is called ideal if all of its vertices are ideal.

A horosphere Σ of \mathbf{H}^{3} based at $v \in \partial \mathbf{H}^{3}$ is defined by a Euclidean sphere in \mathbf{H}^{3} tangent to \mathbf{E}^{2} at v when $v \in \mathbf{E}^{2}$, or a Euclidean plane in \mathbf{H}^{3} parallel to \mathbf{E}^{2} when $v=\infty$. When we restrict the hyperbolic metric of \mathbf{H}^{3} to Σ, it becomes a model of Euclidean plane. Let $v \in \partial \mathbf{H}^{3}$ be an ideal vertex of a polytope P in \mathbf{H}^{3} and Σ be a horosphere of \mathbf{H}^{3} based at v such that Σ meets just the facets of P incident to v. Then the vertex $\operatorname{link} L(v):=P \cap \Sigma$ of v in P is a Euclidean convex polygon in the horosphere Σ. If $F_{B_{1}}$ and $F_{B_{2}}$ are adjacent facets of P incident to v, then the Euclidean dihedral angle between $F_{B_{1}} \cap \Sigma$ and $F_{B_{2}} \cap \Sigma$ in Σ is equal to the hyperbolic dihedral angle between the supporting hyperplanes B_{1} and B_{2} in \mathbf{H}^{3} (cf. [13, Theorem 6.4.5]).

An ideal polytope P is called Coxeter if the dihedral angles of edges of P are submultiples of π. Since any Euclidean Coxeter polygon is a rectangle or a triangle with dihedral angles $(\pi / 2, \pi / 3, \pi / 6)$, $(\pi / 2, \pi / 4, \pi / 4)$ or $(\pi / 3, \pi / 3, \pi / 3)$, we see that the dihedral angles of an ideal Coxeter polytope must be $\pi / 2, \pi / 3, \pi / 4$ or $\pi / 6$.

Any Coxeter polytope P is a fundamental domain of the discrete group Γ generated by the set S consisting of the reflections with respects to its facets. We call (Γ, S) the Coxeter system associated to P. In this situation we can define the word length $\ell_{S}(x)$ of $x \in \Gamma$ with respect to S by the smallest integer $k \geq 0$ for which there exist $s_{1}, s_{2}, \cdots, s_{k} \in S$
such that $x=s_{1} s_{2} \cdots s_{k}$. The growth function $f_{S}(t)$ of (Γ, S) is the formal power series $\sum_{k=0}^{\infty} a_{k} t^{k}$ where a_{k} is the number of elements $g \in \Gamma$ satisfying $\ell_{S}(g)=$ k. It is known that the growth rate of $(\Gamma, S), \tau=$ $\lim \sup _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ is bigger than 1 ([5]) and less than or equal to the cardinality $|S|$ of S from the definition. By means of Cauchy-Hadamard formula, the radius of convergence R of $f_{S}(t)$ is the reciprocal of τ, i.e. $1 /|S| \leq R<1$. In practice the growth function $f_{S}(t)$ which is analytic on $|t|<R$ extends to a rational function $P(t) / Q(t)$ on \mathbf{C} by analytic continuation where $P(t), Q(t) \in \mathbf{Z}[t]$ are relatively prime. There are formulas due to Solomon and Steinberg to calculate the rational function $P(t) / Q(t)$ from the data of finite Coxeter subgroups of $(\Gamma, S)([15,16]$. See also [6]).

Theorem 1 (Solomon's formula). The growth function $f_{S}(t)$ of an irreducible finite Coxeter group (Γ, S) can be written as $f_{S}(t)=\left[m_{1}+1, m_{2}+1, \cdots\right.$, $\left.m_{k}+1\right] \quad$ where $\quad[n]=1+t+\cdots+t^{n-1},[m, n]=$ $[m][n]$, etc. and $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$ is the set of exponents of (Γ, S).

Theorem 2 (Steinberg's formula). Let (Γ, S) be a hyperbolic Coxeter group. Let us denote the Coxeter subgroup of (Γ, S) generated by the subset $T \subseteq S$ by $\left(\Gamma_{T}, T\right)$, and denote its growth function by $f_{T}(t)$. Set $\mathcal{F}=\left\{T \subseteq S: \Gamma_{T}\right.$ is finite $\}$. Then

$$
\frac{1}{f_{S}\left(t^{-1}\right)}=\sum_{T \in \mathcal{F}} \frac{(-1)^{|T|}}{f_{T}(t)} .
$$

In this case, $t=R$ is a pole of $f_{S}(t)=$ $P(t) / Q(t)$. Hence R is a real zero of the denominator $Q(t)$ closest to the origin $0 \in \mathbf{C}$ of all zeros of $Q(t)$. Solomon's formula implies that $P(0)=1$. Hence $a_{0}=1$ means that $Q(0)=1$. Therefore $\tau>1$, the reciprocal of R, becomes a real algebraic integer whose conjugates have moduli less than or equal to the modulus of τ. If $t=R$ is the unique zero of $Q(t)$ with the smallest modulus, then $\tau>1$ is a real algebraic integer whose conjugates have moduli less than the modulus of τ : such a real algebraic integer is called a Perron number.

The following result is a criterion for growth rates to be Perron numbers.

Proposition 1 ([10], Lemma 1). Consider the following polynomial of degree $n \geq 2$

$$
g(t)=\sum_{k=1}^{n} a_{k} t^{k}-1,
$$

where a_{k} is a non-negative integer. We also assume

Table I	
(p, q, r, s)	Denominator polynomial
$(2,2,0,2)$	$(t-1)\left(3 t^{5}+t^{4}+t^{3}+t^{2}+t-1\right)$
$(2,0,4,0)$	$(t-1)\left(3 t^{3}+t^{2}+t-1\right)$
$(0,6,0,0)$	$(t-1)\left(3 t^{2}+t-1\right)$
$(4,2,0,2)$	$(t-1)\left(4 t^{5}+t^{4}+2 t^{3}+t^{2}+2 t-1\right)$
$(4,0,4,0)$	$(t-1)\left(4 t^{3}+t^{2}+2 t-1\right)$
$(2,5,0,2)$	$(t-1)\left(5 t^{5}+2 t^{4}+t^{3}+3 t^{2}+2 t-1\right)$

that the greatest common divisor of $\left\{k \in \mathbf{N} \mid a_{k} \neq 0\right\}$ is 1 . Then there is a real number $r_{0}, 0<r_{0}<1$ which is the unique zero of $g(t)$ having the smallest absolute value of all zeros of $g(t)$.
3. Ideal Coxeter polytopes with 4 or 5 facets in \mathbf{H}^{3}. Let p, q, r and s be the number of edges with dihedral angles $\pi / 2, \pi / 3, \pi / 4$, and $\pi / 6$ of an ideal Coxeter polytope P in \mathbf{H}^{3}. By Andreev theorem [1], we can classify ideal Coxeter polytopes with 4 or 5 facets, and calculate the growth functions $f_{S}(t)$ of P by means of Steinberg's formula and also growth rates, see Table I. Every denominator polynomial has a form $(t-1) H(t)$ and all coefficients of $H(t)$ satisfy the condition of Proposition 1, so that the growth rates of ideal Coxeter polytopes with 4 or 5 facets are Perron numbers.

As an application of the data of Table I, we have the following result.

Proposition 2. The set \mathcal{G} of growth rates of three-dimensional hyperbolic ideal Coxeter polytopes is unbounded above.

Proof. After glueing m copies of the ideal Coxeter pyramid with $p=r=4$ along their sides successively, we can construct a hyperbolic ideal Coxeter polytope P_{n} with $n=m+4$ facets. In Fig. 1 we are looking at the ideal Coxeter polytope P_{8} with 8 facets from the point at infinity ∞, which consists of 4 copies of ideal Coxeter pyramid with $p=r=4$ whose apexes are located at ∞; squares represent bases of pyramids and disks are supporting hyperplanes of these bases. The growth function of P_{n} has the following denominator polynomial

$$
\begin{aligned}
(t-1) H(t)= & (t-1)\left(2(n-3) t^{3}\right. \\
& \left.+(n-4) t^{2}+(n-3) t-1\right)
\end{aligned}
$$

from which we see that the growth rate of P_{n} diverges when n goes to infinity.

We should remark that all coefficients of $H(t)$ except its constant term are non-negative. There-

Fig. 1
fore we can apply Proposition 1 to conclude that the growth rate of P_{n} is a Perron number. Moreover $H(t)$ has a unique zero on the unit interval $[0,1]$ and the following inequalities hold:

$$
\begin{aligned}
& H\left(\frac{1}{n-3}\right)=\frac{n-2}{(n-3)^{2}}>0 \\
& H\left(\frac{1}{n-1}\right)=\frac{-n^{2}+n-4}{(n-1)^{3}}<0
\end{aligned}
$$

They imply that the growth rate of P_{n} satisfies

$$
n-3 \leqq \tau \leqq n-1
$$

which will be generalized in the next section.
4. The growth rates of ideal Coxeter polytopes in \mathbf{H}^{3}. Recall that p, q, r and s be the number of edges with dihedral angles $\pi / 2, \pi / 3$, $\pi / 4$, and $\pi / 6$ of an ideal Coxeter polytope P in \mathbf{H}^{3}. By means of Steinberg's formula, we can calculate the growth function $f_{S}(t)$ of P as

$$
\begin{aligned}
1 / f_{S}(1 / t)= & 1-n /[2]+p /[2,2] \\
& +q /[2,3]+r /[2,4]+s /[2,6]
\end{aligned}
$$

where $[2,3]=[2][3]$, etc. It can be rewritten as

$$
\begin{aligned}
1 / f_{S}(t)= & 1-n t /[2]+p t^{2} /[2,2]+q t^{3} /[2,3] \\
& +r t^{4} /[2,4]+s t^{6} /[2,6]=\frac{1}{[2,2,3,4,6]} G(t)
\end{aligned}
$$

where

$$
\begin{aligned}
G(t)= & {[2,2,3,4,6]-n t[2,3,4,6]+p t^{2}[3,4,6] } \\
& +q t^{3}[2,4,6]+r t^{4}[2,3,6]+s t^{6}[2,3,4] .
\end{aligned}
$$

Proposition 3. Put $a=p / 2, \quad b=q / 3, c=$ $r / 4, d=s / 6$. Then

$$
\begin{equation*}
a+b+c+d=n-2 \tag{1}
\end{equation*}
$$

Proof. By a result of Serre ([14]. See also [6]) $G(1)=[2,3,4,6](1)(2-n+p / 2+q / 3+r / 4+s / 6)$ $=0$
By using this equality (1) we represent $H(t)=$ $G(t) /(t-1)$ as

$$
\begin{aligned}
H(t)= & -[2,3,4,6]+a t[3,4,6]+b t(2 t+1)[2,4,6] \\
& +c t\left(3 t^{2}+2 t+1\right)[2,3,6] \\
& +d t\left(5 t^{4}+4 t^{3}+3 t^{2}+2 t+1\right)[2,3,4] \\
= & -1+(-4+a+b+c+d) t \\
& +(-9+3 a+5 b+5 c+5 d) t^{2} \\
& +(-15+6 a+11 b+14 c+14 d) t^{3} \\
& +(-20+9 a+17 b+25 c+29 d) t^{4} \\
& +(-23+11 a+22 b+33 c+49 d) t^{5} \\
& +(-23+12 a+24 b+36 c+66 d) t^{6} \\
& +(-20+11 a+23 b+35 c+71 d) t^{7} \\
& +(-15+9 a+19 b+31 c+61 d) t^{8} \\
& +(-9+6 a+13 b+22 c+40 d) t^{9} \\
& +(-4+3 a+7 b+11 c+19 d) t^{10} \\
& +(-1+a+2 b+3 c+5 d) t^{11} .
\end{aligned}
$$

From this formula we have the following result (see also [11], Theorem 3).

Theorem 3. The growth rates of ideal Coxeter polytopes in \mathbf{H}^{3} are Perron numbers.

Proof. When n the number of facets satisfies $n \geqq 6$, the equality (1) of Proposition 3 implies $a+b+c+d=n-2 \geqq 4$. Then all coefficients of $H(t)$ except its constant term are non-negative. Hence Proposition 1 implies the assertion. For $n=$ 4,5 , this claim was already proved in the previous section.

Moreover the equality (1) induces the following two functions $H_{1}(t)$ and $H_{2}(t)$ satisfying $H_{1}(t) \leqq$ $H(t) \leqq H_{2}(t)$ for any $t>0$:

$$
\begin{aligned}
H_{1}(t)= & -1+(-4+(n-2)) t+(-9+3(n-2)) t^{2} \\
& +(-15+6(n-2)) t^{3}+(-20+9(n-2)) t^{4} \\
& +(-23+11(n-2)) t^{5}+(-23+12(n-2)) t^{6} \\
& +(-20+11(n-2)) t^{7}+(-15+9(n-2)) t^{8} \\
& +(-9+6(n-2)) t^{9}+(-4+3(n-2)) t^{10} \\
+ & (-1+(n-2)) t^{11}=(1+t)^{2}(-1-3 t+n t) \\
& \left(1+t^{2}\right)\left(1-t+t^{2}\right)\left(1+t+t^{2}\right)^{2}, \\
H_{2}(t)= & -1+(-4+(n-2)) t+(-9+5(n-2)) t^{2} \\
& +(-15+14(n-2)) t^{3}+(-20+29(n-2)) t^{4} \\
& +(-23+49(n-2)) t^{5}+(-23+66(n-2)) t^{6} \\
& +(-20+71(n-2)) t^{7}+(-15+61(n-2)) t^{8} \\
& +(-9+40(n-2)) t^{9}+(-4+19(n-2)) t^{10}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1+5(n-2)) t^{11} \\
= & (1+t)^{2}\left(1+t^{2}\right)\left(1+t+t^{2}\right)\left(-1-3 t+n t-5 t^{2}\right. \\
& \left.+2 n t^{2}-7 t^{3}+3 n t^{3}-9 t^{4}+4 n t^{4}-11 t^{5}+5 n t^{5}\right) .
\end{aligned}
$$

Now we assume that $n \geqq 6$. Then all coefficients of $H_{1}(t)$ and $H_{2}(t)$ except their constant terms are non-negative so that each of them has a unique zero in $(0, \infty)$. The following inequalities

$$
H_{1}\left(\frac{1}{n-3}\right)=0, \quad H_{2}\left(\frac{1}{n-1}\right)=-\frac{6}{(n-1)^{5}}<0
$$

guarantee that the zero of $H(t)$ is located in $\left[\frac{1}{n-1}, \frac{1}{n-3}\right]$. Combining with the similar result for $n=$ 4,5 in the previous section, we have the following theorem which is our main result.

Theorem 4. The growth rate τ of an ideal Coxeter polytope with n facets in \mathbf{H}^{3} satisfies

$$
\begin{equation*}
n-3 \leqq \tau \leqq n-1 \tag{2}
\end{equation*}
$$

Corollary 1. An ideal Coxeter polytope P with n facets in \mathbf{H}^{3} is right-angled if and only if its growth rate τ is equal to $n-3$.

Proof. The factor $H(t)$ of the denominator polynomial $G(t)=(t-1) H(t)$ of the growth function of P is equal to $H_{1}(t)$ if and only if $b=c=$ $d=0$, which means that all dihedral angles are $\pi / 2$.

From the inequality (2), we see that the growth rate τ of an ideal Coxeter polytope with n facets with $n \geqq 6$ satisfies $\tau \geqq 3$. Therefore combining with the result of growth rates for $n=4,5$ shown in the previous section, we also have the following corollary (see also [11], Theorem 4).

Corollary 2. The minimum of the growth rates of three-dimensional hyperbolic ideal Coxeter polytopes is $0.492432^{-1}=2.03074$, which is uniquely realized by the ideal Coxeter simplex with $p=q=$ $s=2$.

Acknowledgements. The authors thank Dr. Jun Nonaka for explaining his paper [11]. They also thank the referee for her (or his) helpful comments.

References

[1] E. M. Andreev, On convex polyhedra of finite volume in Lobačevskiŭ space, Mat. Sb. (N.S.) 83 (1970), no. 2, 256-260. English transl: Math. USSR Sb. 12 (1970), no. 2, 255-259.
[2] J. W. Cannon and Ph. Wagreich, Growth functions of surface groups, Math. Ann. 293 (1992),
no. 2, 239-257.
[3] W. J. Floyd, Growth of planar Coxeter groups, P.V. numbers, and Salem numbers, Math. Ann. 293 (1992), no. 3, 475-483.
[4] F. Guéritaud, On an elementary proof of Rivin's characterization of convex ideal hyperbolic polyhedra by their dihedral angles, Geom. Dedicata 108 (2004), 111-124.
[5] P. de la Harpe, Groupes de Coxeter infinis non affines, Exposition. Math. 5 (1987), no. 1, 91-96.
[6] G. J. Heckman, The volume of hyperbolic Coxeter polytopes of even dimension, Indag. Math. (N.S.) 6 (1995), no. 2, 189-196.
[7] R. Kellerhals, Cofinite hyperbolic Coxeter groups, minimal growth rate and Pisot numbers, Algebr. Geom. Topol. 13 (2013), no. 2, 1001-1025.
[8] R. Kellerhals and A. Kolpakov, The minimal growth rate of cocompact Coxeter groups in hyperbolic 3-space, Canad. J. Math. 66 (2014), no. 2, 354-372.
[9] R. Kellerhals and G. Perren, On the growth of cocompact hyperbolic Coxeter groups, European J. Combin. 32 (2011), no. 8, 1299-1316.
[10] Y. Komori and Y. Umemoto, On the growth of hyperbolic 3-dimensional generalized simplex reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 4, 62-65.
[11] J. Nonaka, The growth rates of ideal Coxeter polyhedra in hyperbolic 3 -space, arXiv:1504.06718.
[12] W. Parry, Growth series of Coxeter groups and Salem numbers, J. Algebra 154 (1993), no. 2, 406-415.
[13] I. Rivin, A characterization of ideal polyhedra in hyperbolic 3-space, Ann. of Math. (2) 143 (1996), no. 1, 51-70.
[14] J.-P. Serre, Cohomologie des groupes discrets, in Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), $77-$ 169, Ann. of Math. Studies, 70, Princeton Univ. Press, Princeton, NJ, 1971.
[15] L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376-393.
[16] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, Amer. Math. Soc., Providence, RI, 1968.

[^0]: 2010 Mathematics Subject Classification. Primary 20F55; Secondary 20F65.

