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Properties of some difference polynomials

By Yong L1u“** and Hong-Xun Y1)

(Communicated by Masaki KASHIWARA, M.J.A., Jan. 15, 2013)

Abstract:

In this article, we investigate some properties of some difference polynomials.

The results in this article improve some theorems of Liu and Laine. Several examples are
provided to show that our results are best possible.

Key words:

1. Introduction and results. In this pa-
per, we assume that the reader is familiar with the
fundamental results and the standard notations of
the Nevanlinna theory (see, e.g., [12,16]). In addi-
tion, we will use the notation o(f) to denote the
order of the meromorphic function f(z), and A(f)
and /\(%) to denote the exponent of convergence of
zeros and poles of f(z), respectively.

Hayman [11] proved two classical theorems
which can be combined as follows:

Theorem A [11]. Let f(z) be a transcenden-
tal meromorphic function and a # 0,b be finite
complex constants. Then f*(z)+ af'(z) — b has in-
finitely many zeros for n > 5. If f(z) is transcenden-
tal entire, this holds forn > 3, resp. n > 2, if b = 0.

Recently, a number of papers (see, e.g.,
[1-3,5-10,13-15]) have focused on complex differ-
ence equations and difference analogues of
Nevanlinna’s theory.

Liu and Laine [15] established partial difference
counterparts of Theorem A, and obtained the
following

Theorem B [15]. Let f(z) be a transcenden-
tal entire function of finite order, not of period c,
and let s(z) be a nonzero function, small compared to
f. Then f*(2) + f(z+ ¢) — f(2) — s(2) has infinitely
many zeros, providedn > 3, resp. n > 2, if s = 0.

In this paper, we consider the zeros of the
difference polynomial
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k
F.(2) = Zaj(z)f(z—l— ¢j) —a(z) f"(2),
=1
and obtain the following results which generalize
Theorem B. In Theorems 1.1 and 1.5, we con-
sider the case when the coefficients of F,(z) are
constants.

Theorem 1.1. Let f(z) be a transcenden-
tal entire function of finite order p(f), let
b,a,cj,a;(j =1,2,---,k) be complex constants. Set

F.(z) = Zf;l ajf(z+¢;) —af"(z), where n>3 is
an integer. Then F,(z) have infinitely many zeros
and AMFn(z) —b) = p(f) provided that
Y ai(2)f(z+¢) #b.

In the previous theorem, we consider difference
polynomial F,(z) with n > 3. The following theorem
is about the case n = 2:

Theorem 1.2. Suppose that f(z) be a finite
order transcendental entire function with a Borel
exceptional value d. Let b(z),a(z)(#0),a;(2)(j =
1,2,---,k) be polynomials, and let c¢;(j=
1,2,---,k) be complex constants. If either d =0

and 25:1 aj(2)f(z+¢;)#0, or, d#0 and
S5 daj(2) — d*a(z) — b(z) £ 0, then Fy(2) — b(z) =

Zf;l a;(2) f(z+ ¢;) — a(2) f*(2) — b(2) has infinitely
many zeros and AM(Fa(z) — b(z)) = p(f).

Example 1.3. For f(z) = exp{z} + z,a(z) =
4, ¢y = 3mi,co = iy c3 = 0, ¢4 = 5mi, ¢ = Tmi, a1 (2) =
z, a2(2) = =3z, az(z) =62, ay(z) = -1, as(z) =1,
ag(z) = -+ = ap(2) = 0,b(2) = 2mi, we have
Fy(2)=b(2) = 35 a;()f (2+ ¢)) — a(2)f*(2) = b(z) =
—4exp{2z}. Here f(z) has no Borel exceptional
values, but Fy(z) — b(z) has no zeros. Hence the
condition that f(z) has a Borel exceptional value
cannot be omitted in Theorem 1.2.

Example 1.4. For f(z) =exp{z}+1,a=2,
cg=In2,¢c=In4,c3=1In3,a1 =3,as =1,a3 = -2,
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ag=---=a;=0, we have Fy(z)= Zle a;f(z+
¢j) — af*(z) = —2exp{2z}. Here Fy(z) has no zero,
but f(z)Fy(z) = —2exp{2z}(exp{z} +1) has infi-
nitely many zeros. This shows that f(z)Fy(z) is
different from Fy(z).

What can we say about f(z)Fy(z) when f(z) has
infinitely many multi-order zeros. For this question,
we obtain the following Theorem 1.5:

Theorem 1.5. Let f(z) be a finite order
transcendental function, and let
b,a,aj,¢;(j=1,2,---,k) be complex constants. If
f(2) has infinitely many multi-order zeros, then
H(z) = f(:)(55, aif (= + ¢j) — af*(2)) — b has infi-
nitely many zeros.

Example 1.6. For f(z) = exp{exp{z}},c1 =
In3, o =In3,c3=0,a=2,a1=1, ap =1, a3 =2,
ay = --- = a =0, we obtain

entire

3
— Zajf(z—f— cj) — af3(,z) = 2exp{exp{z}}.

Here F3(z) # 0. This shows that Theorem 1.1 may
fail for entire functions of infinite order.

Example 1.7. For f(z) =exp{z} +2,a=2,
ci=In3,c3=Ind,a1 =1l,a0=1,a3=—-1l,a4=--- =
ar = 0, we have Fy(z) = ij:l a;f(z+¢j) —af?(z) =
—2exp{2z} — 6. Here Fy(z) # —6. This shows that
Theorem 1.1 may be fail for n =2 and that the
condition n > 3 in Theorem 1.1 is the best possible.

Example 1.8. For f(z) =exp{z}+1,a=1,
ap =2,a3=3,a3=—-4,a4 = - =a,=0,b=0,
¢t =Ind,co =In3,c3 =In2, we have Fy(z)=
exp{z}(7 — exp{z}), which assume all finite values
infinitely often.

2. Preliminary lemmas. In order to prove
our theorems, we need the following lemmas.

The following lemma is a generalisation of
Borel’s Theorem on linear combinations of entire
functions.

Lemma 2.1 [16, pp. 79-80]. Let fi(2)(j=

1,2,---,n)(n>2) be meromorphic function,
9i(2)(j =1,2,---,n) be entire functions, and let
them satisfy

(i) fi(2)e” )+ + fi(z)en) =0

i1 when1§j<k§n, then g;(z

j
constant.
(iii) when 1 < j<n, 1< h<k<mn, then

T(r, fj) = o{ T(r,e""")}

where E C (1,00) is of finite linear measure or finite
logarithmic measure. Then f; =0(j=1,---,n).

— gi(2) is not a

(T‘)OO7 rgE)7
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Let c;,j=1, -,
complex numbers.
in f(z) is a function which is polynomial in

n, be a finite collection of
Then a difference polynomial

f(z+¢j),j=1,---,n, with meromorphic coeffi-
cients ay(z) such that T'(r,ay) = S(r, f) for all A
As for difference counterparts of the Clunie

lemma [4], see [8,Corollary 3.3]. The following
lemma due to Laine and Yang [14] is a more general
version.

Lemma 2.2 [14]. Let f be a transcendental
meromorphic solution of finite order of a difference
equation of the form

where Ul(z, f), P(z, f), and Q(z, f) are difference
polynomials such that the total degree degU(z, f) =
n in f(2) and its shifts, and deg Q(z, f) < n. More-
over, we assume that U(z, ) contains just one term
of maximal total degree in f(z) and its shifts. Then

m(r, P(z f)) = S(r, f).

The following lemma is a difference analogue of
the logarithmic derivative lemma.

Lemma 2.3 [8,10]. Let f(z) be a meromor-
phic function of finite order and let ¢ be a non-zero
complex number. Then we have

(. f(;J)C)) =5 1)

3. Proof of Theorem 1.1. The main idea of
this proof is from [15, case n > 3|, while the details
are somewhat different. For the convenience of the
reader, we give a complete proof. Firstly, we prove
that p(F, —b) = p(f). Lemma 2.3 and F,(z) =
Zf;l a]f(z +¢;) — af"(2) yield that

(3.1) nT(r,f(2)) =T(r,af"(2)) +0O(1)

n
=T[r
=1

<m <r, f(2)

a;f(z+¢j) = Fn(z)> +0(1)

S aif(z+ )
f(2)

+m(r, Fu(2 ))+0( )
=m(r, f(2)) + m(r, F,(2)) + S(r, f)
=T(r, f(2)) + T(r, Fu(2)) + S(r, f).
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On the other hand, from Lemma 2.3 and F,(z) =
Z?Zl a;jf(z+¢;) — af*(z), we have
(3:2)  T(r, Fu(2)) = m(r, Fu(2))

— m(ya, iajf(z—i— ¢j) — af"(z)>
s+ m (- £5550)

J=1
+m(r,af"(z)) + O(1)
=(n+1)T(r f(2)+S(r, ).

(3.1) and (3.2) imply that p(f) = p(F,). Hence
p(F, —b) = p(f). We next discuss the following two
cases:
Case 1. p(f)=0. By 0< A(F, —
p(f) =0, we have A(F,
thus holds.
Case 2. p(f) > 0. Suppose, contrary to the asser-
tion, that A(F,, — b) < p(f). By this and p(F,, — b) =
p(f), we can rewritten F,(z) — b as

k
z)—b= Zajf(z +¢j) —af'(z) —
= p(z) exp{q(2)},

where ¢(z) £ 0 is a polynomial, p(z) is an entire
function with p(p) < p(f). Differentiating (3.3) and
eliminating exp{q(z)}, we obtain

(3.4) SV (=) (anp(2) f'(2) = a(p'(2) + 4 (2)p(2)) £ (2))
k
(2) Z a;f'(z+ ¢;) + b(p'(2) + p(2)¢ (2))

b) Sp(Fn_b) =
—b) = p(f). Theorem 1.1

(3.3)

—{'(2) +p(2)d (=
Suppose that
(3.5)  anp(2)f'(2) — a(p'(2) + ¢ (2)p(2)) f(2) = 0.
Integrating (3.5), we have
(3.6) f"(2) = dp(2) expia(2)},

where d is a nonzero constant. Hence (3.3) and (3.6)
yield that

)} Zajf(z—f— cj).

k
(3.7)  Fuz)-b= Z a;f(z+¢;) — af"(z) —

1
= E fn(z)a
that is
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k
(3.8) d <Z aif(z+¢j) — b) = (ad + 1) f"(2).

Since Zf;l ajf(z+c¢j) #b, we have ad+1#0.
Differentiating (3.8), we have

k a; /Z C:
(3.9) d<Z %) — n(ad + 1) " (2).

By using Lemma 2.3 we obtain from (3.9) that
(Tl - 1)T(Taf) = (n - 1)m(r,f) = S(Taf/) = S(Taf)7
which is a contradiction, since n > 3. Therefore
P(z, f) # 0. Since n > 3, by Lemma 2.2 and (3.4),
we obtain that
(3.10)  T(r,anp(2)f'(2) — a(p'(2) + ¢ (2)p(2)) f(2))

= m(r, anp(2) f'(2)

—a(p'(2) + 4 (2)p(2)) £(2))

= 5(r,1),
and
(3.11)  T(r, f(2)(anp(2) f'(2)

—a(p'(2) + ¢(2)p(2)) f
=m(r, f(2)(anp(2) f'(2)
—a(p'(2) + ¢ (2)p(2)) f(2)))
= S(Tv f)7

for all r outside of an exceptional set of finite loga-
rithmic measure. Thus, by (3.10) and (3.11), we have

T(r, f) = S(r, f),

for all r outside of an exceptional set of finite
logarithmic measure. This is a contradiction. Hence
ME,(2) —b) = p(f). Theorem 1.1 is thus proved.
4. Proof of Theorem 1.2. Suppose that d
is the Borel exceptional value of f(z). Then we can
write f(z) as
(4.1) f(2) = d+ g(z) exp{az"},

where « is a nonzero constant, k > 1 is an integer,
and g¢(z) is an entire function such that

9(2)(#£ 0),p(g9) < k. By (4.1), we have

(42)  f(z+¢) = d+ g(z+ ¢))g;(2) exp{a},
(j=12,--,k)

where  g;(2) = exp{a( N2 e + afly M2k 202 +-

acs}, p(gj) = k— 1. Suppose that Fy(z) —
polynomlal Then

Z%

b()lsa

(4.3) (2 +¢;) — a(2) f*(2) = b(2) = p(2),
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where p(z) is a polynomial. By Lemma 2.3 and
(4.3), we have

2T (r, f(2)) = 2m(r, f(2))
=m(r,a(2) f*(2)) + S(r, f)

(Zay f(5+ ) — bz) - <z>>+s<r,f>
+Z ( Z“j))m(r,b(z))

k
+Zmra]

=1

=T(r, f(z ))+5( » f) + O(log ),

which is a contradiction. Therefore, Fy(z) — b(z2) is
transcendental. By (4.1) and (4.2), we have

(44)  F(2) - b(2)

(Z a(2)g(z + ¢)g,(2) - 2da<z>g<z>>

x exp{az"} — a(2)¢*(2) exp{202"}

S(r, f)

+Zdaj a(2) = b(2).
Since g(z) Z 0, we have p(Fy(z) — b(z )) o(f) =k.
Next, we prove A(Fy(z) — b(2)) = k. Suppose, con-
trary to the assertion, that A(Fy(z) — b(2)) < p(f).
Then
(4.5) Fy(2) — b(2) = I(2) exp{ 32"},

where ( is a nonzero constant, I(z) is an entire
function such that p(l) < k.

(i) Suppose that d =0. (4.
imply that

(4.6) Za]

— a(2)g*(2) exp{202"} — b(z) = I(2) exp{fz"}.
Since g(z) #0, by comparing the growth of both
sides of (4.6), we have 8 = 2a. Hence (4.6) can be
rewritten as

1), (4.2) and (4.5)

9(z + ¢))g;(2) exp{az’}

k
(A7) > ai(2)g(z + ¢;)gi(2) exp{az'}
=

— (a(2)*(2) + 1(2)) exp{2a2"} — b(2) = 0.
(4.7), we that
Zle aj(z)g9(z+ ¢;)gj(z) =0, a contradiction, since

By Lemma 2.1 and obtain

[Vol. 89(A),

Z?Zl aj(z)f(z+¢;) #0. Hence, we obtain that
AMFy(z) — b(2)) = k.

(ii) Suppose that d #£ 0. (4.1
yield that

(4.8) (Zk:aj

Jj=1

), (4.2) and (4.5)

9(z +¢j)g;(2) — Qda(z)g(2)>exp{azk}
— a(2)g*(2) exp{202"} — I(z) exp{32"}

+Zda] a(z) —

If 8 7& a and 3 # 2, By Lemma 2.1 and (4.8),

b(z) = 0.

we get Zle da;(z) — d*a(z) — b(z) =0, which con-
tradicts our assumption that Zle daj(z) —
d*a(z) — b(z) £ 0.

If B =2« or 8 = «, using the same method as
above, we also get S°F | da;(z) — d?a(z) — b(2) = 0, a
contradiction. Hence A(Fy(z) — b(2)) = k.

5. Proof of Theorem 1.5. Suppose that
f(2) has infinitely many multi-order zeros. If
b=0, then H(z) has infinitely many zeros. Next
we suppose that b # 0. If H(z) — b has only finitely
many zeros, then we can rewrite H(z) as

((zal M)_af?(z))_

= p(2)e",

where p(z), ¢(z) are polynomials. Suppose that H(z)
is a polynomial. Then

((Zaf z+¢ ) af2(2)> —~

= P(2),

(5.1) H

(5.2) H

where P(z) is a polynomial. By (5.2), we have
3T(r, f(2)) = 3m(r, f(2))
=m(r,af’(z)) +0(1)
< m(r, P(2)) + m(r, f*(2))

(e 1 CJ)) +0(1)

*Z“f < 7

= 2T(7% f)+50r, 1),

a contradiction. Hence H(z) is transcendental, and
so p(z) £ 0,degq(z) > 1. By this, we have p'(z) +
p(2)q(z) # 0. Differentiating (5.1) and eliminating
eq(z)7 we have
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(XL afz+a)

3af(2)f(2)
Shiaifz+e)  fR)Xr aif(z+c)
af?(2)

() e

n b )
f(2) Zf:1 aif(z+ci) .

Since f(z) has infinitely many multi-order zero,
there exists a sufficiently large point z; such that
the multiplicity of the zero of f(z) at zp is k(> 2),
and p'(2) + p(20)q(20) # 0,p(20) # 0.

It SF a4 f(20 4 ¢) =0 with the multiplicity

(5.3)

k(> 1), then the multiplicity of
k ’
) Z’ilaif(znﬂi)) =o00 is 1, the multiplicity of
fz0) ), aif(zote)
Sl e) o s ky — 2k + 1, the multiplicity of
lel a; f(z0+¢;)
e o s ky — 2k, but the multiplicity of
Zle a; f(z0+ci) ! ’ P Y
b .
———F>———)=o00is ky + k. By (5.3), we get a
) Zf—l aif(30+ci)) ! v (5:3) &
contradiction.

If Zle a;f(z0 + ¢;) #0, then the multiplicity of
UG Y0 afarta))

' is 1, 3af(z0)f'(z0)  _ 0,
) S aifCater) )
@) o but the multiplicit of
Zle ai f(z0+ci) ’ P Y
b ) =00 is k(> 2). By (5.3), we also

fe) S aif(ote)
get a contradiction. Hence H(z) takes every value b
infinitely often.
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