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Abstract: In this paper, we compute Alexander polynomials of the dual curves of certain

smooth quartic curves. From our previous paper, all of these dual curves are ð2; 3Þ torus curves

of degree 12. As a consequence, from these curves, we find a new Zariski pair 12E6 þ 16A1, with

different Alexander polynomials.
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1. Introduction. Given a homogeneous

polynomial F in C½x; y; z�, in [4], a quasi-toric

decomposition of F is a collection of homogene-

ous polynomials f; g; h 2 C½x; y; z� such that fp þ
gq þ hpqF ¼ 0, for two co-prime positive integers

p; q > 1.

In particular, a curve is called of torus type

ðp; qÞ if it admits a quasi-toric decomposition where

h ¼ 1. For short, we call a ðp; qÞ torus curve. Such

a curve was first studied by Zariski in [15] where a

sextic of torus type ð2; 3Þ appears as the dual of a

smooth cubic curve. Also in that paper, the first

example of a Zariski pair was given. Briefly, a

Zariski pair is a pair of curves with the same local

type of singularities but have different types of

topology of the complement in CP2. This pair

consists of two sextics with 6 cusps A2, one of these

two curves has the property that 6 cusps are lying

on a conic whereas another curve has no such the

property. Later it is known that the first curve is a

ð2; 3Þ torus curve, the latter is not.

For the last twenty years after the paper of

Artal [1] was published, the study of Zariski pairs

is an active area. The main tools are the funda-

mental group of the complement �1ðP2 n CÞ and the

Alexander polynomial. Many Zariski pairs of sextics

were given in [10–12], most of them appear as a

ð2; 3Þ torus curve and a non ð2; 3Þ torus curve.

The next candidates of ð2; 3Þ torus curves are

curves of degree 12. In this paper we give a new

example of Zariski pair, both of these curves are

ð2; 3Þ torus curves. This is, in our knowledge, the

first example of a Zariski pair where both are ðp; qÞ
torus curves.

Furthermore the ð2; 3Þ torus curves of degree 12

in this paper come as dual curves of smooth quartics

(see our result [13]). This is an analog case of

Zariski’s sextic with 9A2 which is the dual of a

smooth cubic. The Alexander polynomial of this

sextics with 9A2 is ðt2 � tþ 1Þ3. This is the highest

degree polynomial among the Alexander polyno-

mials of sextics of torus type (see [8]). To compute

Alexander polynomials of the dual curves of the

smooth quartics is the motivation for our interest.

Our main results in this paper are Propositions

4.1 and 4.2 found in the last section.

2. Dual of smooth quartics. In this sec-

tion we first recall the definition of the dual curve.

Later we recall some results about the dual curves

of smooth quartics and their ð2; 3Þ toric decompo-

sition found in our previous paper [13].

Definition 2.1. Let C � P2 be a curve. Let

us consider the set of lines in P2 as another

projective space, ðP2Þ�, where a point ða; b; cÞ in

ðP2Þ� corresponds to the line aX þ bY þ cZ ¼ 0

in P2. Then the closure of the set fTPC 2
ðP 2Þ�jP 2 C n SingðCÞg is called the dual curve of

C, which we denote by C�.
It is well-known that the dual of a (generic)

smooth cubic is a sextic with exactly 9A2’s and the

dual of a generic smooth quartic is a curve of degree

12 with 28A1’s and 24A2’s. In general, if a smooth

quartic curve has n hyperflexes, then the singular-

ities of the dual curve are ð28� nÞA1 þ ð24�
2nÞA2 þ nE6, (0 � n � 12, n 6¼ 10 and n 6¼ 11).

As we mentioned in the introduction, the

dual of a smooth cubic has a ð2; 3Þ toric decom-
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position. In [14], Tokunaga showed that there are

at least 12 different toric decompositions. More-

over, we proved in [13] that there are exactly 12

decompositions.

In [13] we proved a similar result for smooth

quartics, the dual of any smooth quartic is a ð2; 3Þ
torus curves of degree 12. About the singularities

on the dual curves: ð24� 2nÞA2 þ nE6 locate

at the same positions as the intersection points of

V ðg4Þ and V ðg6Þ, where g3
4 þ g2

6 is the toric decom-

position of the dual curve; ð28� nÞA1 singularities

stay outside of the intersection of V ðg4Þ and

V ðg6Þ.
In this paper, we study three interesting cases:

The Klein curve K4 (no hyperflex, n ¼ 0), the

Fermat curve F4 and another partner which is

named by G4 (maximum number of hyperflexes,

n ¼ 12 in both cases).

For the Klein curve K4, which is defined by

x3yþ y3zþ z3x ¼ 0, the dual curve K�4 has a toric

decomposition 27g2
6 � 4g3

4 (we can rewrite it to the

standard form), where

g4 ¼ u3vþ v3wþ w3u

g6 ¼ uv5 þ vw5 þ wu5 � 5u2v2w2;

are both irreducible polynomials. The dual curve

K�4 has 24A2 þ 28A1 singularities.

The Fermat quartic curve F4: Its defining

polynomial is x4 þ y4 þ z4. The toric decomposition

of F �4 is given by

f� ¼ �27ðu2v2w2Þ2 þ ðu4 þ v4 þ w4Þ3:

The last curve G4 which also shares the same

number of hyperflexes as the Fermat curve is

defined by

x4 þ y4 þ z4 þ 3ðx2y2 þ y2z2 þ z2x2Þ ¼ 0:

The toric decomposition of G�4 is given by g3
4 � 27g2

6,

where

g6 ¼ ð3u2 þ v2 þ w2Þðu2 þ 3v2 þ w2Þðu2 þ v2 þ 3w2Þ
g4 ¼ 7ðu4 þ v4 þ w4Þ þ 18ðu2v2 þ v2w2 þ w2u2Þ:

In the last two curves, their dual curves F �4 and G�4
have the same 12E6 þ 16A1 singularities.

3. Alexander polynomials of curves. In

this section, we recall some facts about the

Alexander polynomial of a plane curve. As we

mentioned in the introduction, the fundamental

group of the complement and the Alexander poly-

nomial are the main tools to show that a pair of

curves is a Zariski pair. Normally, the fundamental

groups are not easy to compute, the Alexander

polynomial which is introduced by Libgober [5] in

the 80s is a weaker invariant, but it is easier to

compute. Recently, Libgober wrote a nice survey on

this invariant in [6]. Together with another survey

by Oka [9], one can learn several ways to compute

this polynomial. Here, we briefly recall some facts

for our purpose.

Let consider an irreducible curve C of degree

d. Denote SingðCÞ, or Sing for short, the set of

singularities of C.

Lemma 3.1 (Libgober, in [5]). The Alexand-

er polynomial �ðtÞ divides the product of the local

Alexander polynomials
Q

P2SingðCÞ�P ðtÞ.
For example, the Alexander polynomial of an

irreducible curve with at most cusps and nodes is

equal to ðt2 � tþ 1Þs for some non-negative integer

s. The reason is that the local Alexander polynomial

of a node is 1 and of a cusp is t2 � tþ 1.

Thanks to the works of Artal, Esnault and

Loeser-Vaquié (cf. [1,3,7]), the Alexander polyno-

mial can be computed explicitly as follows:

Lemma 3.2. The Alexander polynomial is

written as

�ðtÞ ¼
Yd�1

k¼1

�kðtÞ‘k ; k ¼ 1; . . . ; d� 1;

where �kðtÞ ¼ ðt� expð2k�id ÞÞðt� expð�2k�i
d ÞÞ and

‘k ¼ dimH1ðP2;LðkÞÞ.
We refer to [1,3,7] for the definition of the sheaf

LðkÞ. By [1], the integer ‘k is equal to the dimension

of the cokernel of the homomorphism

�k : H0ðP2;Oðk� 3ÞÞ ! �P2SingOp=J P;k;d:

Remark 3.3. For detailed explanations and

examples about the ideal J P;k;d and the cokernel of

�k we refer to [1,8,9].

In this paper, except the trivial case of A1, the

ideals J P;k;d where d ¼ 12 are computed as below.

. A2 (u2 þ v3 ¼ 0) case: hu; vi (for k ¼ 10 or 11)

and trivial otherwise.

. E6 (u3 þ v4 ¼ 0) case: hu; vi (for k ¼ 7; 8; 9),

hu; v2i (for k ¼ 10), hu2; uv; v2i (for k ¼ 11) and

trivial otherwise.

The following result is the second part of

Theorem 4.7 in [2].

Theorem 3.4 (Cogolludo-Libgober [2]). For

any irreducible plane curve C ¼ fF ¼ 0g whose only

singularities are nodes and cusps, the set of quasi-
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toric relations of C fðf; g; hÞ 2 C½x; y; z�3jf2 þ g3 þ
h6F ¼ 0g has a group structure and it is isomorphic

to Z2q, where the Alexander polynomial �ðtÞ ¼
ðt2 � tþ 1Þq.

4. New Zariski pair of degree 12. The

purpose of this section is to show a new Zariski

pair of curves of degree 12. For this purpose, we

calculate the Alexander polynomials of three cases

which we mentioned in the introduction.

Denote for simplicity

�k ¼ �kðtÞ

¼ t� exp
2k�i

d

� �� �
t� exp

�2k�i

d

� �� �
:

In particular, when d ¼ 12, the above polynomials

are the following: �1 ¼ �11 ¼ t2 � t
ffiffiffi
3
p
þ 1, �2 ¼

�10 ¼ t2 � tþ 1, �3 ¼ �9 ¼ t2 þ 1, �4 ¼ �8 ¼ t2 þ
tþ 1, �5 ¼ �7 ¼ t2 þ t

ffiffiffi
3
p
þ 1 and �6 ¼ ðtþ 1Þ2.

4.1. Alexander polynomials of the dual of

the Fermat curve and its partner. In Section 2,

both of these dual curves have the same singularity

configuration 12E6 þ 16A1. According to Lemma

3.2 and Remark 3.3, their Alexander polynomials

have the form

�ðtÞ ¼
Y11

k¼7

�‘k
k

���� ðt
12 � 1Þðt� 1Þ
ðt3 � 1Þðt4 � 1Þ

� �12

:

Here ðt
12�1Þðt�1Þ
ðt3�1Þðt4�1Þ ¼ ðt2 � tþ 1Þðt4 � t2 þ 1Þ is the irre-

ducible factorization over Z of the local Alexander

polynomial of the singularity E6. By Lemma 3.1

and from the above list of �k, we have ‘8 ¼ ‘9 ¼ 0,

‘7 ¼ ‘11 (since t4 � t2 þ 1 ¼ �7:�11). Hence,

�ðtÞ ¼ �‘7

7 :�
‘10

10 �‘11

11 ¼ ðt2 � tþ 1Þ‘10ðt4 � t2 þ 1Þ‘7 :

Thus, we only need to compute ‘7 and ‘10.

The integer ‘7 is given by the dimension of the

cokernel of

�7 : H0ðP2;Oð4ÞÞ ! �P2SingOp=hu; vi:

The left side is the space of quartic curves, hence

the dimension is 5�6
2 ¼ 15, while the right side is the

space of dimension 12, since the sum only runs over

12 singularities E6 (A1 singularities have trivial

J P;k;d, we can omit them). Thus,

‘7 ¼ dim cokerð�7Þ ¼ dim kerð�7Þ � 3:

We can use linear algebra to find kerð�7Þ which

is the space of quartics passing through 12 E6

singularities where the coordinates of these singu-

larities are easily find from the given toric decom-

position. For the sake of completeness, we list them

all here:

. The coordinates of SingðF �4 Þ: ð0; !; 1Þ, ð!; 0; 1Þ
and ð!; 1; 0Þ, where ! runs over the 4th roots

of �1.

. The coordinates of SingðG�4Þ: ð1;	1;	2iÞ,
ð1;	1;
2iÞ and their permutations.

By computation, the dimension of kerð�7Þ in F �4 case

(resp. G�4 case) is 4 (resp. 3).

Alternatively, using geometrical arguments

and the toric decompositions, we can show that

the space kerð�7Þ has a basis including fx2yz;

xy2z; xyz2; x4 þ y4 þ z4g (resp. fð3x2 þ y2 þ z2Þðx2 þ
3y2 þ z2Þ; ð3x2 þ y2 þ z2Þðx2 þ y2 þ 3z2Þ ; ðx2 þ 3y2 þ
z2Þðx2 þ y2 þ 3z2Þg) in F �4 case (resp. G�4 case).

Thus, ‘7 is 1 (resp. 0) in the case of F �4 (resp.

G�4).

The integer ‘10 is given by the dimension of the

cokernel of

�10 : H0ðP2;Oð7ÞÞ ! �P2SingOp=hu; v2i:

Thus

‘10 ¼ 24� 36þ dim kerð�10Þ ¼ dim kerð�10Þ � 12:

Geometrically, a curve g7 ¼ 0 of degree 7 is in

the kernel of �10, if it passes through 12 E6 singular-

ities (locally defined by u3 þ v4 ¼ 0) and it has v ¼ 0

as the tangent line at each singularity. Using linear

algebra, we can find this linear system explicitly,

dim kerð�10Þ ¼ 13 in both cases F �4 and G�4.

Furthermore, from the information the

dim kerð�10Þ and the toric decompositions, we can

realize two bases for kerð�10Þ: fðxyzÞ2l1; ðx4 þ y4 þ
z4Þg3g (for F �4 case) and fð3x2 þ y2 þ z2Þðx2 þ 3y2 þ
z2Þðx2þ y2þ 3z2Þl1; ½7ðx4þ y4þz4Þþ 18ðx2y2þ y2z2þ
z2x2Þ�g3g (for G�4 case), where l1 and g3 run over

a basis of H0ðP2;Oð1ÞÞ and of H0ðP2;Oð3ÞÞ, re-

spectively.

Therefore, in both cases, ‘10 ¼ 1. Thus, we

prove the following result.

Proposition 4.1. The Alexander polynomial

of the dual of the Fermat quartic F �4 (resp. the

partner curve G�4) is ðt2 � tþ 1Þðt4 � t2 þ 1Þ (resp.

t2 � tþ 1). Hence the pair of these two curves is a

Zariski pair.

4.2. Alexander polynomial of the dual of

the Klein curve. For the Klein curve, the dual

curve has 24A2 þ 28A1 singularities. As mentioned,

by Lemma 3.1, the Alexander polynomial has the

form
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�ðtÞ ¼ ðt2 � tþ 1Þs;

for some non-negative integer s. By Lemma 3.2 and

the values of �k, we get s ¼ ‘10.

To determine the kernel of the homomorphism

�10 : H0ðP2;Oð7ÞÞ ! �P2SingOp=hu; vi

the linear algebra technique is hard to follow since

the coordinates of 24A2 singularities are very

complicated. There are two alternative ways to

find the kernel of �10. One can determine a basis

of the kernel as fðx3yþ y3zþ z3xÞf; ðxy5 þ yz5 þ
zx5 � 5x2y2z2Þlg, where f runs over a basis of

H0ðP2;Oð3ÞÞ (dim ¼ 10) and l runs over a basis of

H0ðP2;Oð1ÞÞ (dim ¼ 3). Thus,

‘10 ¼ dim cokerð�10Þ ¼ ð24� 36Þ þ 13 ¼ 1:

One also can apply Theorem 3.4 to find the same

answer. Thus, we complete the proof of the follow-

ing result.

Proposition 4.2. The Alexander polynomial

of the dual of the Klein curve K�4 is t2 � tþ 1.

Remark 4.3. The Alexander polynomials of

G�4 and K�4 are the same as the Alexander poly-

nomial of a generic ð2; 3Þ torus curve of degree 12

(see Theorem 31 [9]).
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