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Abstract: We show that the continuous core of any type III free product factor has no

Cartan subalgebra. This is a complement to previous works due to Houdayer–Ricard and

Boutonnet–Houdayer–Raum.

Key words: Cartan subalgebra; free product; type III factor; continuous core.

1. Introduction. It is known, see [5, Theo-

rem 1], that a given von Neumann algebra comes

from an orbit equivalence relation if and only if

it has a Cartan subalgebra (i.e., a MASA with

normal conditional expectation, whose normalizer

generates the whole algebra). Hence the search for

Cartan subalgebras in a given von Neumann alge-

bra is thought of as that for hidden dynamical

systems producing the algebra. Therefore, it is im-

portant in view of ergodic theory to seek for Cartan

subalgebras in a given von Neumann algebra.

The aim of this short note is to complement

two recent important works on free product von

Neumann algebras, due to Houdayer–Ricard [8]

and Boutonnet–Houdayer–Raum [1] establishing,

among others, that any free product von Neumann

algebra has no Cartan subalgebra. The work [1]

generalizes Ioana’s previous important work [9] on

type II1 factors to arbitrary factors. In the 90s

Voiculescu [24] first proved the absence of Cartan

subalgebras (or more generally diffuse hyperfinite

regular subalgebras) in free group factors by free

entropy. In the late 00s Ozawa and Popa [13]

succeeded in proving its various improved asser-

tions by deformation/rigidity and intertwining

techniques, and a couple of years later Popa and

Vaes made an epoch-making work [15] in the

direction. The works [8], [9], [1] (and thus this note

too) were done under the influence of these two

breakthroughs [13], [15]. See [1, §1] for further

historical remarks in the direction.

Let M1;M2 be two non-trivial (i.e., 6¼ C) von

Neumann algebras with separable preduals, and

’1; ’2 be faithful normal states on them, respec-

tively. Denote by ðM;’Þ ¼ ðM1; ’1Þ ? ðM2; ’2Þ their

free product (see e.g. [21, §§2.1]) throughout this

note. By [21, Theorem 4.1] the free product von

Neumann algebra M admits the following general

structure: M ¼Md �Mc with finite dimensional

Md and diffuse Mc such that Md can explicitly be

calculated with possibly M ¼Mc, and moreover,

such that if ðdimðM1Þ; dimðM2ÞÞ 6¼ ð2; 2Þ, then Mc

becomes a full factor of type II1 or III� (� 6¼ 0) and

the T-set T ðMcÞ does the kernel of the modular

action t 2 R 7! �’t ¼ �
’1

t ? �’2

t 2 AutðMÞ itself; oth-

erwise Mc ¼ L1½0; 1� ��M2ðCÞ. This note is mainly

devoted to establishing the following:

Theorem 1. If Mc is of type III, then its

continuous core fMc ¼Mc o�’c R (i.e., the crossed

product of Mc by the modular action t 2 R 7!
�’ct 2 AutðMcÞ) with ’c :¼ ’ �Mc

does never possess

any Cartan subalgebra.

Our motivations are as follows. It is well-

known that if A is a Cartan subalgebra in a

von Neumann algebra N, then so is Ao� R ¼
A ��LðRÞ in the continuous core eN ¼ N o� R with

a faithful normal state  ¼  � E on N , where E

denotes the unique normal conditional expectation

from N onto A. The work [1] actually shows only

the absence of such special Cartan subalgebras in

the continuous core eM (even when both M1;M2 are

hyperfinite). Hence Theorem 1 is seemingly strong-

er than the original one [1, Theorem A]. On the

other hand, the former work [8] shows the absence

of general Cartan subalgebras in the continuous

core of any type III1 free Araki–Woods factor

introduced by Shlyakhtenko [17]; thus the question

that Theorem 1 answers affirmatively was a simple

test of the problem [21, §§5.4] asking whether or
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not Mc falls into the class of free Araki–Woods

factors when both M1;M2 are hyperfinite. (See §3

for other related tests.) Next, it is known that the

continuous core eM is an amalgamated free product

von Neumann algebra over a diffuse subalgebra

(see [20, Theorem 5.1]), and amalgamated free

products over diffuse subalgebras usually behave

quite differently from plain free products. Lastly,

the structure theory for type III factors (see

[19, Ch.XII]) suggests that a preferable way of

study of type III factors is to regard their contin-

uous cores (or more preferably their discrete cores if

possible) with canonical group actions as main

objects rather than their associates.

Theorem 1 and [22, §§2.4] altogether show that

the continuous/discrete cores of any ‘type III free

product factor’ have no Cartan subalgebra. Con-

sequently, this note completes the study of proving

the absence of Cartan subalgebras for arbitrary free

product von Neumann algebras, though what is

new is the combination of technologies provided in

[8], [1] with Proposition 2 provided below.

2. Proof. Keep the notation in §1. As em-

phasized in §1 the question here is about an

amalgamated free product von Neumann algebra

over a diffuse subalgebra. The amalgamated free

product in question arises from the inclusions

Mi o�’i R � C1o�’i R, i ¼ 1; 2, see [20, Theorem

5.1]. Hence the next simple observation, which itself

is of independent interest, plays a key rôle in our

discussion below. In what follows, for a given

(unital) inclusion P � Q of von Neumann algebras

we denote by N P ðQÞ the normalizer of Q in P , i.e.,

all unitaries u 2 P with uQu� ¼ Q.

Proposition 2. Let N be a von Neumann

algebra with separable predual and  be a faith-

ful normal positive linear functional on it. Then

the normalizer N eNðC1o� RÞ of C1o� R ¼
C1 ��LðRÞ in eN ¼ N o� R sits inside N o� R ¼
N ��LðRÞ, and hence N eNðC1o� RÞ is exactly the

unitary group of N ��LðRÞ. In particular, if the

centralizer N is trivial, then C1o� R is a singular

MASA in eN.

Proof. The discussion below follows the idea of

the proof of [11, Theorem 2.1], but the key is the so-

called modular condition instead. Let � : R y
L2ðRÞ be the ‘right’ regular representation, i.e.,

�t ¼ ��t, t 2 R, with the usual ‘left’ regular repre-

sentation � : R y L2ðRÞ. It is standard, see

e.g. [3, Theorem 3.11], that N o� R � C1o� R is

identical to ðN ��BðL2ðRÞÞÞð�
 ��Ad�;RÞ � C1 ��LðRÞ,

which is conjugate to

ðN ��BðL2ðRÞÞÞð�
 ��Adv;RÞ � C1 ��L1ðRÞð1Þ

by taking the Fourier transform on the second

component, where L1ðRÞ acts on L2ðRÞ by multi-

plication and the vt, t 2 R, are the unitary elements

in L1ðRÞ defined to be vtðsÞ :¼ eits, s 2 R. Hence it

suffices to work with the inclusion (1) instead of the

original inclusion.

Let u 2 ðN ��BðL2ðRÞÞÞð�
 ��Adv;RÞ be a unitary

element so that uðC1 ��L1ðRÞÞu� ¼ C1 ��L1ðRÞ.
By [4, Appendix IV] (together with a trick used

in the proof of [10, Theorem 17.41] if necessary)

one can choose a non-singular Borel bijection � :

R! R in such a way that uð1� fÞu� ¼ 1�
ðf � ��1Þ ¼ 1� u�fu�� for every f 2 L1ðRÞ,
where ðu�gÞðsÞ ¼ ½ðdm � ��1=dmÞðsÞ�1=2gð��1ðsÞÞ,
g 2 L2ðRÞ with the Lebesgue measure mðdsÞ ¼
ds. Set w :¼ uð1� u��Þ, a unitary element in

ðN ��BðL2ðRÞÞÞ \ ðC1 ��L1ðRÞÞ0 ¼ N ��L1ðRÞ by

[18, Theorem IV.5.9; Corollary IV.5.10], since L1ðRÞ
is a MASA in BðL2ðRÞÞ. Since ð� t ��AdvtÞðuÞ ¼
u, for every t 2 R one has w ¼ ð� t �� idÞðwÞð1�
eitðð	Þ��

�1ð	ÞÞÞ; hence

ð� t �� idÞðwÞ ¼ ð1� eitð��1ð	Þ�ð	ÞÞÞw:ð2Þ

Since the standard Hilbert space H :¼ L2ðNÞ is

separable (see e.g. [25, Lemma 1.8]), we can appeal

to the disintegration

H ��L2ðRÞ ¼
Z �

R

HðsÞ ds;

N ��L1ðRÞ ¼
Z �

R

NðsÞ ds
ð3Þ

with the constant fields HðsÞ ¼ H, NðsÞ ¼ N (see

e.g. [4, Part II, Ch. 3, §4; Corollary of Proposi-

tion 3]). Thus we can write w ¼
R�

R wðsÞ ds and

choose s 7! wðsÞ as a measurable field of unitary

elements in N (see e.g. [4, Part II, Ch. 2, p. 183]).

By the identification (3) we observe that

ð� t �� idÞðwÞ ¼ ð�it
 � 1Þwð��it � 1Þ

¼
Z �

R

�it
 wðsÞ��it ds ¼

Z �
R

� t ðwðsÞÞ ds;

where � is the modular operator associated with

 . Therefore, the identity (2) is translated intoZ �
R

� t ðwðsÞÞ ds ¼
Z �

R

eitð�
�1ðsÞ�sÞwðsÞ ds:
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This implies, by e.g. [4, Part II, Ch. 2, §3, Corollary

of Proposition 2], that there exists a co-null subset

S of R so that for every s 2 S one has � t ðwðsÞÞ ¼
eitð�

�1ðsÞ�sÞwðsÞ for all rational numbers t and hence

for all t 2 R by continuity. Therefore, for all s 2 S
t 7! � t ðwðsÞÞ has an entire extension � z ðwðsÞÞ :¼
eizð�

�1ðsÞ�sÞwðsÞ so that by the modular condition,

e.g. [19, Exercise VIII.2.2], we have

 ð1Þ ¼  ðwðsÞ�wðsÞÞ ¼  ð� i ðwðsÞÞwðsÞ
�Þ

¼ eðs���1ðsÞÞ ðwðsÞwðsÞ�Þ ¼ eðs���1ðsÞÞ ð1Þ;

implying that ��1ðsÞ ¼ s and wðsÞ 2 N . Thanks

to [4, Part II, Ch. 3, §1, Theorem 1] we conclude

that

u ¼ w ¼
Z �

R

wðsÞ ds 2
Z �

R

N ðsÞ ds ¼ N ��L1ðRÞ

with the constant field N ðsÞ ¼ N . This immedi-

ately implies the desired assertion. �

Let us start proving Theorem 1. In what

follows, Tr stands for the canonical trace on eM ¼
M o�’ R, which the so-called dual action scales.

(See [19, Ch. XII].) We need to recall a central

notation of intertwining techniques, initiated by

Popa, in the present setup. Let P;Q be (not

necessarily unital) von Neumann subalgebras of eM
such that Trð1P Þ is finite and Tr �Q still semifinite.

We write P 
fM Q if there exist a non-zero projec-

tion q 2 Q with TrðqÞ finite, a natural number n, a

(possibly non-unital) normal �-homomorphism �

from P into the n� n matrices over qQq, and a non-

zero partial isometry y as a 1� n matrix over 1P eMq

such that xy ¼ y�ðxÞ holds for every x 2 P . See

[8, Lemma 2.2], [1, Lemma 2.3] (due to Vaes) for its

equivalent conditions. The main, necessary ingre-

dients from [8], [1] are in order.

(I) Assume that both M1;M2 are hyperfinite. As

pointed out in [8, §§5.2] Theorem 5.2 of the same

paper still holds true in the present setup. The proof

is basically same, and finally arrives at the main

argument in the proof of [7, Theorem 3.5] re-organ-

izing several arguments from [13], [14]. However,

one has to replace [8, Theorem A] and [8, Theorem

4.3] (with the ‘free malleable deformation’) by

[16, Theorem 4.8] and the proof of [2, Theorem 4.2]

(with Ioana–Peterson–Popa’s original malleable

deformation), respectively. Hence the consequence

becomes as follows. Let p 2 C1o�’ R be a non-zero

projection with TrðpÞ finite. Let P � p eMp be a (not

necessarily unital) hyperfinite von Neumann sub-

algebra. If P 6
fM fMi ¼Mi o�’i R (,! eM canoni-

cally) for all i, then N
1P
fM1P
ðP Þ00 is hyperfinite.

(This statement requires only the assumption that

M (or Mc) has the weak� completely bounded

approximation property instead of the hyper-

finiteness of M1;M2. See [12, Theorem B].) Then,

[1, Proposition 2.7] with the hyperfiniteness of

M1;M2 gives the necessary consequence: If

N
1P
fM1P
ðP Þ00 has no hyperfinite direct summand,

then P 
fM C1o�’ R.

(II) Assume that either M1 or M2 has no

hyperfinite direct summand. Let p 2 C1o�’ R be a

non-zero projection with TrðpÞ finite, and let P be a

unital regular hyperfinite von Neumann subalgebra

in p eMp. Then, [1, Proposition 2.8, Theorem 5.1,

Lemma 5.2] altogether show that P 
fM C1o�’ R.

As explained in [22, §§2.1] we may and do

assume M ¼Mc after cutting M by a suitable

central projection of either M1 or M2 if necessary.

Moreover, when Mi is not hyperfinite, the same

trick enables us to assume that Mi indeed has no

hyperfinite direct summand.

Suppose, on the contrary, that there exists a

Cartan subalgebra Q in eM. Let q 2 C1o�’ R be a

non-zero projection with TrðqÞ finite. Since Tr �Q
must be semifinite (see e.g. [18, Lemma V.7.11])

and Q diffuse, we may and do assume, by conjugat-

ing Q by a unitary, that q falls in Q. Remark that

C :¼ Qq is also a Cartan subalgebra in q eMq (see

e.g. [23, Lemma 4.1 (i)] and [8, Proposition 2.7]).

Here, we have known by [21, Theorem 4.1] that

M ¼Mc is a non-hyperfinite factor of type III, and

hence it is standard, see e.g. [1, Proposition 2.8],

that q eMq has no hyperfinite direct summand.

Applying the above (I) or (II) to p :¼ q and P :¼
C we have C 
fM C1o�’ R. Then a contradiction

will occur once we prove the next general lemma,

which holds true for arbitrary von Neumann

algebras M and enables us to avoid the ‘case-by-

case’ proof of [8, Theorem D (1)] (see the proof of

Proposition 4).

Lemma 3. Let p 2 eM be a non-zero projec-

tion with TrðpÞ finite, and let A be a MASA in

p eMp. If either the centralizer M’ is diffuse or

N
pfMp
ðAÞ00 has no type I direct summand, then

A 6
fM C1o�’ R.

Proof. Choose a MASA D in M’. It is plain to

see that if M’ is diffuse, then so is D. By [8, Prop-
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osition 2.4] (or Proposition 2) B :¼ Do�’ R ¼
D ��LðRÞ becomes a MASA in eM. Suppose, on the

contrary, that A 
fM C1o�’ R (� B). Since A and

B are MASAs in p eMp and eM, respectively,

[8, Proposition 2.3] with its proof ensures that

there exists a non-zero partial isometry v 2 eM
such that vv� 2 A, v�v 2 B, v�Av ¼ Bv�v and

Avv� 
fM C1o�’ R. Choose a maximal, orthogonal

family of minimal projections e1; e2; 	 	 	 of D (n.b.,

this family is empty when M’ is diffuse). Set

e0 :¼ 1�
P

k1 ek, and then De0 must be diffuse or

e0 ¼ 0. Then two possibilities occur; namely

vðek � 1Þ 6¼ 0 for some k  1 or not. We first prove

that the former case is impossible thanks to

Proposition 2, while the latter case can easily be

handled thanks to [8, Proposition 5.3].

Assume first that w :¼ vðek � 1Þ 6¼ 0 for some

k  1. In this case, N
pfMp
ðAÞ00 has no type I di-

rect summand. Remark that ek � 1 2 D ��LðRÞ ¼
B. Thus w�Aw ¼ Bw�w � w�wðM o�’ RÞw�w ¼
w�wðekMek o�’ek RÞw�w, where we define ’ek :¼
’ �ekMek so that �

’ek
t ¼ �

’
t �ekMek for every t 2 R be-

cause ek 2 D �M’. Note that Bw�w ¼ ðDek o�’ek

RÞw�w ¼ ðCek �� LðRÞÞw�w ¼ ðCek o�’ek RÞw�w.

By the hypothesis here N
ww�fMww�

ðAww�Þ00 ¼
ww�ðN

pfMp
ðAÞ00Þww� (see e.g. [8, Proposition 2.7])

is non-commutative, and hence the normalizer of

ðCek o�’ek RÞw�w in w�wðekMek o�’ek RÞw�w does

not sit inside ðCek o�’ek RÞw�w itself. By e.g. [23,

Lemma 4.1 (i)] one observes that ðekMekÞ’ek ¼
ðCekÞ0 \ ðekMekÞ’ek ¼ ðDekÞ

0 \ ðekMekÞ’ek ¼ ðDekÞ
0 \

ekM’ek ¼ ðD0 \M’Þek ¼ Dek ¼ Cek. Therefore, by

Proposition 2, Cek o�’ek R is a singular MASA in

ekMek o�’ek R, and thus by e.g. [8, Proposition 2.7]

again so is ðCek o�’ek RÞw�w in w�wðekMeko�’ek

RÞw�w, a contradiction.

We then treat the remaining case; namely

vðek � 1Þ ¼ 0 for all k  1, that is, v�v � e0 � 1. This

case was essentially treated in the proof of

[8, Theorem D (1)]. One has ðDe0 ��C1LðRÞÞv�v �
Bv�v ¼ v�Av ¼�Adv Avv

� 
fM C1o�’ R so that

ðDe0 ��C1LðRÞÞv�v 
fM C1o�’ R holds. Set N :¼
De0 � e?0 Me?0 of M, a diffuse von Neumann sub-

algebra of M. Since v�v � e0 � 1 and v�v 2 B ¼
D ��LðRÞ, one easily sees that v�v falls into N 0 \ eM
via the canonical embedding N �M ,!M o�’ R ¼eM. By [8, Proposition 5.3] we obtain that

ðDe0 ��C1LðRÞÞv�v ð¼ Nv�vÞ �fM C1o�’ R, a con-

tradiction. Hence we are done. �

3. Remarks. The next free product coun-

terpart of [8, Theorem D (1)] holds thanks to

Lemma 3.

Proposition 4. If both M1;M2 are hyper-

finite, Mc is of type III1 and e 2 fMc a non-zero finite

projection, then the normalizer of any MASA in

efMce generates a hyperfinite von Neumann subal-

gebra.

Proof. We work inside eM, and note that eMc

is a direct summand of eM with 1fMc
¼ 1Mc

�
1LðRÞ 2 Zð eMÞ. Suppose, on the contrary, that there

exists a MASA C in efMce such that N
efMce
ðCÞ00 is

not hyperfinite. The center of N
efMce
ðCÞ00 sits inside

C, and thus replacing e with a smaller non-zero

projection in C if necessary we may and do also

assume that N
efMce
ðCÞ00 has no hyperfinite direct

summand. Since fMc is a factor, C1Mc
o�’c R diffuse

and Tr �C1Mco�’c R semifinite, the projection e is

equivalent to a non-zero projection 1Mc
� e0 2

C1Mc
o�’ R; hence we may and do further assume

that there exists a projection f ¼ 1� e0 2 C1o�’ R

such that TrðfÞ is finite and e ¼ 1Mc
� e0 ¼ 1fMc

f .

The known fact summarized as (I) in the proof of

Theorem 1 shows C 
fM C1o�’ R, a contradiction

due to Lemma 3. �

Proposition 2 and [8, Remark 5.4] precisely

show that the von Neumann subalgebras generated

by the quasi-normalizer and the (groupoid) normal-

izer of N o� R � C1o� R are different in general.

Thus one may expect that the continuous core of

any ‘type III1 free product factor’ has no regular

diffuse hyperfinite von Neumann subalgebra. This is

unclear at the moment of this writing, but the next

weaker assertion follows directly from [8], [1].

Proposition 5. If Mc is of type III1 and e 2fMc a non-zero finite projection, then efMce has no

regular, hyperfinite type II1 von Neumann algebra.

Proof. We may and assume that M ¼Mc,

e 2 C1o�’ R, and that M1 has no hyperfinite direct

summand as long as at least one of the Mi is not

hyperfinite. If P is a regular hyperfinite type II1 von

Neumann algebra of e eMe, then as in Theorem 1 one

gets P 
fM C1o�’ R, which is impossible. �

A free product counterpart of [6, Theorem 1.2]

was also implicitly shown in [2] as follows.

Proposition 6. If both M1;M2 are hyper-

finite, Mc is of type III1 and e 2 fMc a non-zero finite

projection, then the relative commutant of any type

II1 von Neumann subalgebra in efMce is hyperfinite.
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Proof. Suppose, on the contrary, that there

exists a type II1 von Neumann subalgebra N of

efMce ¼ e eMe (since fMc is a direct summand of eM)

such that N 0 \ e eMe is not hyperfinite. One can

choose a non-zero projection z 2 ZðN 0 \ e eMeÞ so

that P :¼ ðNzÞ0 \ z eMz ¼ ðN 0 \ e eMeÞz (see e.g.

[23, Lemma 4.1 (ii)]) has no hyperfinite direct

summand. By [2, Theorem 4.2] P 0 \ z eMz 
fM gMi0

for some i0, but Nz � P 0 \ z eMz 
fM C1o�’ R is

impossible; hence by [1, Proposition 2.7] P �
N

zfMz
ðP 0 \ z eMzÞ00 
fM gMi0 , a contradiction. �
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