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Cores of Dirichlet forms related to random matrix theory
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Abstract:

We prove the sets of polynomials on configuration spaces are cores of Dirichlet

forms describing interacting Brownian motion in infinite dimensions. Typical examples of these
stochastic dynamics are Dyson’s Brownian motion and Airy interacting Brownian motion. Both
particle systems have logarithmic interaction potentials, and naturally arise from random matrix
theory. The results of the present paper will be used in a forth coming paper to prove the identity
of the infinite-dimensional stochastic dynamics related to the random matrix theories
constructed by apparently different methods: the method of space-time correlation functions

and that of stochastic analysis.
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1. Introduction. In random matrix theory,
one of the main issues is to clarify the distribution of
the eigenvalues and its asymptotic behavior as the
size of the matrices goes to infinity. The prototypes
of random matrices are Gaussian ensembles, di-
vided into three classes and called Gaussian orthog-
onal/unitary /symplectic ensembles (GOE/GUE/
GSE), according to their invariance under conjuga-
tion by orthogonal /unitary/symplectic groups.

The eigenvalue distributions of Gaussian ran-
dom matrices of N x N size are then given as

1 I 3 P
iy (day) = 7 hN(fBN)'deJ'leledva

where dx,, = dridxs - - - dry, zy = (2;) € RY, and

N
hy(ay) =[] le: — .

i<j
Here and after Z denotes the normalizing constant.
The GOE, GUE, and GSE correspond to inverse
temperature 8 = 1,2 and 4, respectively [2,9].

The celebrated Wigner’s theorem asserts that

the empirical measure
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of the eigenvalues under the distribution 7} (dey)
converges to the semicircle law ¢(z)dx as N —
oo [2,9], where ¢(x)dz is the probability on R such
that

(2) ¢(x)dx = % Vd — 221 9)(z)dx.

For a countable subset {x,, }, we call the o-finite
measure £ = Y 6, a configuration if it becomes a
Radon measure. The set of all configurations on R is
a Polish space equipped with the vague topology,
and is called the configuration space over R. We
call ¢ unlabeled particles, and x= (x1,z9,...)
labeled particles.

Note that for N-particle systems, there exists
an obvious bijection between the distribution of the
unlabeled N-particles and the symmetric distribu-
tion of the labeled N-particles, where N € N. We
note that this is not the case for infinite particle
systems.

For a given distribution p of N-unlabeled
particles, we denote by fi the symmetric density of
the associated N-labeled particles in the sequel.

To examine the behavior of the distribution of
the configuration &=, 8z, under ) (dzy),
N — oo there are two typical scalings, called the
bulk and the soft edge. The former corresponds to
the scaling such that y; = \/ij, and the distribu-
tion of {y]};v:l under 1} (dzy) is given by

. 1 5 B e
Mé\zlk.ﬂ(dyN) = EhN(yN)de iN|un| dyN-

The latter corresponds to the scaling such that
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y; = NY/S(z; — 2¢/N), and the
{y;}L, under 1} is given by

distribution of

. 1 ;3 N— N2/31 2
Mgft,@(dyl\f) = EhN(yN)ﬂe*‘N”’ly‘ A dyy,

where 1y = (1,1,...,1) € RV,

Let 8=2. Then the limit of M]bYJIk,z is the
determinantal random point field g2 with sine
kernel
sin(z — y)

m(z—y)
and the limit of /Jﬁzft,z is the determinantal random
point field pa;0 with Airy kernel

Ai(z)Ai' (y) — Ai'(z)Ai(y
(1) Kaoa(z,y) = (z)Ai'(y) (z) ()7

r—y

where Ai denotes the Airy function and Ai its
derivative [20,21,9]. It is proved that these random
point fields are quasi-Gibbsian in [14,15].

We consider the dynamical scaling limit corre-
sponding to the static limit mentioned above. For
this we introduce the associated stochastic dynam-
ics describing the time evolution of N-particle

Systems.

Let XN(t) = (XJN(t))jV:l

(3) Ksin,?('rv y) =

be the solution of the

SDE
(5) dXN(t)=dB;(t) + ZN: __
! W7 X () = X ()

or the SDE with Ornstein- Uhlenbeck’s type drifts

©)  ax¥() =dBi() - 5 X?( )t
*k%ﬂ) XY@

These are called Dyson’s Brownian motion model
with =2, or simply the Dyson model [3]. The
solution of (6) is a natural reversible stochastic
dynamics with respect to fij),, », and that of (5) is
also natural but has no invariant probability
measures. Both have the same N-limit as we see
below.
Let =% be an unlabeled process defined by

sm § 6X\

Suppose that the distribution of ZX (0) is -
Then EX converges in distribution to the process

Zsin Whose generating function
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exp{m 1/fm Elgin ( m,dx)}]

OStIStQS 'St]\,j,fmGC(](R),].SmSM,iS
represented by the Fredholm determinant
Det . [651‘6(33 - y) + Ksill(s7 z;t, y)Xt(y)],

(st)€{tr,ntar}’,
(zy)eR?

W5, [f] =

sin

with x;, = e/ —1 and the extended sine kernel
Ksin [2277]
Ksin(sax;t7y

)
L[ gy ettty
f/ du e "7 cos{u(y — x)}, t>s
m™Jo
1 (o)
——/ due” )2 cos{u(y — x)}, t<s.
T™J1

For the soft edge scaling, we suppose that the
distribution of XV (0) is ﬂé\{jlm, and introduce the
process YV defined by

2
(7)) YN@t) = WXN(N?/?’t) IN?/3 — NY3t 4 —
corresponding to (5), and
1
(8) YVN(t) = i XN (N?3t) — 2N?/3

corresponding to (6). Then the unlabeled processes

N
EN() =D by
j=1

converge in distribution to the process Zj; whose
generating function is represented by the Fredholm
determinant with the extended Airy kernel
Ky [19,6,10,7):

KAi(Sa Z; tv y)

/ du e 2 Aj(u + 2)Ai(u + ),
0

t>s

0
- / du e "2 Ai(u + 2)Ai(u+y),

t<s.
From the fact that K, (s,z;s,y) = Kan(z,y) and
Kai(s,x;8,y) = Kai(x,y), we see that the processes
Eain and Ej; are reversible with respect to pu,2 and
Ai2, Tespectively.

The scaling limits above are based on the
convergence of the associated space-time correla-
tion functions by the determinatal structures [7].
There exists another method of constructing infinite
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volume stochastic dynamics based on stochastic
analysis. In [14,15], unlabeled diffusion processes
ésm and éAi with reversible measures i, 2 and pia;i2
are constructed through the Dirichlet form tech-
nique. See [5] for Bessel random point field.

Let X(t) = (X;(t));en be a labeled process
associated with Zgn(t) =3 jcn Ox,1)- In [13] it is
proved that the process X = (X;)y solves the
infinite-dimensional stochastic differential equation
(ISDE)

dX;(t) = dB;(t) + i at

! ’ k=1 k#j Xj(t) - Xk(t)
In [16] we prove that a labeled process Y(t) =
(Y}(t)) jen associated with Eai(t) = >~ jen Oy;(1) solves
the ISDE

(sin)

(Ai) dvj(t) = dBy(t)
. &, 1 " o(x)dx
+ lim —_ —/ dt,
LA ID  E r
[Vi(t)[<r

where

pla) = Hexl®)

These two approaches are fundamentally dif-
ferent. Hence it is significant to prove that the
resulting stochastic dynamics are the same. From
the former construction we can obtain quantitative
information of the limit stochastic dynamics
through the calculation of space-time correlation
functions; while from the latter we deduce many
qualitative properties of the sample paths of the
labeled diffusions through the ISDE representation
of the processes. See [12,13,16] for examples.

Recently, we have proved the coincidence of
these pairs of stochastic dynamics =g, and iin, and
also Z,; and éAi, through the following three steps:
Below x denotes sin or Ai for the sake of brevity.
(i) Z, has the strong Markov property.

(ii) The Dirichlet forms associated with =, and é*
are both extensions of the closable form (&, P).
Here &" are given by (11) and P is the set of
polynomials functions on 9 defined in (13) later.
(iii) The labeled process associated with =, and é*
are solutions of the ISDE (%), and the ISDE (%) has
strong uniqueness.

The claim (i) is proved in [18], and (ii) is in this
article. The claim (iii) is proved in [16,17] partly
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through the result in this paper. Putting these
together, we will complete the proof of =, = Z, for
* € {sin, Ai} in a forthcoming paper.

2. Preliminaries. Let S be a closed subset
of R? such that the interior S, is a connected open
set and that its closure S;,; equals S. Let 90t = 901(S)
be the configuration space over S of unlabeled
particles, the set of non-negative integer valued
Radon measures on S. The space 91 is a Polish
space endowed with the vague topology. An ele-
ment £ of M can be represented as £ = Z]EA o, for
some countable set A, and the restriction of { on
a subset A of S is denoted by &4 =¢&(-NA4). A
function f on M is called local if f(&) = f(£k) for
some compact set K.

We write £ = Zle 6z,- For a local function f
with f(§) = f(x) we introduce the functions f; on
Sk ke Ny = {0} UN defined by fy = f(#), where (§
is the null configuration, and by, for k € N,

k
= f(Z 6%) for z;, € K*.
=1

We extend the domain of fi(x;) to S*\K* by the
consistency coming from f(§) = f({x). Hence fi,
k € Ny, satisfy the consistency relation

9)  fen(zey) = fulm), o e S y¢ K.
The infinite sequence given by
(10)  (fo, fila1), fo(mr, @), ..) = (Fal@i)) im0

is a representation of the local function f.

A local function f is called smooth if the f; are
smooth for k € Ny. We denote by D, the set of all
local smooth functions on 1.

Set for @ = (x;)", € S, ke Ny, f,g € Da
O fr(xi) Ogn(z)
D(f
;]z: Oxij Oz

where z; = (z;1, 2, ..., xiq). For given f,g € Dy,
the right hand side is a permutation invariant
function, and the square field D(f,g) can be
regarded as a local function with variable £ =
> ien Oz, € M.

For a probability u on 9, L?*(9M, u) denotes
the space of square integrable functions on 9 with
the inner product (-,-), and the norm | - ||z gy -
We consider the bilinear form (£, D" ) on L* (sm /J)

defined as
(11) 9= | D9



148 H. OSADA and H. TANEMURA

(12) DI = {f €Dy :||f]} < oo},

where ||f||? = EX(f, ) + ||f||i2(mm. A function F on
M is called a polynomial function if F' is given as

(13)  F(§) = Q(¢1,8),(h2,8)- .-, (¢.€))

with ¢, € C3°(R”) and a polynomial function @ on
R', where (¢,&) = [pa ¢(2)é(dx) and CF(R) is the
set of smooth functions with compact support.

We denote by P the set of all polynomial
functions on 9, and by Py if we replace the set of
polynomials Q on R’ by CZTO(RK), the set of bounded
smooth functions with bounded derivaives of any
order. It is obvious that each element of P and Py is
a local smooth function.

The closability and the quasi-regularity of
the bilinear form (&",D) have been proved in
[11,14,15], while those of (£, Py) in [23,1].

Let P*, Py, and D" be the closures with respect
to || f|l; of P, Py, and D, respectively. We see that
P Cc D, and Py C D, under the mild assumption
(A.0) below, and hence we obtain that

(14) P C D', Py CD
Then we deduce from Theorem 3.1 below that
(15) P = Pff = D+,

The construction of unlabeled diffusions of
interacting Brownian motion in infinite dimensions
through the Dirichlet form approach was initiated
by [11]. Later [23,1] also used this approach but
with different cores Py under a more restrictive
assumptions of interaction potentials than [11]. The
identity (15) above proves that these diffusions are
the same.

We refer to [8] and [4] for the notion of quasi-
regularity and Dirichlet forms.

3. Main results. We call a function p" the
n-correlation function of p with respect to the
Lebesgue measure if p": 8" — R is a permutation
invariant function such that

70
[ ot
A]l X“'XA, m

X )dxy - - dxy,

m

A
-/, ey =y 49

for any sequence of disjoint bounded subsets
Aq,..., A, C S and a sequence of natural numbers
{k;} with k1 + - - + k,, = n. We assume the follow-
ing conditions on the probability measure u on 9:

[Vol. 90(A),

(A.0) The measure p has an n-correlation function
p" for each n € N with p" € LP(S",dz,) for all r €
N for some 1 < p <oo. Here S, ={x € S: |z| <r}.
(A1) (&",D~) is closable on L*(9,p) and its
closure (&",D") is a quasi-regular Dirichlet form.

From (A.0) we easily deduce (14). Hence from
(A.1) we see that (E¥,P) and (&*,Py) are closable
on L*(M,u) as well as (EX, D). Let (E*,PH),
(E",P), and (E",D") be their closures as before.

The main result of this paper is the following.

Theorem 3.1. Suppose that p satisfies (A.0)
and (A.1). Then (E",P") = (", Py) = (", D").

In [14,15] the sufficient conditions (A.0) and
(A.1) were given: if p is a (®,¥)-quasi-Gibbs
measure, with Borel measurable functions ® : § —
RU{oo} and ¥ : S x § — RU {00} satisfying

(16) ¢ '®y(z) < B(z) < cPy(x)
(17) ¢ 'Wo(z —y) < U(z,y) < Yz —y)

for a positive constant ¢, and some upper semi-
continuous functions ®; and ¥, being locally
bounded from below and with compact core
{z : Uy(x) = oo}, then (A.0) and (A.1) are satisfied.

We next apply Theorem 3.1 to the stochastic
dynamics arising from the random matrix theory.

Since the processes =g, and =; have the strong
Markov property [18], they are associated with the
quasi-regular  Dirichlet (Esins Dgin)  and
(Eai, Dai), respectively. Thus we have the desired
result as a corollary of Theorem 3.1.

Corollary 3.2. Let %€ {sin,Ai}. The Di-
richlet forms associated with é* and Z, are both
extensions of the Dirichlet form (E¥,P*). Further-
more, P is a core of the Dirichlet form (E",D"),
and

forms

D C D,.

Proof. Tt is proved in Proposition 7.2 of [7]
that

& (f,9) =&E(f.9),

From this we deduce the first claim. The second is a
direct consequence of Theorem 3.1. Il

4. Proof of Theorem 3.1. For simplicity
we only prove the case S = R?. We set

f,g€P.

A={a={a},en: @ €N,a, <ayy1,r € N}

For a= {a,} € A, let
Ma] = {€ € M: £(S,) < a,, for all r}.
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Then M[a] is compact in P endowed with the vague
topology. We introduce a cut off function X of 91[a]
as follows

Xla](§) = ho da(8),

1/2

S ()

r=1 jEJrYE

Here {z;(£)} is a sequence in S such that =
22 a0 |25(8)] < |zj41(€)] for all j, and

Jre=1j:j>an, z;(§ €5,}.

Furthermore, h : R — [0,1] is a function defined by

1, t € (—00,0),
(18) ht)={ 1—t, telo,1],
0, t € (1,00).

Note that da(€) =0 and Xa(§) =1 if J.c =0 for
all r € N. The following is proved in [11, Lemma
2.5].

Lemma 4.1. For any f €D, and e >0 we
can take a € A such that X[a]f € D" and that

11 = Xa)fll, <e

Let 9 be a smooth function on R with support

n [—1,1] such that [p ¥(x)dz =1. Then we put

d)N( ) = Ny(Nz). For g € C"’C( L'y with support in
[—r,7]” we associate the following function

N .
DI SR
X H br.N o * Y (20)

(=1

with 2, = (z;)r_, € R" and

drvj(x) =N < N) (r+z) (r—az)N

J
where f % g stands for the convolution of f and g.
Then by a simple observation we have the follow-
ing.

Lemma 4.2. Let g€ C(RY) with support
in [—r,7]*. Then

lim / (19— gx ] + D9 — gn. 9 — g} = 0.
N—oo R’

Let L =dk and z;, = g = (1, ...,
x; € S. If a function g(x1,...,x;) is symmetric in
(z1,...,25), then we can and do regard g as a
function defined on the configuration space M

xy), where
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over S with support in {£(S) = k}. If g(z1,. .., xx)
is symmetric in (x1,...,2)), where z; € S, then so
is gv. Hence, we deduce from Lemma 4.2 the
following.

Lemma 4.3. Let L =dk. Let g € C°(RY) be
symmetric in (x,...,x;) with support in [—r, T]L.
Let g and gy be regarded as functions on M with
support in {£(S) = k} as above. Then

(19) Jim lg — gvll, = 0.
Proof of Theorem 3.1. We prove only
(E*,P*) = (€', D") because the proof of the rest is

similar. Let
Soie = {(x1, 20, ..., xn) € S"yx; # x; for i # j}.

Let f € Dy such that f(§) = f(£x) with compact
set K = [—r,r]". For such an f we introduce
continuous functions f,, n € Ny such that fy = fo
and that, for n € N and (z1,22,...,%n) € Sl

}\‘”(‘r17 x27 e 7xn)
=St Y R
k=0 {ir,eenin}C{1,2,...m}

The values of fu on {SI;}° are defined by continu-
ity. Then f,L is a smooth symmetric function on 5"
vanishing out of K for n > 1. Note that f, is the

l‘lk)

Mébius transformation of fi, k=0,1,...,n. Then
we easily deduce that, for (z1,z2,...,2,) € Sl
(20) fk(xlax%"'vxk)
k =R
:Z Z fn(xil,xi”...,xin).
n=0 {iy,...,i, }C{1,2,....k}

This implies that f; — fo can be represented by a
linear combination of symmetric smooth functions
vanishing out of K*.

In (21) and (22) below, (x“,x,z, .., x;,) and
(Y1,92, ..., Yyn) are taken to be in S7. The equalities
can be exteded to {S%}° by continuity of the
functions.

Let k= £&k(S) and write {x = Zf 1 O -
from (20) we can rewrite f as

Then

(21) f(§) = fk($1,$27--~730k)
¢k (S
Z Z fn ylay%' . ;yn)
n=0 n=<¢x

Here n =n(S),n=>.1",6,, and n < {x means that
N(A) < Ex(A) for all A. We note that the right-hand
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side can be regarded as a symmetric function of
(z1,...,2,) by construction. For m € N we put

m

Jim) (&) = Z Z Py, -

n=0 n=<&x

(22) s Un)-
Let € > 0 be arbitrary. Then from Lemma 4.1 and
(22) we can take a € A and a, < m € N such that

23) S = Sl < M= X&) (S = fm)lly < &

From Lemma 4.3, we approximate the sym-
metric function fn in (22) by a polynomial B,
Hence, for any ¢ > 0, we can take polynomials F},
such that

m
Sim) — Z | <e
n=0 1

Results (23) and (24) complete the proof. O
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