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Abstract: We study the inverse Galois problem with restricted ramifications. Let p and q

be distinct odd primes such that p � 1 mod q. Let Eðp3Þ be the non-abelian group of order p3

such that the exponent is equal to p, and let k be a cyclic extension over Q of degree q. In this

paper, we study the existence of unramified extensions over k with the Galois group Eðp3Þ. We

also give some numerical examples computed with PARI.

Key words: Unramified p-extension; inverse Galois problem; ideal class group; cyclic
cubic field.

1. Introduction. Let k be an algebraic

number field. Let p be a prime number and G a

p-group. Whether there is an unramified Galois

extension over k with the Galois group G is an

interesting problem in algebraic number theory.

Bachoc-Kwon [1] and Couture-Derhem [3] studied

the case when k is a cyclic cubic field and G is the

quaternion group of order 8. The author [8] studied

the case when k is a cyclic quintic field and G is a

certain non-abelian 2-group of order 32. For an odd

prime p, let Eðp3Þ be the non-abelian group of order

p3 such that the exponent is equal to p. In [6], the

author studied the case when k is a quadratic field

and G ¼ Eðp3Þ. Let p and q be distinct odd primes

and k=Q a cyclic extension of degree q. The

author [9] studied the case when p � �1 mod q

and G ¼ Eðp3Þ. In this paper, we shall study the

case when p � 1 mod q and G ¼ Eðp3Þ.
In this paper, we call a field extension L=K=F

is a Galois extension if L=F and K=F are Galois

extensions.

2. Some lemmas. We shall describe some

lemmas which will be needed below.

Lemma 1 ([7, Theorem 8]). Let p be an odd

prime. Assume that the Galois extension K=k=Q

satisfies the conditions:

(1) The degree ½k : Q� is prime to p.

(2) K=k is an unramified p-extension.

Let ð�Þ : 1! Z=pZ! E ! GalðK=QÞ ! 1 be a

non-split central extension. Then there exists a

Galois extension L=K=Q such that

(i) 1! GalðL=KÞ ! GalðL=QÞ ! GalðK=QÞ ! 1
coincides with ð�Þ, and

(ii) L=K is unramified.

Since the multiplicative group F�p contains a

primitive ðp� 1Þ-th root of unity, it is easy to see

the following lemma.

Lemma 2. Let p and q be odd primes such

that p � 1 mod q. Let G be the cyclic group of order

q. Then the p-rank of any irreducible Fp½G�-module

is equal to 1.

3. Main theorem. Let p and q be odd

primes such that p � 1 mod q. Let k=Q be a cyclic

extension of degree q, and ClðkÞ the ideal class

group of k. Let Mk ¼ ClðkÞ=ClðkÞp and G ¼
Galðk=QÞ, then Mk is a Fp½G�-module in a natural

sense. Let � be a generator of G. For 1 5 j 5 p� 1,

we put MkðjÞ :¼ fc 2Mk j c� ¼ cjg.
It is easy to see that if jq 6� 1 mod p then

MkðjÞ ¼ f1g. Since the class number of Q is 1,

Mkð1Þ ¼ f1g.
We shall focus on some groups. Let

Eðp3Þ ¼ x; y; z

���� xp ¼ yp ¼ zp ¼ 1; xy ¼ yx;
xz ¼ zx; z�1yz ¼ xy

� �
:

This group is a non-abelian p-group of order p3 such

that the exponent is p.

Let t be a primitive q-th root of the congruence

tq � 1 mod p. Let

�0 ¼ x; y; w

���� xp ¼ yp ¼ wq ¼ 1; xy ¼ yx;
w�1xw ¼ xt; w�1yw ¼ ytq�1

� �
;

�1 ¼ x; y; z; w

�����
xp ¼ yp ¼ zp ¼ wq ¼ 1; xz ¼ zx;
yz ¼ zy; zw ¼ wz; y�1xy ¼ zx;
w�1xw ¼ xt; w�1yw ¼ ytq�1

* +
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These groups are independent of t. The center

of �1 is the cyclic group of order p generated by z.

Let j : �1 ! �0 be the homomorphism defined by

x 7! x; y 7! y; z 7! 1; w 7! w. Then j induces a non-

split central extension 1! Z=pZ! �1 ! �0 ! 1.

Further, the p-Sylow subgroup of �1 is isomorphic

to Eðp3Þ.
For these two groups, we refer Burnside [2] and

Western [13].

Theorem 3. Let p and q be odd primes such

that p � 1 mod q, and let k=Q be a cyclic extension

of degree q. Assume that there exist integers � and �

satisfying the following conditions:

(1) 1 < � 5 p� 1; 1 < � 5 p� 1,

(2) �q � 1 mod p; �� � 1 mod p,

(3) Mkð�Þ 6¼ f1g; Mkð�Þ 6¼ f1g.
Then there exists a Galois extension L=k=Q

such that

(i) L=k is an unramified extension, and

(ii) GalðL=kÞ is isomorphic to Eðp3Þ.
Proof. By the assumption (3) and Lemma 2,

there exist Galois extensions k�=k=Q and k�=k=Q

satisfying the conditions: (a) k�=k and k�=k are

unramified cyclic extensions of degree p, (b)

Galðk�=QÞ and Galðk�=QÞ are isomorphic to

hx; wjxp ¼ wq ¼ 1; w�1xw ¼ x�i and hy; wjyp ¼ wq ¼
1; w�1yw ¼ y�i, respectively. Let K ¼ k�k�. By the

assumptions (1) and (2), � is a primitive q-th root of

the congruence �q � 1 mod p. Then GalðK=QÞ is

isomorphic to �0. As mentioned above, there exists

a non-split central extension 1! Z=pZ! �1 !
GalðK=QÞ ! 1. By Lemma 1, there exists a Galois

extension L=K=Q such that GalðL=QÞ ¼� �1 and

that L=K is unramified. Since the p-Sylow subgroup

of �1 is isomorphic to Eðp3Þ, GalðL=kÞ ¼� Eðp3Þ.
Therefore L=k=Q is a required extension. �

Remark 4. Let k be a cyclic cubic field, and

p an odd prime such that p � 1 mod 3. Let kðpÞ be

the Hilbert p-class field of k. Miyake [5] studied the

p-rank of the ideal class group ClðkðpÞÞ and the

action of Galðk=QÞ on ClðkðpÞÞ. Theorem 4 is a

generalization of a part of Miyake’s results in [5].

Let E0ðp3Þ be the non-abelian group of order p3

such that the exponent is equal to p2. The following

proposition is a generalization of [9, Theorem 3].

These proofs are essentially same. For the conven-

ience of the reader, we give a sketch of the proof.

We denote by ½G;G� the commutator subgroup

of G.

Proposition 5. Let p be an odd prime and k

an algebraic number field of finite degree such that

the p-rank of ClðkÞ is equal to 2. Assume that there

exists an unramified Galois extension L1=k such that

GalðL1=kÞ ¼� Eðp3Þ. Then the following two condi-

tions are equivalent.

(1) ClðkÞ has an element of order p2.

(2) There exists an unramified Galois extension

L=k such that GalðL=kÞ ¼� E0ðp3Þ.
Sketch of the proof. First, we show that the

assertion (1) implies (2). By the condition (1), ClðkÞ
has a subgroup isomorphic to Z=p2Z� Z=pZ. Then

there exists an unramified Galois extension L2=k

such that GalðL2=kÞ ¼� Z=p2Z� Z=pZ. �

Let M ¼ L1L2 and K ¼ L1 \ L2, then M=k is a

p-extension and GalðK=kÞ ¼� Z=pZ� Z=pZ. Let L3

be a subfield of M satisfying the conditions: (i) L3 �
K and ½L3 : K� ¼ p, (ii) L3 6¼ Liði ¼ 1; 2Þ. Then L3=k

is an unramified Galois extension. We see that L3=k

is a non-abelian extension of degree p3 and that the

exponent of GalðL3=kÞ is equal to p2. Hence

GalðL3=kÞ is isomorphic to E0ðp3Þ.
Next, we show that the assertion (2) implies

(1). By the assumption, there exists an unramified

Galois extension L2=k such that GalðL2=kÞ ¼�
E0ðp3Þ. Let M ¼ L1L2 and K ¼ L1 \ L2. We put

GM ¼ GalðM=kÞ. Let CM be the center of GM . Then

we see that CM ¼ GalðM=KÞ. Let K� be the sub-

field of M corresponding to the group CM \
½GM;GM �. It is well known that CM \ ½GM;GM � is

isomorphic to a quotient group of the Schur multi-

plier of GM=CM . (See for example Karpilovsky

[4, Proposition 2.1.7].) The Schur multiplier of the

group GM=CM ¼� Z=pZ� Z=pZ is isomorphic to

Z=pZ. Since K=k is abelian, ½GM;GM � is contained

in CM ¼ GalðM=KÞ. Since M=k is non-abelian,

½GM;GM � ¼ CM \ ½GM;GM � ¼� Z=pZ. Hence

½M : K�� ¼ p, and GalðK�=kÞ ¼� Z=p2Z� Z=pZ.

4. Cyclic cubic fields. In this section we

consider the case that q ¼ 3. Let p be an odd prime

such that p � 1 mod 3. The number of the primi-

tive roots of the congruence t3 � 1 mod p is two.

Let k=Q be a cyclic cubic field, and K=k=Q a Galois

extension such that K=k is unramified and that

GalðK=kÞ ¼� Z=pZ� Z=pZ. Then the Galois group

GalðK=QÞ is isomorphic to a group

�ð�; �Þ ¼ x; y; w

���� xp ¼ yp ¼ w3 ¼ 1; xy ¼ yx;
w�1xw ¼ x�; w�1yw ¼ y�

* +
;

where � and � are primitive roots of t3 � 1 mod p.

We call the group �ð�; �Þ Type A (resp. Type B), if
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� � � mod p (resp. � 6� � mod p). We remark that

if � 6� � then �� � 1 mod p, so that it is nothing

but the group �0 for q ¼ 3.

Remark 6. Let K=k=Q be a Galois exten-

sion such that GalðK=QÞ is Type A. If F is a

number field such that k 	 F 	 K, then F=Q is a

Galois extension.

Proposition 7. Let p be an odd prime such

that p � 1 mod 3, and k=Q be a cyclic cubic

extension. Assume that there exists an unramified

Galois extension F=k such that ½F : k� ¼ p and that

F=Q is non-Galois. Then there exists a Galois

extension L=k=Q such that

(i) L=k is an unramified extension, and

(ii) GalðL=kÞ is isomorphic to Eðp3Þ.
Proof. Let �; � be distinct primitive roots of

t3 � 1 mod p. By the assumption concerning the

existence of F , we see Mkð�Þ 6¼ f1g and Mkð�Þ 6¼
f1g. Thus the proposition follows from Theorem 3.

�

5. Numerical examples. In this section,

we give some examples computed with PARI [10].

Let ClpðkÞ be the p-Sylow subgroup of the ideal class

group ClðkÞ.
Example 8. Let n be an integer, and let k be

the simplest cubic field defined by the equation

x3 � nx2 � ðnþ 3Þx� 1 ¼ 0 ð1 5 n 5 1000Þ:

For the simplest cubic fields, we refer Shanks [12].

The number of the field such that the rank of

Cl7ðkÞ is greater than or equal to 2 is 11. The group

Cl7ðkÞ of these fields are isomorphic to Z=7Z�
Z=7Z. Let kð7Þ be the Hilbert 7-class field of k.

Then for the case n ¼ 193, 295, 508, 523,

525, 532, 548, 762, 852, 983, there exists an

unramified Galois extension L=k such that

GalðL=kÞ ¼� Eð73Þ. (see Table I).

Example 9. Let k be the simplest cubic field

defined by the equation x3 þ 269x2 þ 266x� 1 ¼ 0.

Then the class number of k is 343, and ClðkÞ ¼�
Cl7ðkÞ ¼� Z=49Z� Z=7Z. Let � be a generator of

Galðk=QÞ. By computing with PARI, we see that

there exist ideal classes a and b such that a7 6¼ 1;

b7 ¼ 1; �ðaÞ ¼ a�10b6; �ðbÞ ¼ a�7b2.

Let K=k be the unramified Galois extension

such that GalðK=kÞ ¼� Z=7Z� Z=7Z. By observing

the action of � on ClðkÞ=ClðkÞ7, we see that

GalðK=QÞ is Type B. Then there exists an unrami-

fied Galois extension L=k such that GalðL=kÞ ¼�
Eð73Þ. By Proposition 6, there exists an unramified

Galois extension L0=k such that GalðL0=kÞ ¼� E0ð73Þ.
Example 10. Let k be a quintic field defined

by the equation

x5 þ 324x4 þ 9890x3 þ 79115x2 � 4706xþ 1 ¼ 0:

The class number of k is calculated in Schoof-

Washington [11]. The class number of k is 37631 ¼
112 
 311, and Cl11ðkÞ ¼� Z=11Z� Z=11Z. The solu-

tion of the congruence t5 � 1 mod 11 are 3, 4, 5 and

9. By observing the action of Galðk=QÞ on the group

Cl11ðkÞ, we see Galðkð11Þ=QÞ is isomorphic to

�ð3; 4Þ, which is Type B. Thus there exists an

unramified Galois extension L=k such that GalðL=kÞ
is Eð113Þ.
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