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Abstract:

In this article we announce fundamental results of Selberg type zeta functions

for the Hilbert modular group of a real quadratic field; the meromorphic extension over C, its
functional equation and some arithmetic applications.
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1. Introduction. We consider Selberg type
zeta functions attached to the Hilbert modular group
of a real quadratic field. First of all, we recall the
original Selberg zeta function constructed by Selberg
in 1956. Let I be a co-finite discrete subgroup of
PSL(2,R) acting on the upper half plane H. Take
a hyperbolic element v € I', that is |tr(y)| > 2, then
the centralizer of 4 in T' is infinite cyclic and ~

1/2
is conjugate in PSL(2,R) to (N(V) 071/2 )
0 N(7)

with N(y) > 1. Put Prim(I") be the set of I-
conjugacy classes of the primitive hyperbolic ele-
ments in I". For £(s) > 1, the Selberg zeta function
for I is defined by the following Euler product:

1 II0- ),

pePrim(T") k=0

ZF(S) =

Selberg defined this zeta function and proved (Cf.

Selberg [8,9] and Hejhal [6]):

(a) Zr(s) defined for R(s) >1 extends mero-
morphically over the whole complex plane.

(b) Zr(s) has “non-trivial” zeros at s = § +ir, of
order equal to the multiplicity of the eigen-
value 1/4+ r% of the Laplacian Ag=
-2+ 83_;2) acting on L?(I'\H).

(¢) Zr(s) satisfies a functional equation between
sand 1 —s.

The theory of Selberg zeta functions for locally

symmetric spaces of rank one is evolved by Gangolli

(compact case) and Gangolli-Warner [3] (noncom-

pact case). For higher rank cases, Deitmar [1]

defined and studied “generalized Selberg zeta func-
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Hilbert modular group; Selberg zeta function.

tions” for compact higher rank locally symmetric
spaces. Therefore, our concern is to define and
study “Selberg type zeta functions” for noncompact
higher rank locally symmetric spaces such as
Hilbert modular surfaces.

Let us introduce Selberg type zeta functions for
the Hilbert modular group of a real quadratic field.
Let K/Q be a real quadratic field with class number
one and Ok be the ring of integers of K. Put D be
the discriminant of K and € > 1 be the fundamental
unit of K. We denote the generator of Gal(K/Q)
by ¢ and put ¢ := o(a) and N(a) := ad’ for a € K.

! /

We also put 7’:('2, 2,) for 'y=<z Z)E
PSL(2,0k). Let T' := {(v,7) | v € PSL(2,0k)} be
the Hilbert modular group of K. It is known that I'x
is a co-finite (non-cocompact) irreducible discrete
subgroup of PSL(2,R) x PSL(2,R) and 'k acts on
the product H? of two copies of the upper half plane
H by component-wise linear fractional transfor-
mation. I have only one cusp (oo, 0), i.e., T'k-
inequivalent parabolic fixed point. X := I'x\H? is
called the Hilbert modular surface of K.

Let (v,7) € Tx be hyperbolic-elliptic, i.e.,
[tr(vy)] > 2 and |tr(y")] < 2. Then the centralizer of
hyperbolic-elliptic (v,7') in 'k is infinite cyclic.

Definition 1.1 (Selberg type zeta function for
I'x with the weight (0,m)). For an even integer
m > 2 and s € C with R(s) > 1, we define

(o @]

H(l o ei('rnf?)w N(p)f(kJrs))fl.
(p.p') k=0

Here, (p,p’) run through the set of primitive
hyperbolic-elliptic I'g-conjugacy classes of I'y, and
(p,p') is conjugate in PSL(2,R)? to

Zi(s;m) =
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(p.p) ~ (( N(I;)I/Q N(p(;m ) ( Z?;: _czisnww ))

Here, N(p) > 1, w € (0,7) and w ¢ Q. The product
is absolutely convergent for R(s) > 1.

2. Analytic properties of Zg(s;m). We
state our main theorems on analytic properties of
Zk(s;m).

Theorem 2.1. For an even integer m > 2,
Zx(s;m) a priori defined for R(s) > 1 has a mero-
morphic extension over the whole complex plane.

Our Selberg zeta functions Zx(s;m) have also
“non-trivial” zeros or poles and they have connec-
tions with the eigenvalues of two Laplacians. Let
Aél) _yl(aazz + 0022) and A( ) _92(5 + 5); )+
m yg— be the Laplamans of Welght 0 and m’ for
(21,29) € H?. Two Laplacians A(()> and Agn act on

L*(m) := L3 (Tx\H?; (0,m))

: the space of Hilbert Maass forms of weight (0,m).
For an even integer ¢, we consider the subspaces of
L*(q) and L?(q — 2) given by

v {re | apr=1(1-1) 1},
W2 = {f €L*(q=2) | APLf =3 (1 - g) f}.

Theorem 2.2 (Zeros and poles of Z(s;m)).
Let m > 4 be an even integer.

o Zi(s;m) has zeros at s =% +ip;j(m) of order
equal to the multiplicity of the eigenvalue
411 + pi(m )2 ofA(1 acting on V2 and has simple
zeros at s =1 — 5 + géke forkeZ.

o Zi(s;m) has poles at s=1+ipi(m—2) of
order equal to the multzplzmty of the eigen-
value §+ pj(m — 2)* of ASU acting on V2
and has simple poles at s =2— 7 + lz)”gk, for
keZ.

e Zx(s;m) has zeros or poles (according to their
orders are positive or negative) al s= —k
(ke NU{0}) of order (2k+1)E(Xk)-+
230 [k/vi] = X5 Brg(m).

o Ifm =4, Zy(s,m) has additional simple zeros
at s =0 and s = 1.

Here, E(Xk) denotes the Euler characteristic of
Xg, natural numbers vy, vy, - - - ,vN denote the orders
of primitive elliptic conjugacy classes of T'x and
Bix(m) are explicitly given integers. When the
location of two zeros or poles coincide, the orders
of them are added.
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On the contrary to the case of m >4, Zk(s;2)
has no “non-trivial” poles.

Theorem 2.3 (Zeros and poles of Zx(s;2)).

o Zx(s;2) has a double pole at s = 1.

® Zi(s;2) has zeros at s =1+ip;(2) of order
equal to the multiplicity of the eigenvalue
i+ pi(2)* of A(()l) acting on V,7 and has zeros
at s =+ ip;(—2) of order equal to the multi-

plicity of the eigenvalue §+ ,uj(—2)2 of A(()l)
acting on W 22)
® Zx(s;2) has double zeros at s = + ]”g (ke N).

o Zi(s;2) has a zero at s =0 of order E(Xg).
o Zi(s;2) has zeros or poles (according to their
orders are positive or negative) at s = —k (k €
N) of order (2k+1)E(Xg)+23 1 [k/v)] —
2kN.
When the location of two zeros or poles coincide,
the orders of them are added.
Actually Zg(s;m) has infinite
zeros by the following “Weyl’s law”.
Theorem 2.4. Foran evenintegerm > 2, let

“non-trivial”

N (T) = #{j | 1/4+ pj(m)* < T}
for T > 0. Then we have
2
N*(T) ~ (m — 1)% T (T — o).

Our Zk(s;m) also satisfy a symmetric func-
tional equation.

Theorem 2.5 (Functional equation). The
Selberg type zeta function Zi(s;m) satisfies the
functional equation

Zx(sim) = Zg(1 — s;m).
Here the completed zeta function ZK(S, m) is given by
ZK(S; m) = Zk(s;m) Zia(s) Zen(s;m)

: Zpar/sct(s; m) Zhpr/sct (Sa m)

with
Zia(s) == (Pa(s)La(s + 1))2%(_1)
N vi—1 —1-ay(m.j)=a(m.j)
Zai(sym) := HH SH v
G=1 1=0
{20
Zyp2/sct (8;m)
:{@@+%)@@+— 2" (m=>4)
¢-(s)’ (m=2)



No. 9]

where, Ta(s) is the double Gamma function (Cf.
[5, Definition 4.10, p. 751]), Cx(s) is the Dedekind
zeta  functions of K and «a(m,j), a(m,j) €
{0,1,---,v; — 1} are explicitly given integers and
C(s):=(1—e %),

3. Ruelle type zeta functions.
er the Ruelle type zeta function of I'k.

Definition 3.1 (Ruelle type zeta function for
I'k). For R(s) > 1, the Ruelle type zeta function
for T'x is defined by the following absolutely
convergent Euler product:

Ri(s) = [0 - Nw) ™)

(p.p)

We consid-

Here, (p,p’) run through the set of primitive hyper-
bolic-elliptic ' k-conjugacy classes of T', and (p, /)
is conjugate in PSL(2,R)? to
—sinw )
COS w '

N N(p)l/2 0 cosw
(p.7) (( 0 N(p)~'/? )7 ( sinw

Here, N(p) > 1, w € (0,7) and w ¢ 7Q.
By the relation

o ZK(S; 2)
Bls) =75 19)

and Theorem 2.3, we have

Theorem 3.2. The Ruelle type zeta function
Rk (s) has a meromorphic continuation to the whole
complez plane. R (s) has a double pole at s = 1 and
nonzero for R(s) > 1.

As a byproduct of Theorem 2.5, we obtain a
simple functional equation for Rx(s) and an explicit
formula of the coefficient of the leading term of
Rk(s) at s =0.

Theorem 3.3 (Functional equation of
Ri(s)). Let D be the discriminant of K and
D > 13. Then, the function Rk (s) satisfy the func-
tional equation

RK(S) RK(—S)

_ (71)E(X1\) 22E(XK) )QE(XK)72(12(F)72(13(F)

sin(ms

) (7TS>2M(F) ) (7TS>2M<F)(C5(S—1) <E(S+1)>2
s — sy — .
2 3 C:(s)”

Let R} (0) be the leading coefficient of the Laurent
expansion of Ri(s) at s =0, that is

) . Rk(s)
Ric(0) := lsli% sE(Xk)+2 "

Then we have
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B (2m)PEF) (2210ge)?
— 20:(1) 3as(T) (e2 — 1)2 )

| R (0)]

Here, E(Xk) denotes the Fuler characteristic of
Xk, € is the fundamental unit of K, (.(s)=(1—
e 2) and a.(T) is the number of elliptic fized
points in X for which corresponding points have
isotropy groups of order r.

4. Differences of the Selberg trace for-
mulas and class numbers of binary quadratic
forms over Og. Analytic properties and func-
tional equations of Zg(s;m) and Rg(s) are ob-
tained by using the “differences” of the Selberg
trace formula for Hilbert modular surfaces. The
key point is considering the differences between
two Selberg trace formulas with different weights.
For this we shall extend the Selberg trace formula
for Hilbert modular group I'y with trivial weight
(Cf. Efrat [2] and Zograf [10]) to that with non-
trivial weights. Based on our Selberg trace for-
mula for I'x with weight (0,m), we can treat and
obtain the differences and double differences of
the Selberg trace formula. The details of proofs are
given in [4].

As an application of “Double differences of the
Selberg trace formula”, we obtain a prime geodesic
type theorem. Let PI'yg be the set of primitive
hyperbolic-elliptic I'g-conjugacy classes of I'k.

Theorem 4.1 (Prime geodesic type theo-
rem). For X > 2, we have
> o1=2Li(X)- ) Li(x%®)
(pp')€PTup 1/2<s;(2)<1
N(p)<X

— Z Li(X*(2)
1/2<sj(=2)<1
+ O(X%/ /log X).

Here, s;(2)(1—s;(2)) and s;(—2)(1 —s;(—2)) are
eigenvalues of the Laplacian Ay~ acting on V2<2) and
Wg) respectively and Li(z) == [; 1/logt dt.

Besides, we have a generalization of Sarnak’s
theorem [7] on class numbers of indefinite binary
quadratic forms over Z to that for class numbers
of indefinite binary quadratic forms over Ok.
Put D, :={d € Ok |3b€ Okst.d=b* (mod 4),
d nota square in Ok, d > 0, d < 0}. For each d¢€
Dy, let hi(d) denote the number of inequivalent
primitive binary quadratic forms over O of
discriminant d, and let (z4,yq) € Ox x Ok be
the fundamental solution of the Pellian equation
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2* —dy?* =4. Put eg(d) = (vq+Vdys)/2. By
Theorem 4.1, we obtain
Theorem 4.2. Forx > 2, we have
> hi(d)=2Li(2*) - Y Li(a®™®)
deD, 1/2<s;(2)<1
ex(d)<z
— Z Li(z?(2)
1/2<sj(=2)<1
+ 0% )logz) (z — o0).
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