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Abstract: In this paper, we determine the automorphism groups of the hyperelliptic

modular curves X1ðNÞ, and determine explicit forms for the actions of all automorphisms on

certain defining equations of X1ðNÞ.
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1. Introduction. Let �ð1Þ ¼ SL2ðZÞ be the

full modular group. For any integer N � 1, we have

subgroups �1ðNÞ and �0ðNÞ of �ð1Þ defined by

matrices ð a b
c d
Þ that are congruent modulo N to

ð 1 �
0 1
Þ and ð � �

0 � Þ, respectively. We let X1ðNÞ and

X0ðNÞ be the modular curves defined over Q

associated with �1ðNÞ and �0ðNÞ, respectively.

There are some more modular curves X�ðNÞ
associated with the subgroups ��ðNÞ of �0ðNÞ
defined by matrices ð a b

c d
Þ with a 2 �, where � is

a subgroup of ðZ=NZÞ� that contains �1. For

� ¼ f�1g, this is X1ðNÞ.
For an integer N � 2, the modular curve

X1ðNÞ (with cusps removed) parameterizes isomor-

phism classes of pairs ðE;P Þ, where E is an elliptic

curve and P a torsion point of order N on E.

Reichert [9], Sutherland [10], and Baaziz [1] derived

defining equations for X1ðNÞ. One can recover

explicit forms for the pairs ðE;P Þ from the corre-

sponding points whose coordinates satisfy these

defining equations of X1ðNÞ.
Let Nð�1ðNÞÞ be the normalizer of �1ðNÞ in

PSL2ðRÞ ¼� GLþ2 ðRÞ=R�. Then, the quotient group

Nð�1ðNÞÞ=��1ðNÞ can be viewed as a subgroup

of the automorphism group AutðX1ðNÞÞ of X1ðNÞ
consisting of all automorphisms of X1ðNÞ defined

over C. Kim and Koo [4] and Lang [5] compute

Nð�1ðNÞÞ independently.

The main theorem of an unpublished paper by

Momose [8] is that, for any square-free integerN and

modular curve X�ðNÞ of genus g � 2, AutðX�ðNÞÞ
is equal to Nð��ðNÞÞ=��ðNÞ, except for X0ð37Þ.
However, the author with Kim and Schweizer [3]

found a counterexample for the case of X�ð37Þ
where � ¼ f�1;�6;�8;�10;�11;�14g. We do not

want to use Momose’s result in this paper.

In [2], the authors determined the group

structures of AutðX1ðNÞÞ for N ¼ 13; 16; 18. In this

paper, we give a new proof for this result.

Let C be a smooth, projective curve over an

algebraically closed field k of genus gðCÞ � 2. Then

C is said to be hyperelliptic if it admits a map � :

C ! P1 of degree 2 defined over k. If C is a

hyperelliptic curve, then there exists an involution

�, called a hyperelliptic involution, such that C=h�i
is a rational curve. Mestre [7] showed that the

modular curve X1ðNÞ �Q C is hyperelliptic only for

N ¼ 13; 16; 18.

The main goal of this paper is to compute the

automorphism groups AutðX1ðNÞÞ of the hyper-

elliptic modular curves X1ðNÞ and derive explicit

forms of the actions of all automorphisms on the

defining equations of these X1ðNÞ. For this purpose,

we use the recent results of Baaziz [1], which enable

us to solve the moduli problems. In fact,

AutðX1ðNÞÞ is equal to Nð�1ðNÞÞ=��1ðNÞ for the

hyperelliptic curves X1ðNÞ.
We concentrate on hyperelliptic cases for the

following reasons: First, the automorphism groups

of the curves X1ðNÞ of genus g � 1 are infinite;

second, the full classification of AutðX1ðNÞÞ is not

yet known; and third, the method of calculating

explicit forms of all automorphisms from

Nð�1ðNÞÞ=�1ðNÞ can be applied to the other cases.

2. Preliminaries. The Tate normal form of

an elliptic curve with a point P ¼ ð0; 0Þ is

E ¼ Eðb; cÞ : Y 2 þ ð1� cÞXY � bY ¼ X3 � bX2;

and this is nonsingular if and only if b 6¼ 0. On the
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curve Eðb; cÞ, we can use the chord-tangent method

to derive the following

P ¼ ð0; 0Þ;ð1Þ
2P ¼ ðb; bcÞ;
3P ¼ ðc; b� cÞ;
4P ¼ rðr� 1Þ; r2ðc� rþ 1Þ

� �
; b ¼ cr;

5P ¼ rsðs� 1Þ; rs2ðr� sÞ
� �

; c ¼ sðr� 1Þ;

6P ¼
�
sðr� 1Þðr� sÞ
ðs� 1Þ2

;

s2ðr� 1Þ2ðrs� 2rþ 1Þ
ðs� 1Þ3

�
;

7P ¼
�
rsðs� 1Þðr� 1Þðsr� 2rþ 1Þ

ðr� sÞ2
;

ðs� 1Þ2ðr� 1Þ2ðr� s2 þ s� 1Þ
ðr� sÞ3

�
:

The condition NP ¼ O in Eðb; cÞ gives a

defining equation for X1ðNÞ. For example, 13P ¼
O implies 6P ¼ �7P , so

X6P ¼ X�7P ¼ X7P ;

where XnP denotes the X-coordinate of the n-multi-

ple nP of P . Eq. (1) implies that

sðr� 1Þðr� sÞ
ðs� 1Þ2

¼
rsðs� 1Þðr� 1Þðsr� 2rþ 1Þ

ðr� sÞ2
:ð2Þ

Without loss of generality, the cases s ¼ 0; 1, r ¼
1; s may be excluded. Then, Eq. (2) becomes

F13ðr; sÞ :¼ r3 � 2r2 þ 5s3r2 � s4r2 � 9s2r2 þ 4sr2

� s3r� 3srþ 6s2rþ r� s3 ¼ 0;

which is one of the equations for X1ð13Þ, called the

raw form of X1ð13Þ. By the coordinate changes r ¼
1� xy and s ¼ 1� xy

yþ1, we have that

f13ðx; yÞ :¼ y2 þ ðx3 þ x2 þ 1Þy� x2 � x ¼ 0:

This solves the moduli problem of X1ð13Þ. If we

pick x0 ¼ 1, and set y0 ¼ � 3
2 þ

ffiffiffiffi
17
p

2 , then ðx0; y0Þ is

a K-rational point on X1ð13Þ satisfying f13ðx0; y0Þ ¼
0, where K ¼ Qð

ffiffiffiffiffi
17
p
Þ is a quadratic number field. If

we apply the formulas in Table II and Eq. (1) with

x ¼ x0 and y ¼ y0, we obtain

b0 :¼ bðx0; y0Þ ¼ �
13

4
þ 3

ffiffiffiffiffi
17
p

4
;

c0 :¼ cðx0; y0Þ ¼ �
7

8
þ

ffiffiffiffiffi
17
p

8
:

Then, the elliptic curve Eðb0; c0Þ over K contains

the point ð0; 0Þ of order 13, and in fact its torsion

subgroup is Z=13Z.

From [9] and [10], we obtain the defining

equations of X1ðNÞ in Table I and birational maps

’ for X1ðNÞ from fNðx; yÞ ¼ 0 to FNðr; sÞ ¼ 0 in

Table II for N ¼ 13; 16; 18, where FNðr; sÞ ¼ 0 de-

notes the raw form of X1ðNÞ.
Let H be the complex upper half plane and

H� ¼ H [P1ðQÞ. Then, �1ðNÞ acts on H� under

linear fractional transformations, and X1ðNÞðCÞ
can be viewed as a Riemann surface �1ðNÞnH�.

The points of �1ðNÞnH have a one-to-one

correspondence with the equivalence classes of

elliptic curves E, together with a specified point P

of exact order N. Let L� ¼ ½�; 1	 be the lattice in C

with basis � and 1. Then, ½� 	 2 �1ðNÞnH corre-

sponds to the pair ½C=L� ; 1
N þ L� 	. Thus, �1ðNÞnH

is a moduli space for the moduli problem of

determining equivalence classes of pairs ðE;P Þ,
where E is an elliptic curve defined over C, and

P 2 E is a point of exact order N . Two pairs ðE;P Þ
and ðE0; P 0Þ are equivalent if there is an isomor-

phism E ’ E0 that takes P to P 0.
Note that

C=L� ;
1

N
þ L�

� �

¼
�
y2 ¼ 4x3 � g2ð�Þx� g3ð�Þ;

}
1

N
; �

� �
; }0

1

N
; �

� �� ��

¼ ½y2 þ ð1� cð�ÞÞxy� bð�Þy ¼ x3 � bð�Þx2; ð0; 0Þ	;

Table II. Birational maps ’ for X1ðNÞ from fN ðx; yÞ ¼ 0 to

FN ðr; sÞ ¼ 0

N ’

13 r ¼ 1� xy, s ¼ 1� xy
yþ1

16 r ¼ x2�xyþy2þy
x2þx�y�1 , s ¼ x�y

xþ1

18 r ¼ x2þy
x2þyþxy�y2 , s ¼ x2þy�xy

x2þy�y2

Table I. Defining equations of X1ðNÞ : fN ðx; yÞ ¼ 0

N fN ðx; yÞ

13 y2 þ ðx3 þ x2 þ 1Þy� x2 � x
16 y2 þ ðx3 þ x2 � xþ 1Þyþ x2

18 ðx2 � 2xþ 1Þy2 þ ð�x3 þ x� 1Þyþ x3 � x2
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where g2ð�Þ ¼ 60G4ð�Þ, g3ð�Þ ¼ 140G6ð�Þ for the

Eisenstein series G2kð�Þ of weight 2k, }ðz; �Þ :¼
}ðz; L� Þ is the Weierstrass elliptic function, and

bð�Þ, cð�Þ are the coefficients of the Tate normal

form contained in ½C=L� ; 1
N þ L� 	. Note that each

equivalence class of pairs ðE;P Þ contains a unique

Tate normal form [1, Proposition 1.3], and hence

bð�Þ and cð�Þ induce well-defined functions on

�1ðNÞnH. From [1], it follows that

bð�Þ ¼ �
ð}ð 1

N
; �Þ � }ð 2

N
; �ÞÞ3

}0ð 1
N
; �Þ2

;ð3Þ

cð�Þ ¼ �
}0ð 2

N
; �Þ

}0ð 1
N
; �Þ

are modular functions on �1ðNÞ and generate the

function field of X1ðNÞ, where }0 is the derivative

with respect to z.

3. Automorphism groups. In this section,

we determine the full automorphism groups of

X1ðNÞ with N ¼ 13; 16; 18.

Since �0ðNÞ=f�1g is contained in Nð�1ðNÞÞ,
every � 2 �0ðNÞ induces an automorphism of

X1ðNÞ. For an integer a that is prime to N, let ½a	
denote the automorphism of X1ðNÞ represented by

� 2 �0ðNÞ such that � 
 ð a �
0 � Þ mod N. In some

instances, we regard ½a	 as a matrix.

For each divisor djN with ðd;N=dÞ ¼ 1, con-

sider matrices of the form Wd ¼
dx y
Nz dw

� �
with

x; y; z; w 2 Z and determinant d. Such matrices

define a unique involution on X0ðNÞ that is called

the Atkin–Lehner involution. However, this is not

true for X1ðNÞ. Furthermore, Wd does not, in

general, give an involution on X1ðNÞ.
We now fix a matrix Wd that belongs to the

normalizer Nð�1ðNÞÞ, and define an automorphism

of X1ðNÞ. Kim and Koo [4] and Lang [5] proved that

Nð�1ðNÞÞ is generated by �0ðNÞ and the Wd when

N 6¼ 4.

First, we compute Nð�1ðNÞÞ=��1ðNÞ with

N ¼ 13; 16; 18. For each N ¼ 13; 16, or 18, we

consider the following exact sequence:

1! �0ðNÞ=��1ðNÞ ! Nð�1ðNÞÞ=��1ðNÞð4Þ
! Nð�1ðNÞÞ=�0ðNÞ ! 1:

If N ¼ 13; 16, then Nð�1ðNÞÞ=�0ðNÞ is a cyclic

group of order 2 that is generated by WN . One can

easily check that

½a	WN 
 WN ½a�1	 mod ��1ðNÞð5Þ

for all a prime to N , and hence WN is of order 2

in Nð�1ðNÞÞ=��1ðNÞ. Thus, the exact sequence in

Eq. (4) can be split, and so Nð�1ðNÞÞ=��1ðNÞ is

a semidirect product of �0ðNÞ=��1ðNÞ and

Nð�1ðNÞÞ=�0ðNÞ. Note that �0ðNÞ=��1ðNÞ is iso-

morphic to ðZ=NZÞ�=f�1g. From Eq. (5), we can

conclude that Nð�1ðNÞÞ=��1ðNÞ are h½2	;W13i and

h½3	;W16i, which are isomorphic to the dihedral

groups D6; D4 for N ¼ 13; 16 respectively.

Let us now consider N ¼ 18. Choose a matrix

W2 ¼
4 �1
18 �4

� �
. For any a prime to 18, the

ð1; 1Þ-entry W2½a	W�1
2 ½1; 1	 of the matrix W2½a	W�1

2

satisfies the following

W2½a	W�1
2 ½1; 1	 
 a�1 
 a (mod 2Þ;

W2½a	W�1
2 ½1; 1	 
 a (mod 9Þ:

Thus, W2 commutes with ½a	 for any a prime to 18.

Choose W9 ¼
9 �5
18 �9

� �
. Then,

W9½a	W�1
9 ½1; 1	 
 a 
 a�1 (mod 2Þ;

W9½a	W�1
9 ½1; 1	 
 a�1 (mod 9Þ;

for any a prime to N. Thus

½a	W9 
 W9½a�1	 mod ��1ð18Þ:ð6Þ

One can easily check that W2W9 
W9W2 mod �
�1ð18Þ. Note that Nð�1ð18ÞÞ=�0ð18Þ is the Klein 4-

group, and the matrices W2;W9 generate a sub-

group of Nð�1ð18ÞÞ=��1ð18Þ that is also the Klein 4-

group. Thus, the exact sequence in Eq. (4) can be

split when N ¼ 18, and hence Nð�1ð18ÞÞ=��1ð18Þ is

the semidirect product of �0ð18Þ=��1ð18Þ and

Nð�1ð18ÞÞ=�0ð18Þ. Since �0ð18Þ=��1ð18Þ is a cyclic

group of order 3 and W2 commutes with ½a	 for any a

prime to 18, �0ð18Þ=��1ð18Þ and W2 generate a

cyclic group of order 6. From Eq. (6), we can

conclude that Nð�1ð18ÞÞ=��1ð18Þ ¼ h½5	W2;W9i is

isomorphic to the dihedral group D6.

Note that for N ¼ 13; 16; 18, X1ðNÞ are hyper-

elliptic curves of genus 2. The computer algebra

system MAGMA can compute the full automor-

phism group of hyperelliptic curves of genus 2 or 3.

Using MAGMA, we can compute that AutðX1ðNÞÞ
is isomorphic to D6; D4; D6 for N ¼ 13; 16; 18, re-

spectively. Therefore, we conclude that AutðX1ðNÞÞ
are the same as Nð�1ðNÞÞ=��1ðNÞ for N ¼
13; 16; 18.
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Theorem 3.1. For N ¼ 13; 16; 18, the full

automorphism groups AutðX1ðNÞÞ are the same as

Nð�1ðNÞÞ=��1ðNÞ, which are the dihedral groups

D6; D4; D6 respectively.

4. Explicit forms. In this section, we derive

explicit forms of the actions of all automorphisms

on the defining equations of the hyperelliptic curves

X1ðNÞ in Table I. For this purpose, it suffices to

know the forms of the generators of Nð�1ðNÞÞ=
��1ðNÞ.

Let us consider N ¼ 13. The group

AutðX1ð13ÞÞ is generated by ½2	 and W13. If we take

½2	 ¼ ð 2 1
13 7
Þ, then ½2	 acts on X1ð13Þ as ½2	� ¼ 2�þ1

13�þ7.

In this case, we have the following

}
1

13
; ½2	�

� �
¼ ð13� þ 7Þ2}

13� þ 7

13
; �

� �

¼ ð13� þ 7Þ2}
7

13
; �

� �
;

and

}0
1

13
; ½2	�

� �
¼ ð13� þ 7Þ3}0

13� þ 7

13
; �

� �

¼ ð13� þ 7Þ3}0
7

13
; �

� �
:

Similarly, we have the following

}
2

13
; ½2	�

� �
¼ ð13� þ 7Þ2}

1

13
; �

� �
;

}0
2

13
; ½2	�

� �
¼ ð13� þ 7Þ3}0

1

13
; �

� �
:

Thus, from Eq. (3), we obtain the following

bð½2	�Þ ¼ �
} 7

13
; �

� �
� } 1

13
; �

� �� �3

}0 7
13
; �

� �2
;ð7Þ

cð½2	�Þ ¼ �
}0 1

13
; �

� �
}0 7

13 ; �
� � :

From Eq. (1) and Table 7 of [10], we have that

the generators x; y of the function field of X1ð13Þ
satisfying f13ðx; yÞ ¼ 0 can be expressed as the

following functions of b; c:

x ¼
ðb� c2 � cÞðb� cÞ

b2 � bc� c3
;ð8Þ

y ¼ �
b2 � bc� c3

cðb� c2 � cÞ
:

From the formulas in Proposition 3 of [6, p. 46],

we can determine the q-expansions for }ðz; �Þ and

}0ðz; �Þ, where q ¼ e2�i� . Using these q-expansions

and Eqs. (3), (7), and (8), we arrive at the following

q-expansions of xð�Þ, yð�Þ, xð½2	�Þ, and yð½2	�Þ:

xð�Þ ¼ ð�2� !2 � !3 � !4 � !6 � !7 � !9

� !10 � !11Þ þOðqÞ;
yð�Þ ¼ ð10þ 10!2 þ !3 þ 8!4 þ 3!5 þ 6!6 þ 6!7

þ 3!8 þ 8!9 þ !10 þ 10!11Þ þOðqÞ;
xð½2	�Þ ¼ ð�1þ !4 þ !6 þ !7 þ !9Þ þOðqÞ;
yð½2	�Þ ¼ ð�2!2 � 4!3 � 7!4 � 9!5 � 10!6 � 9!8

� 10!7 � 7!9 � 4!10 � 2!11Þ þOðqÞ;
where ! is a 13th primitive root of 1.

Using the computer algebra system Maple, we

can express x � ½2	 and y � ½2	 as functions of x and y

from their q-expansions as follows:

x � ½2	 ¼ �
1

1þ x
;

y � ½2	 ¼ �
x� y

xþ x2 � y
;

which is the explicit form of the action of ½2	 on the

defining equation f13ðx; yÞ ¼ 0 of X1ð13Þ.
If we take W13 ¼ ð 0 �1

13 0
Þ, then W13 acts on

X1ð13Þ as W13� ¼ � 1
13� . In this case, we have the

following

}
a

13
;W13�

� �
¼ ð13�Þ2}ða�; 13�Þ;

}0
a

13
;W13�

� �
¼ ð13�Þ3}0ða�; 13�Þ;

where a ¼ 1; 2. Thus, it follows that:

bðW13�Þ ¼ �
}ð�; 13�Þ � }ð2�; 13�Þð Þ3

}0ð�; 13�Þ2
;ð9Þ

cðW13�Þ ¼ �
}0ð2�; 13�Þ
}0ð�; 13�Þ :

Using Eqs. (8) and (9), we obtain the following

q-expansions of xðW13�Þ and yðW13�Þ:
xðW13�Þ ¼ � 1þ q � q2 þ q5 þOðq6Þ;
yðW13�Þ ¼ � q þ 2q2 � 3q3 þ 5q4 � 8q5 þOðq6Þ:

Using Maple, again, we can express x �W13 and

y �W13 as the following functions of x and y from

their q-expansions:

x �W13 ¼
�1þ !4 þ !7 þ !6 þ !9 � x

1þ ð!4 þ !6 þ !7 þ !9Þx ;ð10Þ

y �W13 ¼
k1 þ k2xþ k3x

2 þ k4y

k5 þ k6xþ k7x2 þ k8y
;
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where

k1 ¼ 12þ 3!2 � 5!3 þ 2!4 � 2!5 � 4!6 � 4!7ð11Þ
� 2!8 þ 2!9 � 5!10 þ 3!11;

k2 ¼ �8� 2!2 � !3 þ 3!4 � 3!5 � 6!6 � 6!7

� 3!8 þ 3!9 � !10 � 2!11;

k3 ¼ �16� 4!2 þ 11!3 þ 6!4 þ 7!5 þ !6 þ !7

þ 7!8 þ 6!9 þ 11!10 � 4!11;

k4 ¼ 13;

k5 ¼ �14þ 3!2 þ 8!3 þ 2!4 � 2!5 � 4!6 � 4!7

� 2!8 þ 2!9 þ 8!10 þ 3!11;

k6 ¼ 5þ 11!2 þ 12!3 þ 16!4 þ 10!5 þ 20!6

þ 20!7 þ 10!8 þ 16!9 þ 12!10 þ 11!11;

k7 ¼ 10þ 9!2 � 2!3 þ 6!4 � 6!5 þ !6 þ !7

� 6!8 þ 6!9 � 2!10 þ 9!11;

k8 ¼ �26� 13!2 � 13!4 � 13!5 � 26!6 � 26!7

� 13!8 � 13!9 � 13!11:

Eq. (10) is the explicit form of the action of W13

on the defining equation f13ðx; yÞ ¼ 0 of X1ð13Þ. In

fact, the defining field of W13 is Qð!Þ.
Using exactly the same method, we can derive

explicit forms of the actions of the generators of

AutðX1ðNÞÞ on the defining equations fNðx; yÞ ¼ 0

of X1ðNÞ for N ¼ 16; 18.

Theorem 4.1. The explicit forms of the

actions of the automorphisms on the defining

equations fNðx; yÞ ¼ 0 in Table I for the hyper-

elliptic curves X1ðNÞ can be written as follows:

(i) The case N ¼ 13:

x � ½2	 ¼ � 1

1þ x
;

y � ½2	 ¼ �
x� y

xþ x2 � y ;

x �W13 ¼
�1þ !4 þ !7 þ !6 þ !9 � x

1þ ð!4 þ !6 þ !7 þ !9Þx ;

y �W13 ¼
k1 þ k2uþ k3u

2 þ k4y

k5 þ k6uþ k7u2 þ k8y
:

(ii) The case N ¼ 16:

x � ½3	 ¼ �
1

x
;

y � ½3	 ¼ � 1þ y
x2 þ y

;

x �W16 ¼
ð1þ !2 � !6Þð1� !2 þ !6 � xÞ

1þ !2 � !6 � x
;

y �W16 ¼
l1 þ l2xþ l3x2 þ l4yþ l5xy
l6 þ l7xþ l8x2 þ l9yþ l10xy

:

The case N ¼ 18:

x � ½5	W2 ¼
1

1� x
;

y � ½5	W2 ¼
x� y

1� yþ xy
;

x �W9 ¼
ð1� !4 þ !5Þð1� !� !2 þ !4 � xÞ

1� !4 þ !5 � x
;

y �W9 ¼ ð2þ 2!þ 2!2 � !4 � !5Þ

�
2� !� !2 þ 2!4 � !5 � y
2þ 2!þ 2!2 � !4 � !5 � y

:

For each case, ! is a primitive N-th root of unity,

the ki are as given in Eq. (11), and

l1 ¼ �1þ !� !2 þ !6 � !7;

l2 ¼ �4þ 5!� 4!2 þ 2!3 � 2!5 þ 4!6 � 5!7;

l3 ¼ �5þ 4!� 3!2 þ 2!3 � 2!5 þ 3!6 � 4!7;

l4 ¼ �!þ 2!2 � 2!3 þ 2!5 � 2!6 þ !7;

l5 ¼ !� 2!2 þ 2!3 � 2!5 þ 2!6 � !7;

l6 ¼ 9� 8!þ 6!2 � 3!3 þ 3!5 � 6!6 þ 8!7;

l7 ¼ �4þ 2!� !3 þ !5 � 2!7;

l8 ¼ 1;

l9 ¼ 8� 6!þ 4!2 � 3!3 þ 3!5 � 4!6 þ 6!7;

l10 ¼ 4� 4!þ 4!2 � 3!3 þ 3!5 � 4!6 þ 4!7:

Corollary 4.2. The hyperelliptic involutions

of the hyperelliptic curves X1ðNÞ are ½5	; ½7	;W2 for

N ¼ 13; 16; 18, respectively. The explicit forms of

the hyperelliptic involutions on the defining equation

fNðx; yÞ ¼ 0 in Table I for the hyperelliptic modular

curves X1ðNÞ are as follows:

N explicit form

13 x � ½5	 ¼ x, y � ½5	 ¼ xðx�yÞ
x�y�x2y

16 x � ½7	 ¼ x, y � ½7	 ¼ x2

y

18 x �W2 ¼ x, y �W2 ¼ 1�yþxy
1�xþxy
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