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On a reconstruction theorem for holonomic systems

By Andrea D’AGNOLO® and Masaki KASHIWARA™)**)

(Contributed by Masaki KASHIWARA, M.J.A., Nov. 12, 2012)

Abstract:

Let X be a complex manifold. The classical Riemann-Hilbert correspondence

associates to a regular holonomic system M the C-constructible complex of its holomorphic
solutions. Let ¢t be the affine coordinate in the complex projective line. If M is not necessarily
regular, we associate to it the ind-R-constructible complex G of tempered holomorphic solutions
to M X Det. We conjecture that this provides a Riemann-Hilbert correspondence for holonomic
systems. We discuss the functoriality of this correspondence, we prove that M can be
reconstructed from G if dim X = 1, and we show how the Stokes data are encoded in G.
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Introduction. Let X be a complex manifold.

The Riemann-Hilbert correspondence of [2] estab-
lishes an anti-equivalence

(DU
D (Dx) o D¢...(Cx)
between regular holonomic D-modules and
C-constructible  complexes.  Here, ®°(L) =
RHomp,(L,0x) is the complex of holomorphic
solutions to £, and W°(L)=7THom(L,Ox) =
RHom(L,OY) is the complex of holomorphic func-
tions tempered along L. Since £ ~ ¥°(®°(L)), this
shows in particular that £ can be reconstructed
from ®°(L).

We are interested here in holonomic D-modules
which are not necessarily regular.

The theory of ind-sheaves from [6] allows one to
consider the complex ®(M) = RHomp,(M,OY%)
of tempered holomorphic solutions to a holonomic
module M. The basic example ®(Dce'/*) was
computed in [7], and the functor ®* has been studied
in [10,11]. However, since ®'(Dcel/*) ~ & (Dge??),
one cannot reconstruct M from ®*(M).

Set ®(M) = (M K Dpe'), for t the affine
variable in the complex projective line P. This
is an ind-R-constructible complex in X x P. The
arguments in [1] suggested us how M could be
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reconstructed from ®(M) via a functor ¥, described
below (§3).
We conjecture that the contravariant functors

[}
DP(Dy) f DP(ICx.p),

between the derived categories of Dx-modules
and of ind-sheaves on X x P, provide a Riemann-
Hilbert correspondence for holonomic systems.

To corroborate this statement, we discuss the
functoriality of ® and ¥ with respect to proper
direct images and to tensor products with regular
objects (§4). This allows us to reduce the problem to
the case of holonomic modules with a good formal
structure.

When X is a curve and M is holonomic, we
prove that the natural morphism M — ¥(®(M)) is
an isomorphism (§6). Thus M can be reconstructed
from ®(M).

Recall that irregular holonomic modules are
subjected to the Stokes phenomenon. We describe
with an example how the Stokes data of M are
encoded topologically in the ind-R-constructible
sheaf ®(M) (87).

In this Note, the proofs are only sketched.
Details will appear in a forthcoming paper. There,
we will also describe some of the properties of the
essential image of holonomic systems by the functor
®. Such a category is related to a construction
of [13].

1. Notations. We refer to [3-6].

Let X be a real analytic manifold.

Denote by DP(Cyx) the bounded derived
category of sheaves of C-vector spaces, and by
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D}, .(Cx) the full subcategory of objects with R-
constructible cohomologies. Denote by ®, RHom,
7Y, Rf., Rfi, f' the six Grothendieck operations for
sheaves. (Here f:X — Y is a morphism of real
analytic manifolds.)

For S C X alocally closed subset, we denote by
Cg the zero extension to X of the constant sheaf
on S.

Recall that an ind-sheaf is an ind-object in the
category of sheaves with compact support. Denote
by DP(ICx) the bounded derived category of ind-
sheaves, and by D})R_C(ICX) the full subcategory of
objects with ind-R-constructible cohomologies.
Denote by ®, RTHom, f~', Rf., Rfy, f the six
Grothendieck operations for ind-sheaves.

Denote by « the left adjoint of the embedding
of sheaves into ind-sheaves. One has a(“lim” F;) =
lim F. Denote by 3 the left adjoint of .

" Denote by DbY the ind-R-constructible sheaf of
tempered distributions.

Let X be a complex manifold. We set for short
dx = dim X.

Denote by Ox and Dy the rings of holomorphic
functions and of differential operators. Denote by
Qx the invertible sheaf of differential forms of top
degree.

Denote by DP(Dx) the bounded derived cat-
egory of left Dy-modules, and by D}, (Dx) and
D!, (Dx) the full subcategories of objects with
holonomic and regular holonomic cohomologies,
respectively. Denote by ®P, Df', Df, the oper-
ations for D-modules. (Here f: X — Y is a mor-
phism of complex manifolds.)

Denote by DM the dual of M (with shift such
that DOX ~ Ox)

For Z C X a closed analytic subset, we denote
by RIzM and M(*Z) the relative algebraic
cohomologies of a Dx-module M.

Denote by ss(M) C X the singular support of
M, that is the set of points where the characteristic
variety is not reduced to the zero-section.

Denote by O% € D .(ICx) the complex of
tempered holomorphic functions. Recall that OY% is
the Dolbeault complex of DbY; and that it has a
structure of fDy-module. We will write for short
RHomp, (M, OY%) instead of RTHomsp, (BM, OY).

2. Exponential D-modules. Let X be a
complex analytic manifold. Let D C X be a hyper-
surface, and set U = X\ D. For ¢ € Ox(xD), we
set
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Dxe¥ = Dx/{P:Pe? =0 on U},

5%\)( = (Dx e?)(xD).

As an Ox(*D)-module, S%‘X is generated by e?.
Note that ss(€py) =D, and &7y is holonomic.
It is regular if ¢ € Oy, since then EHX ~

One easily checks that (DS%‘X)(*D) ~ 5;&.

Proposition 2.1. Ifdim X =1, and ¢ has an
ej_f;ctive pole at every point of D, then Df)f)lX ~
Epix-

Let P be the complex projective line and
denote by ¢ the coordinate on C =P \ {o0}.

For c € R, we set for short
{Rep < c} ={z € U:Rep(zx) < ¢},
{Re(t+¢) <c} ={(z,t):x €U, teC,
Re(t + ¢(z)) < c}.
Consider the ind-R-constructible sheaves on X and
on X x P, respectively,
C{Reap<?} = “lin” C{Reap<c}7
c—+00
Cire(t+)<?y = “Hm” Cre(tiy)<c}-
c—+00
The following result is analogous to
[1, Proposition 7.1]. Its proof is simpler than loc.
cit., since ¢ is differentiable.
Proposition 2.2. One has an isomorphism
in D(Dy)
Epix — Rgq.RHomy, 1p, (p~'E p,
RHom(C{RC(t+Lp)<?}> OS(XP))?
for q and p the projections from X x P.
The following result is analogous to
[7, Proposition 7.3].
Lemma 2.3. Denote by (u,v) the coordi-
nates in C*. There is an isomorphism in DP(IC)

RHomp,, (81{1/}10}‘02 ,Op)

RIHom(C{vyé()} y C{Re u/v<?} ) .

Proposition 2.4. There is an isomorphism

in D*(ICy)

RHome(Dé'BT;(, OtX) ~ RI'Hom(CU, C{Re<p<?})-

. Proof. As Dg?iio}\cz ~ 6';:/3}‘02, Lemma 2.3
gives

t L —u/v ~
QC2 ®DC? E{UZOHC2 [_2] -

RIHOm(C{L;éO} ) C{Re u/v<?} ) .
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Write ¢ = a/b for a,b € Ox such that b-'(0) C D,
and consider the map

f=(a,b): X — C~

As folg{:?:/g}‘cz o~ 53&7 [6, Theorem 7.4.1] implies

O ©p, Epfx[—dx] = RTHom(Cy, Crep<r))-
Finally, one has

O @p, Epyl—dx] ~ RHomp, (DE},

DX O)-
O
3. A correspondence. Let X be a complex
analytic manifold. Recall that P denotes the com-
plex projective line. Consider the contravariant
functors

[
Db(DX)ng(IcXXP)

defined by
P(M) = RHomp,,, (M P gio\Pv OB(XP)?
U(F) = Rg.RHom,,1p, (p ' EL p,
RHO’I’)’Z(F, OtXxP))a
for ¢ and p the projections from X x P.
We conjecture that this provides a Riemann-
Hilbert correspondence for holonomic systems:
Conjecture 3.1.

(i) The natural morphism of endofunctors of
Db(DX)

(3.1) id— Vo d

is an isomorphism on D} (Dx).
(ii) The restriction of ®

®[py (Dx)" DEOI(DX) — D"(ICxp)

hol

18 fully faithful.

Let us prove some results in this direction.

4. Functorial properties. The next two
Propositions are easily deduced from the results
in [6].

Proposition 4.1. Let f: X — Y be a proper
map, and set fp = f x idp. Let M € DP (Dx) and
F € Dy (ICxxp). Then

®(Df M) ~ Rfp,®(M)[dx — dy],
\II(RfP!!F) = Df*‘II(F)[dX - dY]'

For £ € D", ,(Dx), set
®°(L) = RHomp, (L, Ox).

Recall that ®°(L) is a C-constructible complex of
sheaves on X.
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Proposition 4.2. Let L € Dl)»hol(DX)) M e
D (Dx) and F € D% (ICxyp). Then

®(D(L£ ®° DM)) ~ RTHom(q '@ (L), B(M)),
U(F®q¢'d' L) ~¥(F)eP L.

Noticing that

®(Ox) ~ Cx X RITHom(Clizoo}, Ciret<}),

one checks easily that ¥(®(Ox))~ Ox. Hence,
Proposition 4.2 shows:
Theorem 4.3.

(i) For £ € D", (Dx), we have

O(L) = ¢ '2°(L) ® ®(Ox)
~ <I>0([,) X RI’HOWL(C{QADO}7 C{Ret<?})-
(ii) The morphism (3.1) is an isomorphism on
D?—hol(DX)'
(iii) For any £, L' € DY, (Dx), the natural mor-
phism

Homp, (£, £) — Hom(®(L'), B(L))

is an isomorphism.

Therefore, Conjecture 3.1 holds true for regular
holonomic D-modules.

5. Review on good formal structures.
Let D C X be a hypersurface. A flat meromorphic
connection with poles at D is a holonomic
Dx-module M such that ss(M)=D and M =~
M(xD).

We recall here the classical results on the
formal structure of flat meromorphic connections
on curves. (Analogous results in higher dimension
have been obtained in [8,9,12].)

Let X be an open disc in C centered at 0.

For F an Ox-module, we set

F ly = Ox0 ®oy, Fo,

where (AQX,O is the completion of Ox .

One says that a flat meromorphic connec-
tion M with poles at 0 has a good formal structure
if

50 M@ (6 )T

i€l

as ((AQX,O ®0y, Dxo)-modules, where I is a finite
set, L; are regular holonomic Dx-modules, and
Wi € Ox(*O).

A ramification at 0 is a map X — X of the form
x — z™ for some m € N.

The Levelt-Turrittin theorem asserts:
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Theorem 5.1. Let M be a meromorphic
connection with poles at 0. Then there is a
ramification f: X — X such that Df ' M has a good
formal structure at 0.

Assume that M satisfies (5.1). If M is regular,
then ¢; € Ox for all i € I, and (5.1) is induced by an
isomorphism

Mo~ @D (i E5y)..
il
However, such an isomorphism does not hold in
general.
Consider the real oriented blow-up

(52) mB=RxS'"—= X, (p,0) s pe”.

Set V ={p >0} and let Y = {p > 0} be its closure.
If W is an open neighborhood of (0,6) € 9Y, then
(W NV) contains a germ of open sector around
the direction 6 centered at 0.

Consider the commutative ring

Ay = RHomr1D} (71'710}, RHOTTL(C\/, Dbb)),

where X is the complex conjugate of X.
To a Dx-module M, one associates the Ay-
module

M= Ay Rr-10y T IM.

The Hukuara-Turrittin theorem states that
(5.1) can be extended to germs of open sectors:

Theorem 5.2. Let M be a flat meromorphic
connection with poles at 0. Assume that M admits
the good formal structure (5.1). Then for any

(0,0) € 9Y one has
(@ ﬂ- EBQlLX 7n1> )
iel (0,0)

where m; is the rank of L;.

(Note that only the ranks of the L;’s appear
here, since z*(logz)™ belongs to Ay for any A € C
and m € Zx.)

One should be careful that the above isomor-
phism depends on 6, giving rise to the Stokes
phenomenon.

We will need the following result:

Lemma 5.3. If M is a flat meromorphic
connection with poles at 0, then

Rm, (m" M) ~ M.

(5.3)  (r" M),

6. Reconstruction theorem on curves.
Let X be a complex curve. Then Conjecture 3.1 (i)
holds true:
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Theorem 6.1. For M € D} (Dx) there is a
functorial isomorphism

(6.1) M = U(D(M)).

Sketch of proof. Since the statement is local,
we can assume that X is an open disc in C centered
at 0, and that ss(M) = {0}.

By devissage, we can assume from the begin-
ning that M is a flat meromorphic connection with
poles at 0.

Let f:X — X be a ramification as in
Theorem 5.1, so that Df~' M admits a good formal
structure at 0.

Note that Df,Df "M~ Ma@N for some
N. If (6.1) holds for Df M, then it holds for
M & N by Proposition 4.1, and hence it also holds
for M.

We can thus assume that M admits a good
formal structure at 0.

Consider the real oriented blow-up (5.2).

By Lemma 5.3, one has M ~ Rr,.m* M. Hence
Proposition 4.1 (or better, its analogue for m)
implies that we can replace M with 7M.

By Theorem 5.2, we finally reduce to prove

Egx — V(R(EGy))-

Set D' ={x=0}U{t=00}and U’ = (X x P)\
D'. By Proposition 2.1,
s D —t—p
DG p = D(E P E p) ~ 17 b

By Proposition 2.4, we thus have
D(Ef)y) = RTHom(Cur, Cre(trp)<1})-

Noticing that (599 )® Cp € DY (Cxxp),
one checks that ¥(® (55\)() ® Cp) ~0.
Hence, Proposition 2.2 implies

( (5?)9\)()) \P(C{Re(f+<,, <’}) 5§|X‘

(]
Example 6.2. Let X =C, p(z) =1/z and
M = & ;. Then we have

CRe(t+p)<7}s for k =0,

Hk(p(M) _ C{l':O, t;ﬁoo}@
C{x#O, t=00}s for k= 17
0, otherwise.

7. Stokes phenomenon. We discuss here
an example which shows how, in our setting, the
Stokes phenomenon arises in a purely topological
fashion.
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Let X be an open disc in C centered at O.
(We will shrink X if necessary.) Set U=
X\ {0}.

Let M be a flat meromorphic connection with
poles at 0 such that

My = (Ex @ &) o 9,8 € Ox(0).

Assume that v — ¢ has an effective pole at 0.
The Stokes curves of E’*Ong @58& are the real
analytic arcs ¢;, i € I, defined by

{Re(y —¢) =0} =| | _ &

(Here we possibly shrink X to avoid crossings of
the ¢;’s and to ensure that they admit the polar
coordinate p > 0 as parameter.)

Since Sg‘X ~ Sg;f“ for ¢y € Ox, the Stokes
curves are not invariant by isomorphism.

The Stokes lines [L;, defined as the limit
tangent half-lines to ¢, at 0, are invariant by
isomorphism.

The Stokes matrices of M describe how the
isomorphism (5.3) changes when 6 crosses a Stokes
line.

Let us show how these data are topologically
encoded in ®(M).

Set D' ={zx=0}U{t=00}and U’ = (X x P)\
D'. Set

F.= C{Re(t+ap)<c}7
F = CRre(t+¢)<?}s

Gc = C{Re(t+1/))<c}7
G= C{Rc(t+w)<?}~

By Proposition 2.4 and Theorem 5.2,
(M) ~ RTHom(Cyr, H),
where H is an ind-sheaf such that
H®Cprig~(F®&G)®Chig

for any sufficiently small open sector S.

Let b* be the vector space of upper/lower
triangular matrices in My(C), and let t = b" Nb~ be
the vector space of diagonal matrices.

Lemma 7.1. Let S be an open sector, and
v a vector space, which satisfy one of the following
conditions:

(i) v="0b* and S C {£Re(yp — ¢) > 0},
(i) o=t, SO L; for some i€l and SNL;=10
fori #£ 5.
Then, for ¢ > ¢, one has
Hom((F} & G, 15, (Fi © Go)l,1g) = 0.

In particular,
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End((F @ G) ® Cjag) > v.

This proves that the Stokes lines are encoded in
H. Let us show how to recover the Stokes matrices
of M as glueing data for H.

Let S; be an open sector which contains L;
and is disjoint from L; for i # j. We choose S; so
that Uie] SL =U.

Then for each ¢ € I, there is an isomorphism

OéiIH® qulsi ~ (F@ G) X Cq—lgi.

Take a cyclic ordering of I such that the Stokes
lines get ordered counterclockwise.

Since {S;};,c; is an open cover of U, the ind-
sheaf H is reconstructed from F' @ G via the glueing
data given by the Stokes matrices

-1 +
A = ol i ggns,,,) €07
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