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Abstract: It is known that a positive integer n is the area of a right triangle with rational

sides if and only if the elliptic curve EðnÞ : y2 ¼ xðx2 � n2Þ has a rational point of order different

than 2. A generalization of this result states that a positive integer n is the area of a triangle with

rational sides if and only if there is a nonzero rational number � such that the elliptic curve

EðnÞ� : y2 ¼ xðx� n�Þðnþ n��1Þ has a rational point of order different than 2. Such n are called

�-congruent numbers. It is shown that for a given integer m > 1, each congruence class modulo m

contains infinitely many distinct �-congruent numbers.

Key words: Elliptic curve; �-congruent number.

1. Introduction. A positive integer n is

called a congruent number if it is equal to the area

of a right triangle with rational sides. Equivalently,

n is congruent if and only if the elliptic curve

EðnÞ : y2 ¼ xðx2 � n2Þ

has a rational point which is not of order 2. The idea

of a congruent number can be generalized by

requiring only that n be equal to the area of a

triangle with rational sides. Such triangles are

called Heron triangles. Goins and Maddox [5]

proved that a positive integer n is the area of a

Heron triangle if and only if for some nonzero

rational number � the elliptic curve

EðnÞ� : y2 ¼ xðx� n�Þðxþ n��1Þð1Þ

has a rational point which is not of order 2. In this

case we call n a �-congruent number. If ðx; yÞ is

such a point on EðnÞ� then transformations, in terms

of x, y and � which produce a rational triangle

with area n or indeed a rational right triangle in the

case of congruent numbers, are given by Goins and

Maddox in [5, p. 1516]. Chahal, [2,3] studied the

connection between elliptic curves and congruent

numbers, and employed an identity of Desboves to

show that there are infinitely many congruent

numbers in each residue class modulo 8. Bennett [1],

extended this result, by showing that for any

positive integer m, there exist infinitely many

congruent numbers in each residue class modulo m.

The purpose of this paper is to prove an analog

of Bennett’s theorem for �-congruent numbers. We

will make use of another identity of Desboves [4].

We state our result in the following theorem.

Theorem 1. Let � be a fixed nonzero ration-

al number, m > 1 a positive integer and a any

integer. Then there exist infinitely many �-congru-

ent numbers n, inequivalent modulo squares of

rational numbers and satisfying n � aðmodmÞ.
To prove our theorem we introduce in Sec-

tion 1, an identity of Desboves that we shall use.

Additionally we give a preliminary description of

�-congruent numbers. Then we give the proof of our

theorem in Section 2.

2. An identity of Desboves. We begin

with a simple lemma describing a relation concern-

ing �-congruent numbers.

Lemma 1. Let n; n0; e be positive integers

and suppose that n ¼ n0e2. If n is a �-congruent

number then n0 is a �-congruent number.

Proof. If n is a �-congruent number then there

is a rational point ðx0; y0Þ which is not of order 2 on

EðnÞ� . It follows that ðx0=e
2; y0=e

3Þ is a rational point

which is not of order 2 on Eðn
0Þ

� proving that n0 is a

�-congruent number. �

Desboves [4] obtained a solution in integers of

the following quadratic equation.

Proposition 1 (Desboves [4]). Let n; u; v; w

be integers. If we set

X ¼ u2 þ n2v2;ð2Þ
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Y ¼ 2uvþ wv2;

Z ¼ u2 þ wuv� n2v2;

then

X2 þ wXY � n2Y 2 ¼ Z2:ð3Þ

As an identity, equation (3) using the expres-

sions given in (2) remains valid if n; u; v; w are

rational numbers. We shall apply the previous

proposition with this fact in mind. Our next lemma

gives a general formula for a �-congruent number.

Lemma 2. Let � be a fixed nonzero rational

number so that we may write � ¼ c=d for relatively

prime integers c and d with d > 0. Suppose that n, r

and s are integers with gcdðr; sÞ ¼ 1 and n > 0 such

that

n ¼ cdrsðcrþ dsÞðdr� csÞ:ð4Þ

Then n is a �-congruent number with at most finitely

many exceptions.

Proof. To construct a rational point on EðnÞ�
given by (1), consider the quadratic equation

X2 þ ðn=� � n�ÞXY � n2Y 2 ¼ Z2:ð5Þ

We set

X ¼ u2 þ n2v2;ð6Þ
Y ¼ 2uvþ wv2;

Z ¼ u2 þ wuv � n2v2;

where n, u and v are integers and w is the rational

number given by

w ¼ ðn=� � n�Þ;ð7Þ

bearing in mind the remark stated just before this

lemma. By Proposition 1, equation (5) holds with

these choices of X; Y ; Z and w. If we substitute

u ¼ nðr2 � s2Þ; v ¼ 2rs; � ¼ c=d

and

n ¼ cdrsðcrþ dsÞðdr� csÞð8Þ

in (6) and (7), then we obtain

X ¼ ðcdrsÞ2ðr2 þ s2Þ2ðcrþ dsÞ2ðcs� drÞ2;ð9Þ
Y ¼ 4r2s2ðcrþ dsÞ2ðcs� drÞ2;
Z ¼ �cdr2s2ð2drsþ cr2 � cs2Þ
ð2crs� dr2 þ ds2Þðcrþ dsÞ2ðcs� drÞ2:

We now have a solution to the quartic equation

x4 þ ðn=� � n�Þx2y2 � n2y4 ¼ z2;ð10Þ
given by

x ¼ cdrsðr2 þ s2Þðcrþ dsÞðcs� drÞ;ð11Þ
y ¼ 2rsðcrþ dsÞðcs� drÞ;
z ¼ �cdr2s2ð2drsþ cr2 � cs2Þ

ð2crs� dr2 þ ds2Þðcrþ sdÞ2ðcs� drÞ2:
Since we assumed that n > 0, equation (8) implies

that r, s, ðcrþ dsÞ and ðcs� drÞ are nonzero, hence

x 6¼ 0 and y 6¼ 0. If z 6¼ 0, then our solution (11) of

equation (10) contributes a rational point P on EðnÞ�
given by

P ¼
x2

y2
;
xz

y3

� �
:

P does not have order 2 as xz 6¼ 0. If however z ¼ 0

then P would have order 2, and from equation (9)

for z, either

2drsþ cr2 � cs2 ¼ 0ð12Þ
or

2crs� dr2 þ ds2 ¼ 0:

Rearranging the equations in (12) yields

c

d
¼ 2rs

s2 � r2
or

c

d
¼ r2 � s2

2rs
:ð13Þ

Since gcdðc; dÞ ¼ gcdðr; sÞ ¼ 1 and c; d are con-

stants, there are finitely many pairs of integers

ðr; sÞ satisfying (13) and for which P would have

order 2. The proof of this lemma is complete. �

In the case where n is a congruent number, we

have c ¼ d ¼ 1 in equation (4). If we further replace

s by 4s, set r ¼ 4s2 þ 1 and scale the resulting

integer expression by 4ð2s� 1Þ2ð2sþ 1Þ2, according

to Lemma 1, we obtain the congruent number

sð4s2 þ 1Þ;

used by Chahal [2,3]. Now we give the proof of our

theorem.

3. Proof of Theorem.

Proof. We fix � ¼ c=d where c; d are relatively

prime integers with d > 0. Define the set � by

� ¼ � 2 N j � � �a ðmodmÞf g:

We set

r ¼ �1 and s ¼ ðcdmÞ2�;

noting that gcdðr; sÞ ¼ 1, as required by Lemma 2,
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and substitute these values of r and s into (4). We

obtain the integer ~n given in (14).

~n ¼ c4d4m2�ðc3dm2�þ 1Þðcd3m2�� 1Þ:ð14Þ

As m > 1, we have ~n > 0 for all � 2 �. Lemma 2

implies that ~n is a �-congruent number with at most

finitely many exceptions. By Lemma 1, we may

scale ~n by ðcdÞ4m2, obtaining the �-congruent

number n given by

n ¼ �ðc3dm2�þ 1Þðcd3m2�� 1Þ:ð15Þ

From (15), we have

n � �� � a ðmodmÞ:

Finally, it is clear that infinitely many of these

integers n are inequivalent modulo squares of

rational numbers. Otherwise there would exist a

finite set of integers fdig such that for each value of

� with n given by (15) we would have ndi equal to

the square of an integer for some i. Thus there

would exist infinitely many integral points lying on

at least one of the nonsingular cubic curves

Y 2 ¼ di�ðc3dm2�þ 1Þðcd3m2�� 1Þ;
contradicting the theorem of Siegel [6]. �
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