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Symmetric pairs with finite-multiplicity property

for branching laws of admissible representations

By Toshiyuki KOBAYASHI"»**)

(Communicated by Masaki KASHIWARA, M.J.A., May 12, 2014)

Abstract:

We accomplish the classification of the reductive symmetric pairs (G, H) for

which the dimension of the space Hompg(n|;,7) of H-intertwining operators is finite for any
irreducible smooth representation 7 of G and for any irreducible smooth representation 7 of H.
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1. Finite-multiplicity in induction and
restriction. One of the basic problems in repre-
sentation theory is to understand how a given
representation is decomposed into irreducible rep-
resentations. Given a pair of groups G D H, there
are two important settings for this problem:

I) (Induction) For a simple H-module 7, un-

derstand Ind%(7) as a G-module.

IT) (Restriction) For a simple G-module m,

understand 7|, as an H-module.

We shall highlight the case where G is a real
reductive linear Lie group.

Concerning Induction Problem (I), a special
case is the unitary induction Ind%(r) from the
trivial one-dimensional representation 7 =1 of H,
which is unitarily equivalent to the regular repre-
sentation of G on L*(G/H) if G/H admits a
G-invariant Radon measure. Its irreducible decom-
position is called the Plancherel-type theorem for
G/H, and the theory has been developed exten-
sively for reductive symmetric pairs (G, H) over
several decades since the pioneering work of the
Gelfand school and Harish-Chandra. Such a suc-
cessful analysis is built on the following finiteness
property [1]: For any reductive symmetric pair
(G, H) and for any irreducible admissible represen-
tation m:

(1.1) dim Homg (7, C*°(G/H)) < cc.
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We note that the finite-multiplicity property (1.1)
holds not only for irreducible unitary represen-
tations but also for non-unitary representations
m. More strongly, there exists a constant C =
C(G, H) < oo such that

dim Homg(w, C*(G/H)) < C,

for any irreducible smooth representation 7 of G, as
far as G¢/Hc is spherical, see [15, Theorem A].

Concerning Restriction Problem (IT), the H-
irreducible decomposition of the restriction 7|, is
called the branching law.

If H is a maximal compact subgroup K of the
reductive group G, then for any irreducible unitary
representation 7 of G, we have the following
admissibility theorem of Harish-Chandra [4]:

(1.2) dim Homg (7, 7| ) < 00

for any irreducible (finite-dimensional) representa-
tion 7 of K. Equivalently, the condition (1.2) can be
replaced by

(1.3) dim Homg (], 7) < 00

because K is compact. Harish-Chandra’s admissi-
bility theorem has led to the concept of (g, K)-mod-
ules, providing us with an algebraic powerful tool
in studying irreducible unitary representations of
reductive Lie groups.

A continuous representation w of a real re-
ductive group G of finite length on a complete,
locally convex topological vector space is called
admissible if (1.2) is satisfied. We say 7 is an
admissible smooth representation (sometimes refer-
red to as a smooth Fréchet representation of
moderate growth [22, Chapter 11]) if 7 is realized
in the space of smooth vectors of a Banach
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representation of finite length. An irreducible
admissible smooth representation will be called an
irreducible smooth representation in this article for
simplicity. By the Casselman—Wallach globaliza-
tion theory, there is a canonical equivalence of
categories between the category of (g, K)-modules
of finite length and the category of admissible
smooth representations of G.

In contrast to the Riemannian symmetric pair
(G,K), it is notorious that a finite-multiplicity
theorem for the restriction (see (1.3)) may fail for
reductive symmetric pairs (G, H), namely, it may
well happen that

dim Homp (7|7, 7) = o0

for some irreducible smooth representation 7 of G
and some irreducible smooth representation 7 of H.
Here Homy(, ) denotes the space of continuous
H-homomorphisms.

An opposite extremal case is that the restric-
tion 7|, is still irreducible as an H-module. This is
rare but still happens for (infinite-dimensional)
irreducible representations 7 and for reductive
symmetric pairs (G, H), see [11].

A special case of a symmetric pair is the group
case

(G,H) = (G’ x G',diag "),

for which the branching problem (II) deals with the
decomposition of the tensor product of two irredu-
cible representations of G’. Even in this case, the
branching laws do not always behave nicely. For
example, the tensor product of two irreducible
unitary principal series representations of a simple
group such as SL(n,R) (n > 3) involves infinite
multiplicities in the irreducible decomposition.
See [7,9-11] for more details about “bad behav-
iours” and “good behaviours” of the restriction with
respect to symmetric pairs.

These observations suggest that the condition
that H is a maximal reductive subgroup of G would
be too general to develop a concrete analysis of
branching laws of irreducible unitary representa-
tions of GG. In other words, one could expect detailed
analysis on branching laws only if we were able to
discover “very nice frameworks.” Indeed, the analy-
sis of branching laws has been developed exten-
sively in the following nice settings:

(1) (Theta correspondence, Howe’s dual pair) w
is the metaplectic representation of G =

[Vol. 90(A),

Mp(n,R) and H = H; - Hy is a dual pair in

G [5].

(2) (Admissible restriction) The restriction =, is
H-admissible, i.e., it decomposes discretely
into a direct sum of irreducible representations
of H with finite multiplicities [7,9,10].

These examples impose strong constraints on the
representation 7 of G. For instance, in the theta
correspondence (1), the representation 7 attains
its minimum Gelfand—Kirillov dimension among all
infinite-dimensional representations of G. The re-
cent papers [16,17] gave a classification of the
triples (G, H,n) for which the admissibility of the
restriction (2) holds in the setting that (G, H) is a
reductive symmetric pair and 7 is relatively “small”

(e.g., Zuckerman’s derived functor modules, mini-

mal representations, etc.).

In this article, we consider a more general
framework, and try to relax any assumption on
such as “small” representations. Thus, we wish to
understand clearly for which pairs (G, H) of reduc-
tive groups we could expect that the branching laws
7|y behave reasonably for arbitrary irreducible
representations w. To be more precise, we ask
whether a given pair (G, H) satisfies the following
finite-multiplicity property for the restriction of
admissible representations:

(FM) (Finite-multiplicity restriction)

dim Homp (|, 7) < 0o, for any admissible
smooth representation 7 of G and for any
admissible smooth representation 7 of H.

The main results of this paper were announced
in the conferences “Group Actions with Applica-
tions in Geometry and Analysis” at Reims Univer-
sity (France) in June, 2013 and in “Representations
of Reductive Groups” at the University of Utah
(U.S.A.) in July, 2013.

Detailed proofs are given in [13-15].

2. Statement of main results. Here is the
complete classification of the reductive symmetric
pairs (G, H) having the property (FM).

Theorem 1. Suppose (G, H) is a reductive
symmetric pair. Then the following two conditions
are equivalent:

(i) (G, H) satisfies the finite-multiplicity property
(FM) for restriction of admissible smooth
representations.

(ii) The pair of the Lie algebras (g, ) is isomorphic
(up to outer automorphisms) to the direct sum
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of the following pairs:

A) Trivial case: g =b.

B) Abelian case: g =R, h = {0}.

C) Compact case: g is the Lie algebra of a
compact simple Lie group.

D) Riemannian symmetric pair: b is the Lie
algebra of a mazximal compact subgroup K
of a non-compact simple Lie group G.

E) Split rank one case (rankg G = 1):
E1) (o(p+gq,1),0(p) +0(g,1))

(p+q=>2)

E2) (su(p+q,1),s(u(p) +u(g,1)))
(p+q=>1)

E3) ESp(erq, ),5p(p) +sp(q, 1))

E4) (f4_20),50(8,1)).

F) Strong Gelfand pairs and their real forms:
F1) (sl(n+1,C),gl(n,C)) (n >2).
F2) (o(n+1,C),0(n,C)) (n>2).

3) (sl(n+1,R),gl(n,R)) (n >1).

4) (su(p+1,9),u(p,q) (p+a=1).

5) (e(p+1,9),0(p.q) (p+4q=2).

roup case: (.h) = (¢ + ¢, diagg’)
G1) ¢ is the Lie algebra of a compact

szmple Lie group.

G2) g ~oa(n,1) (n>2).

H) Other cases:

Hl) (0(2n,2),
H2) (su*(2n+ 2),s5u(2) +su*(2n) + R)
(n>1).
H3) (0*(2n+2),0(2) +0*(2n)) (n > 1).
H4) (sp(p + 1, q),sp(p. q) +5p(1)).
H5) (26(726)750(97 1) + R)
For the “group case”
the following:

ol Mies!

8
Q

u(n, 1)).

(G), Theorem 1 implies

Corollary 2. Suppose G is a simple Lie
group. Then the following three conditions on G
are equivalent:

(i) For any triple of admissible smooth represen-

tations my, mo, and w3 of G,

dim Homg (m ® 9, 73) < 00.

(ii) For any triple of admissible smooth represen-
tations m, my and w3 of G, invariant trilinear
forms are finite-dimensional:

dim Homg(m; ® m ®@ 13, C) < o0.

(iii) Either G is compact or g is isomorphic to
o(n,1) (n>2).
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3. Uniformly bounded multiplicities. In
addition to the aforementioned finite-multiplicity
property (FM), we consider the following two
properties on a pair of reductive groups (G, H):
(BM) (Bounded-multiplicity restriction) There

exists a constant C'= C(G, H) < co such
that

dim Homp (7|4, 7) < C,

for any irreducible admissible representa-
tions m and 7 of G and H, respectively.

(MF) (Multiplicity-free restriction) One can take
C to be 1 in (BM), namely,

dim Homp (7|, 7) <1

for any irreducible admissible representa-
tions m and 7 of G and H, respectively.
Clearly, we have

(MF) = (BM) = (FM).

We note that the properties (FM) and (BM) depend
only on the Lie algebra (g,h). Moreover, we
have discovered in [15, Theorem D] that the bound-
ed-multiplicity property (BM) depends only on
the complexified Lie algebra (g¢,bhc) = (g ®r C,
h ®r C). On the other hand, the multiplicity-free
property (MF) is not determined by the pair of Lie
algebras (g, ), but depends on the groups G and H
(e.g., the disconnectedness of the groups may affect
the best constant C in (BM)).

Here is the classification of symmetric pairs
(g, bh) satisfying the property (BM) as a subclass of
(FM):

Proposition 3. Suppose (g,h) is a real re-
ductive symmetric pair. Then the following three
conditions are equivalent:

(i) For any real reductive Lie groups G D H with

Lie algebras g Db, respectively, the pair

(G, H) satisfies the bounded multiplicity prop-

erty (BM) for restriction.

(ii) There exists a pair of (possibly disconnected)
real reductive Lie groups G D H such that
(G, H) satisfies the multiplicity-free property
(MF) for restriction.

The pair of the Lie algebras (g,4) is isomorphic
(up to outer automorphisms) to the direct sum
of pairs (A), (B) and (F1)-(F5).

The implication (ii) = (i) is obvious as men-
tioned. The equivalence (i) < (iii) was proved in
[15, Theorem D]. The implication (iii) = (ii) was

(iii)
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proved in Sun-Zhu [21]. (Thus there are two
different proofs for the implication (iii) = (i)). As
a more refined form of the implication (iii) = (ii),
Gross and Prasad formulated a conjecture about
the restriction of an irreducible admissible tem-
pered representation of an inner form G of the
group O(n) over a local field to a subgroup which is
an inner form O(n —1) (¢f. (F2) and (F4) for the
Archimedian field), [3].

Similarly to Corollary 2, we apply Proposition
3 to the group case and get the following (see [8],
[13, Corollary 4.2] for further equivalence, e.g.,
the finite-dimensionality of the space of Shintani
functions):

Corollary 4. Suppose G is a simple Lie
group. Then the following three conditions on G
are equivalent:

(i) There exists a constant C' < oo such that

dim Homg (7 & mo, m3) < C,

for any irreducible smooth representations my,
my, and w3 of G.
(ii) There exists a constant C' < co such that

dim Homg (m ® m ® m3,C) < C,

for any irreducible smooth representations my,

mo, and 73 of G.

(iii) The Lie algebra g is isomorphic to one of
su(2) ~o0(3), su(l,1) ~sl(2,R) ~0(2,1) or
s[(2,C) ~0(3,1).

4. Strategy of proof. A complex manifold
X¢ with action of a complex reductive group G is
called spherical if a Borel subgroup of G¢ has an
open orbit in X¢, and there is a vast literature on
spherical varieties. In the real setting, in search of a
good framework for global analysis on homogeneous
spaces which are broader than the usual (e.g.,
symmetric spaces), we emphasised in [8] the im-
portance of the following notion and proposed to
call:

Definition 5. A smooth manifold X with
action of a real reductive group G is real spherical
if a minimal parabolic subgroup P of G has an open
orbit in X.

In the case where G acts transitively on X, a
minimal parabolic subgroup P has finitely many
orbits in X if and only if P has an open orbit in X
by the works of Kimelfeld [6] and Matsuki [20], see
also [15, Remark 2.5] and references therein.

Representation theoretic properties (FM) or
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(BM) are characterised by the geometric conditions
on real or complex flag varieties, respectively, as
follows:

Fact 6 ([15, Theorems C and D]). Suppose G
is a real reductive Lie group, and H a reductive
subgroup defined algebraically over R.

1) The finite-multiplicity property (FM) holds if
and only if (G x H)/diag H is real spherical.

2) The bounded-multiplicity property (BM) holds
if and only if (Gec x Hc)/diag Hc is spherical.

Here G¢ is a complexification of G, and H¢ a
subgroup of G¢ with complexified Lie algebra ho =
her C.

Therefore, we can reduce the proof of Theorem
1 to a purely algebraic question, namely, the
classification of real spherical variety of the form
(G x H)/diag H.

For this, it is sufficient to deal with the case
where (g, h) is an irreducible symmetric pair, which
consists of two families:

1) (group case) (¢ + ¢',diagg’) with g’ simple,
2) (g,h) with g simple.

In the sequel, we say (G, H) satisfies (PP) if
(G x H)/diag H is real spherical, and (BB) if (G¢ %
Hc)/diag Hc is spherical.

The classification of real spherical homogene-
ous spaces of the form (G x H)/diag H with (G, H)
irreducible symmetric pairs was accomplished as
follows:

Theorem 7 ([14]). For irreducible symmet-
ric pairs (g,h), the following two conditions are
equivalent:

(i) (G x H)/diag H is real spherical.
(ii) (g,b) is isomorphic to one of (C)—(H) up to
outer automorphisms.

Remark 8. In connection with branching
problems, the classification in Theorem 7 was
established earlier in the following special cases:

1) (g,bh): complex pairs (PP) < (BB) < (F1) or

(F2)  ([19)).
2) (g.b) = (¢' +¢',diagg’) (group case) (PP) &
(G) (8-

The case (1) was studied in connection with
finite-dimensional representations of compact Lie
groups, and the case (2) with the tensor product of
two representations as we saw in Corollary 2. We
also notice that (g’ + ¢, ¢') satisfies (PP) if and only
if the homogeneous space (G' x G' x G')/diag G’ is
a real spherical variety in view of the following
isomorphism:
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(PG/ X P X PG/)\(G/ x G x G')/diag el
~ (PGV X Pgr)\(G/ X G/)/Pg/.

5. Concluding remarks. As mentioned at
the beginning of this article, the original motivation
of this work is to single out good pairs (G, H) of
reductive groups, with which we hope to open a new
theory of geometric analysis of the branching laws
7|y of arbitrary irreducible smooth representations
m of G. We mention here some few examples of the
recent progress in this direction for some specific
pairs (G, H) that appear in the list of Theorem 1:

e Analysis on invariant trilinear forms [2]

- (G,H) = (G x G',diag G') with G' = O(n, 1),

see Corollary 2.

e C(lassification and explicit construction of con-
formally covariant (integral, differential, ...)
operators [12,18].

- (G,H)=(0(n+1,1),0(n,1)), see (E1) or

(F5) in Theorem 1.
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