Notes on the existence of unramified non-abelian p-extensions over cyclic fields

By Akito Nomura
Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

(Communicated by Masaki Kashiwara, m.J.A., March 12, 2014)

Abstract

We study the inverse Galois problem with restricted ramifications. Let p and q be distinct odd primes such that $p \equiv 1 \bmod q$. Let $E\left(p^{3}\right)$ be the non-abelian group of order p^{3} such that the exponent is equal to p, and let k be a cyclic extension over \mathbf{Q} of degree q. In this paper, we study the existence of unramified extensions over k with the Galois group $E\left(p^{3}\right)$. We also give some numerical examples computed with PARI.

Key words: Unramified p-extension; inverse Galois problem; ideal class group; cyclic cubic field.

1. Introduction. Let k be an algebraic number field. Let p be a prime number and G a p-group. Whether there is an unramified Galois extension over k with the Galois group G is an interesting problem in algebraic number theory. Bachoc-Kwon [1] and Couture-Derhem [3] studied the case when k is a cyclic cubic field and G is the quaternion group of order 8. The author [8] studied the case when k is a cyclic quintic field and G is a certain non-abelian 2 -group of order 32 . For an odd prime p, let $E\left(p^{3}\right)$ be the non-abelian group of order p^{3} such that the exponent is equal to p. In [6], the author studied the case when k is a quadratic field and $G=E\left(p^{3}\right)$. Let p and q be distinct odd primes and k / \mathbf{Q} a cyclic extension of degree q. The author [9] studied the case when $p \equiv-1 \bmod q$ and $G=E\left(p^{3}\right)$. In this paper, we shall study the case when $p \equiv 1 \bmod q$ and $G=E\left(p^{3}\right)$.

In this paper, we call a field extension $L / K / F$ is a Galois extension if L / F and K / F are Galois extensions.
2. Some lemmas. We shall describe some lemmas which will be needed below.

Lemma 1 ([7, Theorem 8]). Let p be an odd prime. Assume that the Galois extension $K / k / \mathbf{Q}$ satisfies the conditions:
(1) The degree $[k: \mathbf{Q}]$ is prime to p.
(2) K / k is an unramified p-extension.

Let $(\epsilon): 1 \rightarrow \mathbf{Z} / p \mathbf{Z} \rightarrow E \rightarrow \operatorname{Gal}(K / \mathbf{Q}) \rightarrow 1$ be a non-split central extension. Then there exists a Galois extension $L / K / \mathbf{Q}$ such that

[^0](i) $1 \rightarrow \operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}(L / \mathbf{Q}) \rightarrow \operatorname{Gal}(K / \mathbf{Q}) \rightarrow 1$ coincides with (ϵ), and
(ii) L / K is unramified.

Since the multiplicative group \mathbf{F}_{p}^{*} contains a primitive $(p-1)$-th root of unity, it is easy to see the following lemma.

Lemma 2. Let p and q be odd primes such that $p \equiv 1 \bmod q$. Let G be the cyclic group of order q. Then the p-rank of any irreducible $\mathbf{F}_{p}[G]$-module is equal to 1 .
3. Main theorem. Let p and q be odd primes such that $p \equiv 1 \bmod q$. Let k / \mathbf{Q} be a cyclic extension of degree q, and $C l(k)$ the ideal class group of k. Let $M_{k}=C l(k) / C l(k)^{p} \quad$ and $G=$ $\operatorname{Gal}(k / \mathbf{Q})$, then M_{k} is a $\mathbf{F}_{p}[G]$-module in a natural sense. Let σ be a generator of G. For $1 \leqq j \leqq p-1$, we put $M_{k}(j):=\left\{c \in M_{k} \mid c^{\sigma}=c^{j}\right\}$.

It is easy to see that if $j^{q} \not \equiv 1 \bmod p$ then $M_{k}(j)=\{1\}$. Since the class number of \mathbf{Q} is 1 , $M_{k}(1)=\{1\}$.

We shall focus on some groups. Let

$$
E\left(p^{3}\right)=\left\langle\begin{array}{l|l}
x, y, z & \begin{array}{l}
x^{p}=y^{p}=z^{p}=1, x y=y x \\
x z=z x, z^{-1} y z=x y
\end{array}
\end{array}\right\rangle
$$

This group is a non-abelian p-group of order p^{3} such that the exponent is p.

Let t be a primitive q-th root of the congruence $t^{q} \equiv 1 \bmod p$. Let

$$
\begin{aligned}
& \Gamma_{0}=\left\langle x, y, w \left\lvert\, \begin{array}{l}
x^{p}=y^{p}=w^{q}=1, x y=y x, \\
w^{-1} x w=x^{t}, w^{-1} y w=y^{t q-1}
\end{array}\right.\right\rangle \\
& \Gamma_{1}=\left\langle x, y, z, w \left\lvert\, \begin{array}{l}
x^{p}=y^{p}=z^{p}=w^{q}=1, x z=z x \\
y z=z y, z w=w z, y^{-1} x y=z x \\
w^{-1} x w=x^{t}, w^{-1} y w=y^{t^{q-1}}
\end{array}\right.\right\rangle .
\end{aligned}
$$

These groups are independent of t. The center of Γ_{1} is the cyclic group of order p generated by z. Let $j: \Gamma_{1} \rightarrow \Gamma_{0}$ be the homomorphism defined by $x \mapsto x, y \mapsto y, z \mapsto 1, w \mapsto w$. Then j induces a nonsplit central extension $1 \rightarrow \mathbf{Z} / p \mathbf{Z} \rightarrow \Gamma_{1} \rightarrow \Gamma_{0} \rightarrow 1$. Further, the p-Sylow subgroup of Γ_{1} is isomorphic to $E\left(p^{3}\right)$.

For these two groups, we refer Burnside [2] and Western [13].

Theorem 3. Let p and q be odd primes such that $p \equiv 1 \bmod q$, and let k / \mathbf{Q} be a cyclic extension of degree q. Assume that there exist integers α and β satisfying the following conditions:
(1) $1<\alpha \leqq p-1,1<\beta \leqq p-1$,
(2) $\alpha^{q} \equiv 1 \bmod p, \alpha \beta \equiv 1 \bmod p$,
(3) $M_{k}(\alpha) \neq\{1\}, M_{k}(\beta) \neq\{1\}$.

Then there exists a Galois extension $L / k / \mathbf{Q}$ such that
(i) L / k is an unramified extension, and
(ii) $\operatorname{Gal}(L / k)$ is isomorphic to $E\left(p^{3}\right)$.

Proof. By the assumption (3) and Lemma 2, there exist Galois extensions $k_{\alpha} / k / \mathbf{Q}$ and $k_{\beta} / k / \mathbf{Q}$ satisfying the conditions: (a) k_{α} / k and k_{β} / k are unramified cyclic extensions of degree p, (b) $\operatorname{Gal}\left(k_{\alpha} / \mathbf{Q}\right)$ and $\operatorname{Gal}\left(k_{\beta} / \mathbf{Q}\right)$ are isomorphic to $\left\langle x, w \mid x^{p}=w^{q}=1, w^{-1} x w=x^{\alpha}\right\rangle$ and $\langle y, w| y^{p}=w^{q}=$ $\left.1, w^{-1} y w=y^{\beta}\right\rangle$, respectively. Let $K=k_{\alpha} k_{\beta}$. By the assumptions (1) and (2), α is a primitive q-th root of the congruence $\alpha^{q} \equiv 1 \bmod p$. Then $\operatorname{Gal}(K / \mathbf{Q})$ is isomorphic to Γ_{0}. As mentioned above, there exists a non-split central extension $1 \rightarrow \mathbf{Z} / p \mathbf{Z} \rightarrow \Gamma_{1} \rightarrow$ $\operatorname{Gal}(K / \mathbf{Q}) \rightarrow 1$. By Lemma 1, there exists a Galois extension $L / K / \mathbf{Q}$ such that $\operatorname{Gal}(L / \mathbf{Q}) \cong \Gamma_{1}$ and that L / K is unramified. Since the p-Sylow subgroup of Γ_{1} is isomorphic to $E\left(p^{3}\right), \operatorname{Gal}(L / k) \cong E\left(p^{3}\right)$. Therefore $L / k / \mathbf{Q}$ is a required extension.

Remark 4. Let k be a cyclic cubic field, and p an odd prime such that $p \equiv 1 \bmod 3$. Let $k(p)$ be the Hilbert p-class field of k. Miyake [5] studied the p-rank of the ideal class group $C l(k(p))$ and the action of $\operatorname{Gal}(k / \mathbf{Q})$ on $C l(k(p))$. Theorem 4 is a generalization of a part of Miyake's results in [5].

Let $E^{\prime}\left(p^{3}\right)$ be the non-abelian group of order p^{3} such that the exponent is equal to p^{2}. The following proposition is a generalization of [9, Theorem 3]. These proofs are essentially same. For the convenience of the reader, we give a sketch of the proof. We denote by $[G, G]$ the commutator subgroup of G.

Proposition 5. Let p be an odd prime and k
an algebraic number field of finite degree such that the p-rank of $C l(k)$ is equal to 2. Assume that there exists an unramified Galois extension L_{1} / k such that $\operatorname{Gal}\left(L_{1} / k\right) \cong E\left(p^{3}\right)$. Then the following two conditions are equivalent.
(1) $C l(k)$ has an element of order p^{2}.
(2) There exists an unramified Galois extension L / k such that $\operatorname{Gal}(L / k) \cong E^{\prime}\left(p^{3}\right)$.

Sketch of the proof. First, we show that the assertion (1) implies (2). By the condition (1), $C l(k)$ has a subgroup isomorphic to $\mathbf{Z} / p^{2} \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$. Then there exists an unramified Galois extension L_{2} / k such that $\operatorname{Gal}\left(L_{2} / k\right) \cong \mathbf{Z} / p^{2} \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$.

Let $M=L_{1} L_{2}$ and $K=L_{1} \cap L_{2}$, then M / k is a p-extension and $\operatorname{Gal}(K / k) \cong \mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$. Let L_{3} be a subfield of M satisfying the conditions: (i) $L_{3} \supset$ K and $\left[L_{3}: K\right]=p$, (ii) $L_{3} \neq L_{i}(i=1,2)$. Then L_{3} / k is an unramified Galois extension. We see that L_{3} / k is a non-abelian extension of degree p^{3} and that the exponent of $\operatorname{Gal}\left(L_{3} / k\right)$ is equal to p^{2}. Hence $\operatorname{Gal}\left(L_{3} / k\right)$ is isomorphic to $E^{\prime}\left(p^{3}\right)$.

Next, we show that the assertion (2) implies (1). By the assumption, there exists an unramified Galois extension L_{2} / k such that $\operatorname{Gal}\left(L_{2} / k\right) \cong$ $E^{\prime}\left(p^{3}\right)$. Let $M=L_{1} L_{2}$ and $K=L_{1} \cap L_{2}$. We put $G_{M}=\operatorname{Gal}(M / k)$. Let C_{M} be the center of G_{M}. Then we see that $C_{M}=\operatorname{Gal}(M / K)$. Let K^{*} be the subfield of M corresponding to the group $C_{M} \cap$ $\left[G_{M}, G_{M}\right]$. It is well known that $C_{M} \cap\left[G_{M}, G_{M}\right]$ is isomorphic to a quotient group of the Schur multiplier of G_{M} / C_{M}. (See for example Karpilovsky [4, Proposition 2.1.7].) The Schur multiplier of the group $G_{M} / C_{M} \cong \mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$ is isomorphic to $\mathbf{Z} / p \mathbf{Z}$. Since K / k is abelian, $\left[G_{M}, G_{M}\right]$ is contained in $C_{M}=\operatorname{Gal}(M / K)$. Since M / k is non-abelian, $\left[G_{M}, G_{M}\right]=C_{M} \cap\left[G_{M}, G_{M}\right] \cong \mathbf{Z} / p \mathbf{Z}$. Hence $\left[M: K^{*}\right]=p$, and $\operatorname{Gal}\left(K^{*} / k\right) \cong \mathbf{Z} / p^{2} \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$.
4. Cyclic cubic fields. In this section we consider the case that $q=3$. Let p be an odd prime such that $p \equiv 1 \bmod 3$. The number of the primitive roots of the congruence $t^{3} \equiv 1 \bmod p$ is two. Let k / \mathbf{Q} be a cyclic cubic field, and $K / k / \mathbf{Q}$ a Galois extension such that K / k is unramified and that $\operatorname{Gal}(K / k) \cong \mathbf{Z} / p \mathbf{Z} \times \mathbf{Z} / p \mathbf{Z}$. Then the Galois group $\operatorname{Gal}(K / \mathbf{Q})$ is isomorphic to a group
$\Gamma(\alpha, \beta)=\left\langle\begin{array}{l|l}x, y, w & \left\lvert\, \begin{array}{l}x^{p}=y^{p}=w^{3}=1, x y=y x, \\ w^{-1} x w=x^{\alpha}, w^{-1} y w=y^{\beta}\end{array}\right.\end{array}\right\rangle$,
where α and β are primitive roots of $t^{3} \equiv 1 \bmod p$. We call the group $\Gamma(\alpha, \beta)$ Type A (resp. Type B), if

Table I

Type of $\operatorname{Gal}(k(7) / \mathbf{Q})$	n
Type A	744
Type B	$193,295,508,523,525$,
	$532,548,762,852,983$

$\alpha \equiv \beta \bmod p($ resp. $\alpha \not \equiv \beta \bmod p)$. We remark that if $\alpha \not \equiv \beta$ then $\alpha \beta \equiv 1 \bmod p$, so that it is nothing but the group Γ_{0} for $q=3$.

Remark 6. Let $K / k / \mathbf{Q}$ be a Galois extension such that $\operatorname{Gal}(K / \mathbf{Q})$ is Type A. If F is a number field such that $k \subset F \subset K$, then F / \mathbf{Q} is a Galois extension.

Proposition 7. Let p be an odd prime such that $p \equiv 1 \bmod 3$, and k / \mathbf{Q} be a cyclic cubic extension. Assume that there exists an unramified Galois extension F / k such that $[F: k]=p$ and that F / \mathbf{Q} is non-Galois. Then there exists a Galois extension $L / k / \mathbf{Q}$ such that
(i) L / k is an unramified extension, and
(ii) $\operatorname{Gal}(L / k)$ is isomorphic to $E\left(p^{3}\right)$.

Proof. Let α, β be distinct primitive roots of $t^{3} \equiv 1 \bmod p$. By the assumption concerning the existence of F, we see $M_{k}(\alpha) \neq\{1\}$ and $M_{k}(\beta) \neq$ $\{1\}$. Thus the proposition follows from Theorem 3.
5. Numerical examples. In this section, we give some examples computed with PARI [10]. Let $C l_{p}(k)$ be the p-Sylow subgroup of the ideal class group $C l(k)$.

Example 8. Let n be an integer, and let k be the simplest cubic field defined by the equation

$$
x^{3}-n x^{2}-(n+3) x-1=0(1 \leqq n \leqq 1000)
$$

For the simplest cubic fields, we refer Shanks [12].
The number of the field such that the rank of $C l_{7}(k)$ is greater than or equal to 2 is 11 . The group $C l_{7}(k)$ of these fields are isomorphic to $\mathbf{Z} / 7 \mathbf{Z} \times$ $\mathbf{Z} / 7 \mathbf{Z}$. Let $k(7)$ be the Hilbert 7 -class field of k.

Then for the case $n=193,295,508,523$, $525,532,548,762,852,983$, there exists an unramified Galois extension L / k such that $\operatorname{Gal}(L / k) \cong E\left(7^{3}\right)$. (see Table I).

Example 9. Let k be the simplest cubic field defined by the equation $x^{3}+269 x^{2}+266 x-1=0$.

Then the class number of k is 343 , and $C l(k) \cong$ $C l_{7}(k) \cong \mathbf{Z} / 49 \mathbf{Z} \times \mathbf{Z} / 7 \mathbf{Z}$. Let σ be a generator of $\operatorname{Gal}(k / \mathbf{Q})$. By computing with PARI, we see that
there exist ideal classes a and b such that $a^{7} \neq 1$, $b^{7}=1, \sigma(a)=a^{-10} b^{6}, \sigma(b)=a^{-7} b^{2}$.

Let K / k be the unramified Galois extension such that $\operatorname{Gal}(K / k) \cong \mathbf{Z} / 7 \mathbf{Z} \times \mathbf{Z} / 7 \mathbf{Z}$. By observing the action of σ on $C l(k) / C l(k)^{7}$, we see that $\operatorname{Gal}(K / \mathbf{Q})$ is Type B. Then there exists an unramified Galois extension L / k such that $\operatorname{Gal}(L / k) \cong$ $E\left(7^{3}\right)$. By Proposition 6, there exists an unramified Galois extension L^{\prime} / k such that $\operatorname{Gal}\left(L^{\prime} / k\right) \cong E^{\prime}\left(7^{3}\right)$.

Example 10. Let k be a quintic field defined by the equation

$$
x^{5}+324 x^{4}+9890 x^{3}+79115 x^{2}-4706 x+1=0
$$

The class number of k is calculated in SchoofWashington [11]. The class number of k is $37631=$ $11^{2} \cdot 311$, and $C l_{11}(k) \cong \mathbf{Z} / 11 \mathbf{Z} \times \mathbf{Z} / 11 \mathbf{Z}$. The solution of the congruence $t^{5} \equiv 1 \bmod 11$ are $3,4,5$ and 9. By observing the action of $\operatorname{Gal}(k / \mathbf{Q})$ on the group $C l_{11}(k)$, we see $\operatorname{Gal}(k(11) / \mathbf{Q})$ is isomorphic to $\Gamma(3,4)$, which is Type B. Thus there exists an unramified Galois extension L / k such that $\operatorname{Gal}(L / k)$ is $E\left(11^{3}\right)$.

Acknowledgment. I should like to express my gratitude to the referee for her/his careful reading and for her/his advice.

References

[1] C. Bachoc and S.-H. Kwon, Sur les extensions de groupe de Galois \tilde{A}_{4}, Acta Arith. 62 (1992), no. 1, 1-10.
[2] W. Burnside, Theory of groups of finite order, Cambridge University Press, Cambridge, 1911.
[3] R. Couture and A. Derhem, Un problème de capitulation, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 11, 785-788.
[4] G. Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series, 2, Oxford Univ. Press, New York, 1987.
[5] K. Miyake, Notes on the ideal class groups of the p-class fields of some algebraic number fields, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 4, 79-84.
[6] A. Nomura, On the existence of unramified p extensions, Osaka J. Math. 28 (1991), no. 1, 55-62.
[7] A. Nomura, On the class numbers of certain Hilbert class fields, Manuscripta Math. 79 (1993), no. 3-4, 379-390.
[8] A. Nomura, Notes on the existence of certain unramified 2 -extensions, Illinois J. Math. 46 (2002), no. 4, 1279-1286.
[9] A. Nomura, Some remarks on the existence of certain unramified p-extensions. (to appear in Tokyo J. Math.).
[10] The PARI Group, PARI/GP, Bordeaux, 2004. (http://pari.math.u-bordeaux.fr/).
[11] R. Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), no. 182, 543-556.
[12] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152.
[13] A. E. Western, Groups of Order $p^{3} q$, Proc. London Math. Soc. S1-30 no. 1, 209-263.

[^0]: 2010 Mathematics Subject Classification. Primary 12F12; Secondary 11R16, 11R29.

