Notes on the existence of unramified non-abelian *p*-extensions over cyclic fields

By Akito NOMURA

Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

(Communicated by Masaki KASHIWARA, M.J.A., March 12, 2014)

Abstract: We study the inverse Galois problem with restricted ramifications. Let p and q be distinct odd primes such that $p \equiv 1 \mod q$. Let $E(p^3)$ be the non-abelian group of order p^3 such that the exponent is equal to p, and let k be a cyclic extension over \mathbf{Q} of degree q. In this paper, we study the existence of unramified extensions over k with the Galois group $E(p^3)$. We also give some numerical examples computed with PARI.

Key words: Unramified *p*-extension; inverse Galois problem; ideal class group; cyclic cubic field.

1. Introduction. Let k be an algebraic number field. Let p be a prime number and G a p-group. Whether there is an unramified Galois extension over k with the Galois group G is an interesting problem in algebraic number theory. Bachoc-Kwon [1] and Couture-Derhem [3] studied the case when k is a cyclic cubic field and G is the quaternion group of order 8. The author [8] studied the case when k is a cyclic quintic field and G is a certain non-abelian 2-group of order 32. For an odd prime p, let $E(p^3)$ be the non-abelian group of order p^3 such that the exponent is equal to p. In [6], the author studied the case when k is a quadratic field and $G = E(p^3)$. Let p and q be distinct odd primes and k/\mathbf{Q} a cyclic extension of degree q. The author [9] studied the case when $p \equiv -1 \mod q$ and $G = E(p^3)$. In this paper, we shall study the case when $p \equiv 1 \mod q$ and $G = E(p^3)$.

In this paper, we call a field extension L/K/Fis a Galois extension if L/F and K/F are Galois extensions.

2. Some lemmas. We shall describe some lemmas which will be needed below.

Lemma 1 ([7, Theorem 8]). Let p be an odd prime. Assume that the Galois extension $K/k/\mathbf{Q}$ satisfies the conditions:

(1) The degree $[k : \mathbf{Q}]$ is prime to p.

(2) K/k is an unramified p-extension.

Let (ϵ) : $1 \to \mathbf{Z}/p\mathbf{Z} \to E \to \operatorname{Gal}(K/\mathbf{Q}) \to 1$ be a non-split central extension. Then there exists a Galois extension $L/K/\mathbf{Q}$ such that (i) 1 → Gal(L/K) → Gal(L/Q) → Gal(K/Q) → 1 coincides with (ϵ), and
(ii) L/K is unramified.

Since the multiplicative group \mathbf{F}_p^* contains a primitive (p-1)-th root of unity, it is easy to see the following lemma.

Lemma 2. Let p and q be odd primes such that $p \equiv 1 \mod q$. Let G be the cyclic group of order q. Then the p-rank of any irreducible $\mathbf{F}_p[G]$ -module is equal to 1.

3. Main theorem. Let p and q be odd primes such that $p \equiv 1 \mod q$. Let k/\mathbf{Q} be a cyclic extension of degree q, and Cl(k) the ideal class group of k. Let $M_k = Cl(k)/Cl(k)^p$ and G = $Gal(k/\mathbf{Q})$, then M_k is a $\mathbf{F}_p[G]$ -module in a natural sense. Let σ be a generator of G. For $1 \leq j \leq p - 1$, we put $M_k(j) := \{c \in M_k \mid c^{\sigma} = c^j\}$.

It is easy to see that if $j^q \not\equiv 1 \mod p$ then $M_k(j) = \{1\}$. Since the class number of **Q** is 1, $M_k(1) = \{1\}$.

We shall focus on some groups. Let

$$E(p^{3}) = \left\langle x, y, z \middle| \begin{array}{c} x^{p} = y^{p} = z^{p} = 1, \ xy = yx, \\ xz = zx, \ z^{-1}yz = xy \end{array} \right\rangle.$$

This group is a non-abelian *p*-group of order p^3 such that the exponent is *p*.

Let t be a primitive q-th root of the congruence $t^q \equiv 1 \mod p$. Let

$$\begin{split} \Gamma_{0} &= \left\langle x, y, w \; \middle| \; \begin{array}{c} x^{p} = y^{p} = w^{q} = 1, \; xy = yx, \\ w^{-1}xw = x^{t}, \; w^{-1}yw = y^{t^{q-1}} \end{array} \right\rangle, \\ \Gamma_{1} &= \left\langle x, y, z, w \; \middle| \; \begin{array}{c} x^{p} = y^{p} = z^{p} = w^{q} = 1, \; xz = zx, \\ yz = zy, \; zw = wz, \; y^{-1}xy = zx, \\ w^{-1}xw = x^{t}, \; w^{-1}yw = y^{t^{q-1}} \end{array} \right\rangle. \end{split}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 12F12; Secondary 11R16, 11R29.

These groups are independent of t. The center of Γ_1 is the cyclic group of order p generated by z. Let $j: \Gamma_1 \to \Gamma_0$ be the homomorphism defined by $x \mapsto x, y \mapsto y, z \mapsto 1, w \mapsto w$. Then j induces a nonsplit central extension $1 \to \mathbf{Z}/p\mathbf{Z} \to \Gamma_1 \to \Gamma_0 \to 1$. Further, the p-Sylow subgroup of Γ_1 is isomorphic to $E(p^3)$.

For these two groups, we refer Burnside [2] and Western [13].

Theorem 3. Let p and q be odd primes such that $p \equiv 1 \mod q$, and let k/\mathbf{Q} be a cyclic extension of degree q. Assume that there exist integers α and β satisfying the following conditions:

(1) $1 < \alpha \leq p - 1, \ 1 < \beta \leq p - 1,$

(2) $\alpha^q \equiv 1 \mod p, \ \alpha\beta \equiv 1 \mod p$,

(3) $M_k(\alpha) \neq \{1\}, \ M_k(\beta) \neq \{1\}.$

Then there exists a Galois extension $L/k/\mathbf{Q}$ such that

(i) L/k is an unramified extension, and

(ii) $\operatorname{Gal}(L/k)$ is isomorphic to $E(p^3)$.

Proof. By the assumption (3) and Lemma 2, there exist Galois extensions $k_{\alpha}/k/\mathbf{Q}$ and $k_{\beta}/k/\mathbf{Q}$ satisfying the conditions: (a) k_{α}/k and k_{β}/k are unramified cyclic extensions of degree p, (b) $\operatorname{Gal}(k_{\alpha}/\mathbf{Q})$ and $\operatorname{Gal}(k_{\beta}/\mathbf{Q})$ are isomorphic to $\langle x, w | x^p = w^q = 1, w^{-1} x w = x^{\alpha} \rangle$ and $\langle y, w | y^p = w^q =$ $1, w^{-1}yw = y^{\beta}$, respectively. Let $K = k_{\alpha}k_{\beta}$. By the assumptions (1) and (2), α is a primitive q-th root of the congruence $\alpha^q \equiv 1 \mod p$. Then $\operatorname{Gal}(K/\mathbf{Q})$ is isomorphic to Γ_0 . As mentioned above, there exists a non-split central extension $1 \rightarrow \mathbf{Z}/p\mathbf{Z} \rightarrow \Gamma_1 \rightarrow$ $\operatorname{Gal}(K/\mathbf{Q}) \to 1$. By Lemma 1, there exists a Galois extension $L/K/\mathbf{Q}$ such that $\operatorname{Gal}(L/\mathbf{Q}) \cong \Gamma_1$ and that L/K is unramified. Since the *p*-Sylow subgroup of Γ_1 is isomorphic to $E(p^3)$, $\operatorname{Gal}(L/k) \cong E(p^3)$. Therefore $L/k/\mathbf{Q}$ is a required extension.

Remark 4. Let k be a cyclic cubic field, and p an odd prime such that $p \equiv 1 \mod 3$. Let k(p) be the Hilbert p-class field of k. Miyake [5] studied the p-rank of the ideal class group Cl(k(p)) and the action of $Gal(k/\mathbf{Q})$ on Cl(k(p)). Theorem 4 is a generalization of a part of Miyake's results in [5].

Let $E'(p^3)$ be the non-abelian group of order p^3 such that the exponent is equal to p^2 . The following proposition is a generalization of [9, Theorem 3]. These proofs are essentially same. For the convenience of the reader, we give a sketch of the proof. We denote by [G, G] the commutator subgroup of G.

Proposition 5. Let p be an odd prime and k

an algebraic number field of finite degree such that the p-rank of Cl(k) is equal to 2. Assume that there exists an unramified Galois extension L_1/k such that $Gal(L_1/k) \cong E(p^3)$. Then the following two conditions are equivalent.

(1) Cl(k) has an element of order p^2 .

(2) There exists an unramified Galois extension L/k such that $\operatorname{Gal}(L/k) \cong E'(p^3)$.

Sketch of the proof. First, we show that the assertion (1) implies (2). By the condition (1), Cl(k) has a subgroup isomorphic to $\mathbf{Z}/p^2\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Then there exists an unramified Galois extension L_2/k such that $\operatorname{Gal}(L_2/k) \cong \mathbf{Z}/p^2\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

Let $M = L_1 L_2$ and $K = L_1 \cap L_2$, then M/k is a p-extension and $\operatorname{Gal}(K/k) \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Let L_3 be a subfield of M satisfying the conditions: (i) $L_3 \supset K$ and $[L_3:K] = p$, (ii) $L_3 \neq L_i(i = 1, 2)$. Then L_3/k is an unramified Galois extension. We see that L_3/k is a non-abelian extension of degree p^3 and that the exponent of $\operatorname{Gal}(L_3/k)$ is equal to p^2 . Hence $\operatorname{Gal}(L_3/k)$ is isomorphic to $E'(p^3)$.

Next, we show that the assertion (2) implies (1). By the assumption, there exists an unramified Galois extension L_2/k such that $\operatorname{Gal}(L_2/k) \cong$ $E'(p^3)$. Let $M = L_1L_2$ and $K = L_1 \cap L_2$. We put $G_M = \operatorname{Gal}(M/k)$. Let C_M be the center of G_M . Then we see that $C_M = \operatorname{Gal}(M/K)$. Let K^* be the subfield of M corresponding to the group $C_M \cap$ $[G_M, G_M]$. It is well known that $C_M \cap [G_M, G_M]$ is isomorphic to a quotient group of the Schur multiplier of G_M/C_M . (See for example Karpilovsky [4, Proposition 2.1.7].) The Schur multiplier of the group $G_M/C_M \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$ is isomorphic to $\mathbf{Z}/p\mathbf{Z}$. Since K/k is abelian, $[G_M, G_M]$ is contained in $C_M = \operatorname{Gal}(M/K)$. Since M/k is non-abelian, $[G_M, G_M] = C_M \cap [G_M, G_M] \cong \mathbf{Z}/p\mathbf{Z}.$ Hence $[M: K^*] = p$, and $\operatorname{Gal}(K^*/k) \cong \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

4. Cyclic cubic fields. In this section we consider the case that q = 3. Let p be an odd prime such that $p \equiv 1 \mod 3$. The number of the primitive roots of the congruence $t^3 \equiv 1 \mod p$ is two. Let k/\mathbf{Q} be a cyclic cubic field, and $K/k/\mathbf{Q}$ a Galois extension such that K/k is unramified and that $\operatorname{Gal}(K/k) \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Then the Galois group $\operatorname{Gal}(K/\mathbf{Q})$ is isomorphic to a group

$$\Gamma(\alpha,\beta) = \left\langle x, y, w \middle| \begin{array}{c} x^p = y^p = w^3 = 1, \ xy = yx, \\ w^{-1}xw = x^{\alpha}, \ w^{-1}yw = y^{\beta} \end{array} \right\rangle,$$

where α and β are primitive roots of $t^3 \equiv 1 \mod p$. We call the group $\Gamma(\alpha, \beta)$ Type A (resp. Type B), if

Type of $\operatorname{Gal}(k(7)/\mathbf{Q})$	n
Type A	744
Type B	193, 295, 508, 523, 525,
	532, 548, 762, 852, 983

Table I

 $\alpha \equiv \beta \mod p \pmod{p}$ (resp. $\alpha \not\equiv \beta \mod p$). We remark that if $\alpha \not\equiv \beta$ then $\alpha \beta \equiv 1 \mod p$, so that it is nothing but the group Γ_0 for q = 3.

Remark 6. Let $K/k/\mathbf{Q}$ be a Galois extension such that $\operatorname{Gal}(K/\mathbf{Q})$ is Type A. If F is a number field such that $k \subset F \subset K$, then F/\mathbf{Q} is a Galois extension.

Proposition 7. Let p be an odd prime such that $p \equiv 1 \mod 3$, and k/\mathbf{Q} be a cyclic cubic extension. Assume that there exists an unramified Galois extension F/k such that [F : k] = p and that F/\mathbf{Q} is non-Galois. Then there exists a Galois extension $L/k/\mathbf{Q}$ such that

(i) L/k is an unramified extension, and

(ii) $\operatorname{Gal}(L/k)$ is isomorphic to $E(p^3)$.

Proof. Let α, β be distinct primitive roots of $t^3 \equiv 1 \mod p$. By the assumption concerning the existence of F, we see $M_k(\alpha) \neq \{1\}$ and $M_k(\beta) \neq \{1\}$. Thus the proposition follows from Theorem 3.

5. Numerical examples. In this section, we give some examples computed with PARI [10]. Let $Cl_p(k)$ be the *p*-Sylow subgroup of the ideal class group Cl(k).

Example 8. Let n be an integer, and let k be the simplest cubic field defined by the equation

 $x^{3} - nx^{2} - (n+3)x - 1 = 0 \ (1 \le n \le 1000).$

For the simplest cubic fields, we refer Shanks [12].

The number of the field such that the rank of $Cl_7(k)$ is greater than or equal to 2 is 11. The group $Cl_7(k)$ of these fields are isomorphic to $\mathbf{Z}/7\mathbf{Z} \times \mathbf{Z}/7\mathbf{Z}$. Let k(7) be the Hilbert 7-class field of k.

Then for the case n = 193, 295, 508, 523, 525, 532, 548, 762, 852, 983, there exists an unramified Galois extension L/k such that $\operatorname{Gal}(L/k) \cong E(7^3)$. (see Table I).

Example 9. Let k be the simplest cubic field defined by the equation $x^3 + 269x^2 + 266x - 1 = 0$.

Then the class number of k is 343, and $Cl(k) \cong Cl_7(k) \cong \mathbb{Z}/49\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$. Let σ be a generator of $Gal(k/\mathbb{Q})$. By computing with PARI, we see that

there exist ideal classes a and b such that $a^7 \neq 1$, $b^7 = 1, \sigma(a) = a^{-10}b^6, \sigma(b) = a^{-7}b^2$.

Let K/k be the unramified Galois extension such that $\operatorname{Gal}(K/k) \cong \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$. By observing the action of σ on $Cl(k)/Cl(k)^7$, we see that $\operatorname{Gal}(K/\mathbb{Q})$ is Type B. Then there exists an unramified Galois extension L/k such that $\operatorname{Gal}(L/k) \cong$ $E(7^3)$. By Proposition 6, there exists an unramified Galois extension L'/k such that $\operatorname{Gal}(L'/k) \cong E'(7^3)$.

Example 10. Let k be a quintic field defined by the equation

$$x^5 + 324x^4 + 9890x^3 + 79115x^2 - 4706x + 1 = 0.$$

The class number of k is calculated in Schoof-Washington [11]. The class number of k is $37631 = 11^2 \cdot 311$, and $Cl_{11}(k) \cong \mathbb{Z}/11\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$. The solution of the congruence $t^5 \equiv 1 \mod 11$ are 3, 4, 5 and 9. By observing the action of $\operatorname{Gal}(k/\mathbb{Q})$ on the group $Cl_{11}(k)$, we see $\operatorname{Gal}(k(11)/\mathbb{Q})$ is isomorphic to $\Gamma(3,4)$, which is Type B. Thus there exists an unramified Galois extension L/k such that $\operatorname{Gal}(L/k)$ is $E(11^3)$.

Acknowledgment. I should like to express my gratitude to the referee for her/his careful reading and for her/his advice.

References

- [1] C. Bachoc and S.-H. Kwon, Sur les extensions de groupe de Galois $\tilde{A}_4,$ Acta Arith. **62** (1992), no. 1, 1–10.
- [2] W. Burnside, *Theory of groups of finite order*, Cambridge University Press, Cambridge, 1911.
- [3] R. Couture and A. Derhem, Un problème de capitulation, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 11, 785–788.
- G. Karpilovsky, *The Schur multiplier*, London Mathematical Society Monographs. New Series, 2, Oxford Univ. Press, New York, 1987.
- [5] K. Miyake, Notes on the ideal class groups of the p-class fields of some algebraic number fields, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 4, 79–84.
- [6] A. Nomura, On the existence of unramified pextensions, Osaka J. Math. 28 (1991), no. 1, 55–62.
- [7] A. Nomura, On the class numbers of certain Hilbert class fields, Manuscripta Math. 79 (1993), no. 3-4, 379-390.
- [8] A. Nomura, Notes on the existence of certain unramified 2-extensions, Illinois J. Math. 46 (2002), no. 4, 1279–1286.
- [9] A. Nomura, Some remarks on the existence of certain unramified *p*-extensions. (to appear in Tokyo J. Math.).
- [10] The PARI Group, PARI/GP, Bordeaux, 2004. (http://pari.math.u-bordeaux.fr/).

- [11] R. Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), no. 182, 543–556.
- D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152.
- [13] A. E. Western, Groups of Order p^3q , Proc. London Math. Soc. **S1-30** no. 1, 209-263.