Automorphism groups of hyperelliptic modular curves

By Daeyeol Jeon
Department of Mathematics Education, Kongju National University, Kongju, Chungnam 305-701, South Korea

(Communicated by Shigefumi Mori, M.J.A., June 12, 2015)

Abstract

In this paper, we determine the automorphism groups of the hyperelliptic modular curves $X_{1}(N)$, and determine explicit forms for the actions of all automorphisms on certain defining equations of $X_{1}(N)$.

Key words: Modular curve; automorphism group; hyperelliptic curve; hyperelliptic involution.

1. Introduction. Let $\Gamma(1)=\mathrm{SL}_{2}(\mathbf{Z})$ be the full modular group. For any integer $N \geq 1$, we have subgroups $\Gamma_{1}(N)$ and $\Gamma_{0}(N)$ of $\Gamma(1)$ defined by matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ that are congruent modulo N to $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}{ }^{*} & * \\ 0 & *\end{array}\right)$, respectively. We let $X_{1}(N)$ and $X_{0}(N)$ be the modular curves defined over \mathbf{Q} associated with $\Gamma_{1}(N)$ and $\Gamma_{0}(N)$, respectively. There are some more modular curves $X_{\Delta}(N)$ associated with the subgroups $\Gamma_{\Delta}(N)$ of $\Gamma_{0}(N)$ defined by matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a \in \Delta$, where Δ is a subgroup of $(\mathbf{Z} / N \mathbf{Z})^{*}$ that contains -1 . For $\Delta=\{ \pm 1\}$, this is $X_{1}(N)$.

For an integer $N \geq 2$, the modular curve $X_{1}(N)$ (with cusps removed) parameterizes isomorphism classes of pairs (E, P), where E is an elliptic curve and P a torsion point of order N on E. Reichert [9], Sutherland [10], and Baaziz [1] derived defining equations for $X_{1}(N)$. One can recover explicit forms for the pairs (E, P) from the corresponding points whose coordinates satisfy these defining equations of $X_{1}(N)$.

Let $N\left(\Gamma_{1}(N)\right)$ be the normalizer of $\Gamma_{1}(N)$ in $\mathrm{PSL}_{2}(\mathbf{R}) \cong \mathrm{GL}_{2}^{+}(\mathbf{R}) / \mathbf{R}^{*}$. Then, the quotient group $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ can be viewed as a subgroup of the automorphism group $\operatorname{Aut}\left(X_{1}(N)\right)$ of $X_{1}(N)$ consisting of all automorphisms of $X_{1}(N)$ defined over C. Kim and Koo [4] and Lang [5] compute $N\left(\Gamma_{1}(N)\right)$ independently.

The main theorem of an unpublished paper by Momose [8] is that, for any square-free integer N and modular curve $X_{\Delta}(N)$ of genus $g \geq 2$, $\operatorname{Aut}\left(X_{\Delta}(N)\right)$ is equal to $N\left(\Gamma_{\Delta}(N)\right) / \Gamma_{\Delta}(N)$, except for $X_{0}(37)$. However, the author with Kim and Schweizer [3]

[^0]found a counterexample for the case of $X_{\Delta}(37)$ where $\Delta=\{ \pm 1, \pm 6, \pm 8, \pm 10, \pm 11, \pm 14\}$. We do not want to use Momose's result in this paper.

In [2], the authors determined the group structures of $\operatorname{Aut}\left(X_{1}(N)\right)$ for $N=13,16,18$. In this paper, we give a new proof for this result.

Let C be a smooth, projective curve over an algebraically closed field k of genus $g(C) \geq 2$. Then C is said to be hyperelliptic if it admits a map ϕ : $C \rightarrow \mathbf{P}^{1}$ of degree 2 defined over k. If C is a hyperelliptic curve, then there exists an involution ν, called a hyperelliptic involution, such that $C /\langle\nu\rangle$ is a rational curve. Mestre [7] showed that the modular curve $X_{1}(N) \otimes_{\mathbf{Q}} \mathbf{C}$ is hyperelliptic only for $N=13,16,18$.

The main goal of this paper is to compute the automorphism groups $\operatorname{Aut}\left(X_{1}(N)\right)$ of the hyperelliptic modular curves $X_{1}(N)$ and derive explicit forms of the actions of all automorphisms on the defining equations of these $X_{1}(N)$. For this purpose, we use the recent results of Baaziz [1], which enable us to solve the moduli problems. In fact, Aut $\left(X_{1}(N)\right)$ is equal to $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ for the hyperelliptic curves $X_{1}(N)$.

We concentrate on hyperelliptic cases for the following reasons: First, the automorphism groups of the curves $X_{1}(N)$ of genus $g \leq 1$ are infinite; second, the full classification of $\operatorname{Aut}\left(X_{1}(N)\right)$ is not yet known; and third, the method of calculating explicit forms of all automorphisms from $N\left(\Gamma_{1}(N)\right) / \Gamma_{1}(N)$ can be applied to the other cases.
2. Preliminaries. The Tate normal form of an elliptic curve with a point $P=(0,0)$ is

$$
E=E(b, c): Y^{2}+(1-c) X Y-b Y=X^{3}-b X^{2}
$$

and this is nonsingular if and only if $b \neq 0$. On the
curve $E(b, c)$, we can use the chord-tangent method to derive the following

$$
\begin{align*}
P= & (0,0), \tag{1}\\
2 P= & (b, b c), \\
3 P= & (c, b-c), \\
4 P= & \left(r(r-1), r^{2}(c-r+1)\right) ; \quad b=c r \\
5 P= & \left(r s(s-1), r s^{2}(r-s)\right) ; \quad c=s(r-1), \\
6 P= & \left(\frac{s(r-1)(r-s)}{(s-1)^{2}},\right. \\
& \left.\frac{s^{2}(r-1)^{2}(r s-2 r+1)}{(s-1)^{3}}\right), \\
7 P= & \left(\frac{r s(s-1)(r-1)(s r-2 r+1)}{(r-s)^{2}}\right. \\
& \left.\frac{(s-1)^{2}(r-1)^{2}\left(r-s^{2}+s-1\right)}{(r-s)^{3}}\right)
\end{align*}
$$

The condition $N P=O$ in $E(b, c)$ gives a defining equation for $X_{1}(N)$. For example, $13 P=$ O implies $6 P=-7 P$, so

$$
X_{6 P}=X_{-7 P}=X_{7 P}
$$

where $X_{n P}$ denotes the X-coordinate of the n-multiple $n P$ of P. Eq. (1) implies that
(2) $\frac{s(r-1)(r-s)}{(s-1)^{2}}=\frac{r s(s-1)(r-1)(s r-2 r+1)}{(r-s)^{2}}$.

Without loss of generality, the cases $s=0,1, r=$ $1, s$ may be excluded. Then, Eq. (2) becomes

$$
\begin{aligned}
F_{13}(r, s):= & r^{3}-2 r^{2}+5 s^{3} r^{2}-s^{4} r^{2}-9 s^{2} r^{2}+4 s r^{2} \\
& -s^{3} r-3 s r+6 s^{2} r+r-s^{3}=0,
\end{aligned}
$$

which is one of the equations for $X_{1}(13)$, called the raw form of $X_{1}(13)$. By the coordinate changes $r=$ $1-x y$ and $s=1-\frac{x y}{y+1}$, we have that

$$
f_{13}(x, y):=y^{2}+\left(x^{3}+x^{2}+1\right) y-x^{2}-x=0
$$

This solves the moduli problem of $X_{1}(13)$. If we pick $x_{0}=1$, and set $y_{0}=-\frac{3}{2}+\frac{\sqrt{17}}{2}$, then $\left(x_{0}, y_{0}\right)$ is a K-rational point on $X_{1}(13)$ satisfying $f_{13}\left(x_{0}, y_{0}\right)=$ 0 , where $K=\mathbf{Q}(\sqrt{17})$ is a quadratic number field. If we apply the formulas in Table II and Eq. (1) with $x=x_{0}$ and $y=y_{0}$, we obtain

$$
\begin{aligned}
& b_{0}:=b\left(x_{0}, y_{0}\right)=-\frac{13}{4}+\frac{3 \sqrt{17}}{4} \\
& c_{0}:=c\left(x_{0}, y_{0}\right)=-\frac{7}{8}+\frac{\sqrt{17}}{8}
\end{aligned}
$$

Table I. Defining equations of $X_{1}(N): f_{N}(x, y)=0$

N	$f_{N}(x, y)$
13	$y^{2}+\left(x^{3}+x^{2}+1\right) y-x^{2}-x$
16	$y^{2}+\left(x^{3}+x^{2}-x+1\right) y+x^{2}$
18	$\left(x^{2}-2 x+1\right) y^{2}+\left(-x^{3}+x-1\right) y+x^{3}-x^{2}$

Table II. Birational maps φ for $X_{1}(N)$ from $f_{N}(x, y)=0$ to $F_{N}(r, s)=0$

N	φ	
13	$r=1-x y$,	$s=1-\frac{x y}{y+1}$
16	$r=\frac{x^{2}-x y+y^{2}+y}{x^{2}+x-y-1}$,	$s=\frac{x-y}{x+1}$
18	$r=\frac{x^{2}+y}{x^{2}+y+x y-y^{2}}$,	$s=\frac{x^{2}+y-x y}{x^{2}+y-y^{2}}$

Then, the elliptic curve $E\left(b_{0}, c_{0}\right)$ over K contains the point $(0,0)$ of order 13 , and in fact its torsion subgroup is $\mathbf{Z} / 13 \mathbf{Z}$.

From [9] and [10], we obtain the defining equations of $X_{1}(N)$ in Table I and birational maps φ for $X_{1}(N)$ from $f_{N}(x, y)=0$ to $F_{N}(r, s)=0$ in Table II for $N=13,16,18$, where $F_{N}(r, s)=0$ denotes the raw form of $X_{1}(N)$.

Let \mathbf{H} be the complex upper half plane and $\mathbf{H}^{*}=\mathbf{H} \cup \mathbf{P}^{1}(\mathbf{Q})$. Then, $\Gamma_{1}(N)$ acts on \mathbf{H}^{*} under linear fractional transformations, and $X_{1}(N)(\mathbf{C})$ can be viewed as a Riemann surface $\Gamma_{1}(N) \backslash \mathbf{H}^{*}$.

The points of $\Gamma_{1}(N) \backslash \mathbf{H}$ have a one-to-one correspondence with the equivalence classes of elliptic curves E, together with a specified point P of exact order N. Let $L_{\tau}=[\tau, 1]$ be the lattice in \mathbf{C} with basis τ and 1. Then, $[\tau] \in \Gamma_{1}(N) \backslash \mathbf{H}$ corresponds to the pair $\left[\mathbf{C} / L_{\tau}, \frac{1}{N}+L_{\tau}\right]$. Thus, $\Gamma_{1}(N) \backslash \mathbf{H}$ is a moduli space for the moduli problem of determining equivalence classes of pairs (E, P), where E is an elliptic curve defined over \mathbf{C}, and $P \in E$ is a point of exact order N. Two pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ are equivalent if there is an isomorphism $E \simeq E^{\prime}$ that takes P to P^{\prime}.

Note that
$\left[\mathbf{C} / L_{\tau}, \frac{1}{N}+L_{\tau}\right]$
$=\left[y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau)\right.$,
$\left.\left(\wp\left(\frac{1}{N}, \tau\right), \wp^{\prime}\left(\frac{1}{N}, \tau\right)\right)\right]$
$=\left[y^{2}+(1-c(\tau)) x y-b(\tau) y=x^{3}-b(\tau) x^{2},(0,0)\right]$,
where $g_{2}(\tau)=60 G_{4}(\tau), g_{3}(\tau)=140 G_{6}(\tau)$ for the Eisenstein series $G_{2 k}(\tau)$ of weight $2 k, \wp(z, \tau):=$ $\wp\left(z, L_{\tau}\right)$ is the Weierstrass elliptic function, and $b(\tau), c(\tau)$ are the coefficients of the Tate normal form contained in $\left[\mathbf{C} / L_{\tau}, \frac{1}{N}+L_{\tau}\right]$. Note that each equivalence class of pairs (E, P) contains a unique Tate normal form [1, Proposition 1.3], and hence $b(\tau)$ and $c(\tau)$ induce well-defined functions on $\Gamma_{1}(N) \backslash \mathbf{H}$. From [1], it follows that

$$
\begin{align*}
& b(\tau)=-\frac{\left(\wp\left(\frac{1}{N}, \tau\right)-\wp\left(\frac{2}{N}, \tau\right)\right)^{3}}{\wp^{\prime}\left(\frac{1}{N}, \tau\right)^{2}} \tag{3}\\
& c(\tau)=-\frac{\wp^{\prime}\left(\frac{2}{N}, \tau\right)}{\wp^{\prime}\left(\frac{1}{N}, \tau\right)}
\end{align*}
$$

are modular functions on $\Gamma_{1}(N)$ and generate the function field of $X_{1}(N)$, where \wp^{\prime} is the derivative with respect to z.
3. Automorphism groups. In this section, we determine the full automorphism groups of $X_{1}(N)$ with $N=13,16,18$.

Since $\Gamma_{0}(N) /\{ \pm 1\}$ is contained in $N\left(\Gamma_{1}(N)\right)$, every $\gamma \in \Gamma_{0}(N)$ induces an automorphism of $X_{1}(N)$. For an integer a that is prime to N, let $[a]$ denote the automorphism of $X_{1}(N)$ represented by $\gamma \in \Gamma_{0}(N)$ such that $\gamma \equiv\left(\begin{array}{cc}a & * \\ 0 & *\end{array}\right) \bmod N$. In some instances, we regard $[a]$ as a matrix.

For each divisor $d \mid N$ with $(d, N / d)=1$, consider matrices of the form $W_{d}=\left(\begin{array}{cc}d x & y \\ N z & d w\end{array}\right)$ with $x, y, z, w \in \mathbf{Z}$ and determinant d. Such matrices define a unique involution on $X_{0}(N)$ that is called the Atkin-Lehner involution. However, this is not true for $X_{1}(N)$. Furthermore, W_{d} does not, in general, give an involution on $X_{1}(N)$.

We now fix a matrix W_{d} that belongs to the normalizer $N\left(\Gamma_{1}(N)\right)$, and define an automorphism of $X_{1}(N)$. Kim and Koo [4] and Lang [5] proved that $N\left(\Gamma_{1}(N)\right)$ is generated by $\Gamma_{0}(N)$ and the W_{d} when $N \neq 4$.

First, we compute $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ with $N=13,16,18$. For each $N=13,16$, or 18 , we consider the following exact sequence:
(4) $1 \rightarrow \Gamma_{0}(N) / \pm \Gamma_{1}(N) \rightarrow N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$

$$
\rightarrow N\left(\Gamma_{1}(N)\right) / \Gamma_{0}(N) \rightarrow 1
$$

If $N=13,16$, then $N\left(\Gamma_{1}(N)\right) / \Gamma_{0}(N)$ is a cyclic group of order 2 that is generated by W_{N}. One can easily check that

$$
\begin{equation*}
[a] W_{N} \equiv W_{N}\left[a^{-1}\right] \bmod \pm \Gamma_{1}(N) \tag{5}
\end{equation*}
$$

for all a prime to N, and hence W_{N} is of order 2 in $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$. Thus, the exact sequence in Eq. (4) can be split, and so $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ is a semidirect product of $\Gamma_{0}(N) / \pm \Gamma_{1}(N)$ and $N\left(\Gamma_{1}(N)\right) / \Gamma_{0}(N)$. Note that $\Gamma_{0}(N) / \pm \Gamma_{1}(N)$ is isomorphic to $(\mathbf{Z} / N \mathbf{Z})^{*} /\{ \pm 1\}$. From Eq. (5), we can conclude that $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ are $\left\langle[2], W_{13}\right\rangle$ and $\left\langle[3], W_{16}\right\rangle$, which are isomorphic to the dihedral groups D_{6}, D_{4} for $N=13,16$ respectively.

Let us now consider $N=18$. Choose a matrix $W_{2}=\left(\begin{array}{cc}4 & -1 \\ 18 & -4\end{array}\right)$. For any a prime to 18 , the $(1,1)$-entry $W_{2}[a] W_{2}^{-1}[1,1]$ of the matrix $W_{2}[a] W_{2}^{-1}$ satisfies the following

$$
\begin{aligned}
& W_{2}[a] W_{2}^{-1}[1,1] \equiv a^{-1} \equiv a(\bmod 2) \\
& W_{2}[a] W_{2}^{-1}[1,1] \equiv a(\bmod 9)
\end{aligned}
$$

Thus, W_{2} commutes with $[a]$ for any a prime to 18 . Choose $W_{9}=\left(\begin{array}{cc}9 & -5 \\ 18 & -9\end{array}\right)$. Then,

$$
\begin{aligned}
& W_{9}[a] W_{9}^{-1}[1,1] \equiv a \equiv a^{-1}(\bmod 2), \\
& W_{9}[a] W_{9}^{-1}[1,1] \equiv a^{-1}(\bmod 9)
\end{aligned}
$$

for any a prime to N. Thus

$$
\begin{equation*}
[a] W_{9} \equiv W_{9}\left[a^{-1}\right] \bmod \pm \Gamma_{1}(18) \tag{6}
\end{equation*}
$$

One can easily check that $W_{2} W_{9} \equiv W_{9} W_{2} \bmod \pm$ $\Gamma_{1}(18)$. Note that $N\left(\Gamma_{1}(18)\right) / \Gamma_{0}(18)$ is the Klein 4group, and the matrices W_{2}, W_{9} generate a subgroup of $N\left(\Gamma_{1}(18)\right) / \pm \Gamma_{1}(18)$ that is also the Klein 4group. Thus, the exact sequence in Eq. (4) can be split when $N=18$, and hence $N\left(\Gamma_{1}(18)\right) / \pm \Gamma_{1}(18)$ is the semidirect product of $\Gamma_{0}(18) / \pm \Gamma_{1}(18)$ and $N\left(\Gamma_{1}(18)\right) / \Gamma_{0}(18)$. Since $\Gamma_{0}(18) / \pm \Gamma_{1}(18)$ is a cyclic group of order 3 and W_{2} commutes with $[a]$ for any a prime to $18, \Gamma_{0}(18) / \pm \Gamma_{1}(18)$ and W_{2} generate a cyclic group of order 6. From Eq. (6), we can conclude that $N\left(\Gamma_{1}(18)\right) / \pm \Gamma_{1}(18)=\left\langle[5] W_{2}, W_{9}\right\rangle$ is isomorphic to the dihedral group D_{6}.

Note that for $N=13,16,18, X_{1}(N)$ are hyperelliptic curves of genus 2 . The computer algebra system MAGMA can compute the full automorphism group of hyperelliptic curves of genus 2 or 3 . Using MAGMA, we can compute that $\operatorname{Aut}\left(X_{1}(N)\right)$ is isomorphic to D_{6}, D_{4}, D_{6} for $N=13,16,18$, respectively. Therefore, we conclude that $\operatorname{Aut}\left(X_{1}(N)\right)$ are the same as $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$ for $N=$ $13,16,18$.

Theorem 3.1. For $N=13,16,18$, the full automorphism groups $\operatorname{Aut}\left(X_{1}(N)\right)$ are the same as $N\left(\Gamma_{1}(N)\right) / \pm \Gamma_{1}(N)$, which are the dihedral groups D_{6}, D_{4}, D_{6} respectively.
4. Explicit forms. In this section, we derive explicit forms of the actions of all automorphisms on the defining equations of the hyperelliptic curves $X_{1}(N)$ in Table I. For this purpose, it suffices to know the forms of the generators of $N\left(\Gamma_{1}(N)\right) /$ $\pm \Gamma_{1}(N)$.

Let us consider $N=13$. The group $\operatorname{Aut}\left(X_{1}(13)\right)$ is generated by [2] and W_{13}. If we take $[2]=\left(\begin{array}{ll}2 & 1 \\ 13 & 7\end{array}\right)$, then $[2]$ acts on $X_{1}(13)$ as $[2] \tau=\frac{2 \tau+1}{13 \tau+7}$. In this case, we have the following

$$
\begin{aligned}
\wp\left(\frac{1}{13},[2] \tau\right) & =(13 \tau+7)^{2} \wp\left(\frac{13 \tau+7}{13}, \tau\right) \\
& =(13 \tau+7)^{2} \wp\left(\frac{7}{13}, \tau\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\wp^{\prime}\left(\frac{1}{13},[2] \tau\right) & =(13 \tau+7)^{3} \wp^{\prime}\left(\frac{13 \tau+7}{13}, \tau\right) \\
& =(13 \tau+7)^{3} \wp^{\prime}\left(\frac{7}{13}, \tau\right)
\end{aligned}
$$

Similarly, we have the following

$$
\begin{aligned}
\wp\left(\frac{2}{13},[2] \tau\right) & =(13 \tau+7)^{2} \wp\left(\frac{1}{13}, \tau\right) \\
\wp^{\prime}\left(\frac{2}{13},[2] \tau\right) & =(13 \tau+7)^{3} \wp^{\prime}\left(\frac{1}{13}, \tau\right)
\end{aligned}
$$

Thus, from Eq. (3), we obtain the following

$$
\begin{align*}
& b([2] \tau)=-\frac{\left(\wp\left(\frac{7}{13}, \tau\right)-\wp\left(\frac{1}{13}, \tau\right)\right)^{3}}{\wp^{\prime}\left(\frac{7}{13}, \tau\right)^{2}} \tag{7}\\
& c([2] \tau)=-\frac{\wp^{\prime}\left(\frac{1}{13}, \tau\right)}{\wp^{\prime}\left(\frac{7}{13}, \tau\right)} .
\end{align*}
$$

From Eq. (1) and Table 7 of [10], we have that the generators x, y of the function field of $X_{1}(13)$ satisfying $f_{13}(x, y)=0$ can be expressed as the following functions of b, c :

$$
\begin{align*}
x & =\frac{\left(b-c^{2}-c\right)(b-c)}{b^{2}-b c-c^{3}} \tag{8}\\
y & =-\frac{b^{2}-b c-c^{3}}{c\left(b-c^{2}-c\right)}
\end{align*}
$$

From the formulas in Proposition 3 of [6, p. 46], we can determine the q-expansions for $\wp(z, \tau)$ and $\wp^{\prime}(z, \tau)$, where $q=e^{2 \pi i \tau}$. Using these q-expansions
and Eqs. (3), (7), and (8), we arrive at the following q-expansions of $x(\tau), y(\tau), x([2] \tau)$, and $y([2] \tau)$:

$$
\begin{aligned}
x(\tau)= & \left(-2-\omega^{2}-\omega^{3}-\omega^{4}-\omega^{6}-\omega^{7}-\omega^{9}\right. \\
& \left.-\omega^{10}-\omega^{11}\right)+O(q), \\
y(\tau)= & \left(10+10 \omega^{2}+\omega^{3}+8 \omega^{4}+3 \omega^{5}+6 \omega^{6}+6 \omega^{7}\right. \\
& \left.+3 \omega^{8}+8 \omega^{9}+\omega^{10}+10 \omega^{11}\right)+O(q), \\
x([2] \tau)= & \left(-1+\omega^{4}+\omega^{6}+\omega^{7}+\omega^{9}\right)+O(q), \\
y([2] \tau)= & \left(-2 \omega^{2}-4 \omega^{3}-7 \omega^{4}-9 \omega^{5}-10 \omega^{6}-9 \omega^{8}\right. \\
& \left.-10 \omega^{7}-7 \omega^{9}-4 \omega^{10}-2 \omega^{11}\right)+O(q),
\end{aligned}
$$

where ω is a 13 th primitive root of 1 .
Using the computer algebra system Maple, we can express $x \circ[2]$ and $y \circ[2]$ as functions of x and y from their q-expansions as follows:

$$
\begin{aligned}
& x \circ[2]=-\frac{1}{1+x}, \\
& y \circ[2]=-\frac{x-y}{x+x^{2}-y},
\end{aligned}
$$

which is the explicit form of the action of [2] on the defining equation $f_{13}(x, y)=0$ of $X_{1}(13)$.

If we take $W_{13}=\left(\begin{array}{cc}0 & -1 \\ 13 & 0\end{array}\right)$, then W_{13} acts on $X_{1}(13)$ as $W_{13} \tau=-\frac{1}{13 \tau}$. In this case, we have the following

$$
\begin{aligned}
\wp\left(\frac{a}{13}, W_{13} \tau\right) & =(13 \tau)^{2} \wp(a \tau, 13 \tau), \\
\wp^{\prime}\left(\frac{a}{13}, W_{13} \tau\right) & =(13 \tau)^{3} \wp^{\prime}(a \tau, 13 \tau),
\end{aligned}
$$

where $a=1,2$. Thus, it follows that:
(9) $b\left(W_{13} \tau\right)=-\frac{(\wp(\tau, 13 \tau)-\wp(2 \tau, 13 \tau))^{3}}{\wp^{\prime}(\tau, 13 \tau)^{2}}$,

$$
c\left(W_{13} \tau\right)=-\frac{\wp^{\prime}(2 \tau, 13 \tau)}{\wp^{\prime}(\tau, 13 \tau)} .
$$

Using Eqs. (8) and (9), we obtain the following q-expansions of $x\left(W_{13} \tau\right)$ and $y\left(W_{13} \tau\right)$:

$$
\begin{aligned}
x\left(W_{13} \tau\right) & =-1+q-q^{2}+q^{5}+O\left(q^{6}\right) \\
y\left(W_{13} \tau\right) & =-q+2 q^{2}-3 q^{3}+5 q^{4}-8 q^{5}+O\left(q^{6}\right)
\end{aligned}
$$

Using Maple, again, we can express $x \circ W_{13}$ and $y \circ W_{13}$ as the following functions of x and y from their q-expansions:

$$
\begin{align*}
& x \circ W_{13}=\frac{-1+\omega^{4}+\omega^{7}+\omega^{6}+\omega^{9}-x}{1+\left(\omega^{4}+\omega^{6}+\omega^{7}+\omega^{9}\right) x} \tag{10}\\
& y \circ W_{13}=\frac{k_{1}+k_{2} x+k_{3} x^{2}+k_{4} y}{k_{5}+k_{6} x+k_{7} x^{2}+k_{8} y}
\end{align*}
$$

where

$$
\text { (11) } \begin{aligned}
k_{1}= & 12+3 \omega^{2}-5 \omega^{3}+2 \omega^{4}-2 \omega^{5}-4 \omega^{6}-4 \omega^{7} \\
& -2 \omega^{8}+2 \omega^{9}-5 \omega^{10}+3 \omega^{11} \\
k_{2}= & -8-2 \omega^{2}-\omega^{3}+3 \omega^{4}-3 \omega^{5}-6 \omega^{6}-6 \omega^{7} \\
& -3 \omega^{8}+3 \omega^{9}-\omega^{10}-2 \omega^{11} \\
k_{3}= & -16-4 \omega^{2}+11 \omega^{3}+6 \omega^{4}+7 \omega^{5}+\omega^{6}+\omega^{7} \\
& +7 \omega^{8}+6 \omega^{9}+11 \omega^{10}-4 \omega^{11} \\
k_{4}= & 13 \\
k_{5}= & -14+3 \omega^{2}+8 \omega^{3}+2 \omega^{4}-2 \omega^{5}-4 \omega^{6}-4 \omega^{7} \\
& -2 \omega^{8}+2 \omega^{9}+8 \omega^{10}+3 \omega^{11} \\
k_{6}= & 5+11 \omega^{2}+12 \omega^{3}+16 \omega^{4}+10 \omega^{5}+20 \omega^{6} \\
& +20 \omega^{7}+10 \omega^{8}+16 \omega^{9}+12 \omega^{10}+11 \omega^{11} \\
k_{7}= & 10+9 \omega^{2}-2 \omega^{3}+6 \omega^{4}-6 \omega^{5}+\omega^{6}+\omega^{7} \\
& -6 \omega^{8}+6 \omega^{9}-2 \omega^{10}+9 \omega^{11} \\
k_{8}= & -26-13 \omega^{2}-13 \omega^{4}-13 \omega^{5}-26 \omega^{6}-26 \omega^{7} \\
& -13 \omega^{8}-13 \omega^{9}-13 \omega^{11} .
\end{aligned}
$$

Eq. (10) is the explicit form of the action of W_{13} on the defining equation $f_{13}(x, y)=0$ of $X_{1}(13)$. In fact, the defining field of W_{13} is $\mathbf{Q}(\omega)$.

Using exactly the same method, we can derive explicit forms of the actions of the generators of $\operatorname{Aut}\left(X_{1}(N)\right)$ on the defining equations $f_{N}(x, y)=0$ of $X_{1}(N)$ for $N=16,18$.

Theorem 4.1. The explicit forms of the actions of the automorphisms on the defining equations $f_{N}(x, y)=0$ in Table I for the hyperelliptic curves $X_{1}(N)$ can be written as follows:
(i) The case $N=13$:

$$
\begin{aligned}
& x \circ[2]=-\frac{1}{1+x}, \\
& y \circ[2]=-\frac{x-y}{x+x^{2}-y}, \\
& x \circ W_{13}=\frac{-1+\omega^{4}+\omega^{7}+\omega^{6}+\omega^{9}-x}{1+\left(\omega^{4}+\omega^{6}+\omega^{7}+\omega^{9}\right) x}, \\
& y \circ W_{13}=\frac{k_{1}+k_{2} u+k_{3} u^{2}+k_{4} y}{k_{5}+k_{6} u+k_{7} u^{2}+k_{8} y} .
\end{aligned}
$$

(ii) The case $N=16$:

$$
\begin{aligned}
& x \circ[3]=-\frac{1}{x}, \\
& y \circ[3]=-\frac{1+y}{x^{2}+y},
\end{aligned}
$$

$$
\begin{aligned}
& x \circ W_{16}=\frac{\left(1+\omega^{2}-\omega^{6}\right)\left(1-\omega^{2}+\omega^{6}-x\right)}{1+\omega^{2}-\omega^{6}-x}, \\
& y \circ W_{16}=\frac{l_{1}+l_{2} x+l_{3} x^{2}+l_{4} y+l_{5} x y}{l_{6}+l_{7} x+l_{8} x^{2}+l_{9} y+l_{10} x y} .
\end{aligned}
$$

The case $N=18$:

$$
\begin{aligned}
x \circ[5] W_{2}= & \frac{1}{1-x}, \\
y \circ[5] W_{2}= & \frac{x-y}{1-y+x y}, \\
x \circ W_{9}= & \frac{\left(1-\omega^{4}+\omega^{5}\right)\left(1-\omega-\omega^{2}+\omega^{4}-x\right)}{1-\omega^{4}+\omega^{5}-x}, \\
y \circ W_{9}= & \left(2+2 \omega+2 \omega^{2}-\omega^{4}-\omega^{5}\right) \\
& \times \frac{2-\omega-\omega^{2}+2 \omega^{4}-\omega^{5}-y}{2+2 \omega+2 \omega^{2}-\omega^{4}-\omega^{5}-y} .
\end{aligned}
$$

For each case, ω is a primitive N-th root of unity, the k_{i} are as given in Eq. (11), and

$$
\begin{aligned}
l_{1} & =-1+\omega-\omega^{2}+\omega^{6}-\omega^{7} \\
l_{2} & =-4+5 \omega-4 \omega^{2}+2 \omega^{3}-2 \omega^{5}+4 \omega^{6}-5 \omega^{7} \\
l_{3} & =-5+4 \omega-3 \omega^{2}+2 \omega^{3}-2 \omega^{5}+3 \omega^{6}-4 \omega^{7} \\
l_{4} & =-\omega+2 \omega^{2}-2 \omega^{3}+2 \omega^{5}-2 \omega^{6}+\omega^{7} \\
l_{5} & =\omega-2 \omega^{2}+2 \omega^{3}-2 \omega^{5}+2 \omega^{6}-\omega^{7} \\
l_{6} & =9-8 \omega+6 \omega^{2}-3 \omega^{3}+3 \omega^{5}-6 \omega^{6}+8 \omega^{7} \\
l_{7} & =-4+2 \omega-\omega^{3}+\omega^{5}-2 \omega^{7} \\
l_{8} & =1 \\
l_{9} & =8-6 \omega+4 \omega^{2}-3 \omega^{3}+3 \omega^{5}-4 \omega^{6}+6 \omega^{7} \\
l_{10} & =4-4 \omega+4 \omega^{2}-3 \omega^{3}+3 \omega^{5}-4 \omega^{6}+4 \omega^{7}
\end{aligned}
$$

Corollary 4.2. The hyperelliptic involutions of the hyperelliptic curves $X_{1}(N)$ are [5], [7], W_{2} for $N=13,16,18$, respectively. The explicit forms of the hyperelliptic involutions on the defining equation $f_{N}(x, y)=0$ in Table I for the hyperelliptic modular curves $X_{1}(N)$ are as follows:

N	explicit form	
13	$x \circ[5]=x, \quad y \circ[5]=\frac{x(x-y)}{x-y-x^{2} y}$	
16	$x \circ[7]=x, \quad y \circ[7]=\frac{x^{2}}{y}$	
18	$x \circ W_{2}=x, \quad y \circ W_{2}=\frac{1-y+x y}{1-x+x y}$	

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2056390).

References

[1] H. Baaziz, Equations for the modular curve $X_{1}(N)$ and models of elliptic curves with torsion points, Math. Comp. 79 (2010), no. 272, 2371-2386.
[2] N. Ishii and F. Momose, Hyperelliptic modular curves, Tsukuba J. Math. 15 (1991), no. 2, 413423.
[3] D. Jeon, C. H. Kim and A. Schweizer, Bielliptic intermediate modular curves. (Preprint).
[4] C. H. Kim and J. K. Koo, The normalizer of $\Gamma_{1}(N)$ in $\mathrm{PSL}_{2}(\mathbf{R})$, Comm. Algebra 28 (2000), no. 11, 5303-5310.
[5] M.-L. Lang, Normalizer of $\Gamma_{1}(m)$, J. Number Theory 86 (2001), no. 1, 50-60.
[6] S. Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, 112, Springer, New York, 1987.
[7] J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes élliptiques, J. Number Theory 13 (1981), no. 2, 123-137.
[8] F. Momose, Automorphism groups of the modular curves $X_{1}(N)$. (Preprint).
[9] M. A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), no. 174, 637-658.
[10] A. V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp. 81 (2012), no. 278, 1131-1147.

[^0]: 2010 Mathematics Subject Classification. Primary 14H37; Secondary 11G18.

