Zeta functions of generalized permutations with application to their factorization formulas

By Shin-ya Koyama*) and Sachiko NaKajIma**, ${ }^{*}$)
(Communicated by Shigefumi Mori, m.J.A., Sept. 12, 2012)

Abstract

We obtain a determinant expression of the zeta function of a generalized permutation over a finite set. As a corollary we prove the functional equation for the zeta function. In view of absolute mathematics, this is an extension from $G L\left(n, \mathbf{F}_{1}\right)$ to $G L\left(n, \mathbf{F}_{1^{m}}\right)$, where \mathbf{F}_{1} and $\mathbf{F}_{1^{m}}$ denote the imaginary objects "the field of one element" and "its extension of degree m ", respectively. As application we obtain a certain product formula for the zeta function, which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet L-functions for an abelian extention.

Key words: Zeta functions; the field with one element; absolute mathematics; generalized permutation groups.

1. Introduction. Let

$$
\begin{equation*}
\zeta_{\sigma}(s)=\exp \left(\sum_{m=1}^{\infty} \frac{\left|\operatorname{Fix}\left(\sigma^{m}\right)\right|}{m} e^{-m s}\right) \tag{1}
\end{equation*}
$$

be the zeta function of the \mathbf{Z}-dynamical system generated by a permutation $\sigma \in S_{n}$, where S_{n} denotes the symmetric group over $X_{n}=$ $\{1, \ldots, n\}$. We see that $\zeta_{\sigma}(s)$ is determined by the conjugacy class of σ in S_{n}. By Proposition 1 below, it is also expressed by the Euler product over the set $\operatorname{Cyc}(\sigma)$ of primitive cycles of σ :

$$
\zeta_{\sigma}(s)=\prod_{p \in \mathrm{Cyc}(\sigma)}\left(1-N(p)^{-s}\right)^{-1},
$$

where $N(p)=e^{l(p)}$ with $l=l(p)$ being the length of a primitive cycle

$$
\begin{equation*}
p: i \mapsto \sigma(i) \mapsto \sigma^{2}(i) \mapsto \cdots \mapsto \sigma^{l}(i)=i \tag{2}
\end{equation*}
$$

for some $i \in\{1, \ldots, n\}$.
In our previous paper [3], we gave a proof of the determinant expression

$$
\begin{equation*}
\zeta_{\sigma}(s)=\operatorname{det}\left(I-M(\sigma) e^{-s}\right)^{-1} \tag{3}
\end{equation*}
$$

which enables us to obtain the functional equation of $\zeta_{\sigma}(s)$.

[^0]Our first goal is to generalize such properties to the case of generalized permutations. Consequently we generalize $\zeta_{\sigma}(s)$ to $L_{\sigma}(s, \chi)$ with χ a function over the set of cycles. As application we obtain a certain product formula for the zeta function, which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet L-functions in the case of an abelian extention.

We first briefly recall the definitions and settings on the generalized symmetric groups following the notation in [1].

Let ξ be a primitive m-th root of unity, and $\boldsymbol{\mu}_{m}$ be the multiplicative group of m-th roots of unity. The generalized permutation group W_{n}^{m} is the Wreath product of $\boldsymbol{\mu}_{m}$ by S_{n} :

$$
1 \rightarrow\left(\boldsymbol{\mu}_{m}\right)^{n} \rightarrow W_{n}^{m} \rightarrow S_{n} \rightarrow 1
$$

It is also expressed as the group of permutations τ of the set
(4) $X_{n, m}:=\left\{\xi^{k} i \mid i=1, \ldots, n, k=0,1, \ldots, m-1\right\}$
such that $\tau\left(\xi^{k} i\right)=\xi^{k} \tau(i)$ for $i=1, \ldots, n$ and $k=$ $0,1, \ldots, m-1$. The order of W_{n}^{m} is $m^{n} n!$. The group W_{n}^{m} has the following presentation ([2]):

$$
\begin{aligned}
& W_{n}^{m}=\left\langle r_{1}, \ldots, r_{n-1}, w_{1}, \ldots, w_{n}:\right. \\
& r_{i}^{2}=\left(r_{i} r_{i+1}\right)^{3}=\left(r_{i} r_{j}\right)^{2}=e, \text { if }|i-j| \geq 2, \\
& w_{i}^{m}=e, w_{i} w_{j}=w_{j} w_{i}, r_{i} w_{i}=w_{i+1} r_{i}, \\
& \left.\quad r_{i} w_{j}=w_{j} r_{i}, \text { if } j \neq i, i+1\right\rangle .
\end{aligned}
$$

We may identify $r_{i}(i=1, \ldots, n-1)$ with the transposition $(i, i+1)$ and therefore the symmetric group is

$$
S_{n}=\left\langle r_{1}, \ldots, r_{n-1}\right\rangle
$$

The elements w_{i} may be identified with the mapping $X_{n, m} \longrightarrow X_{n, m}$ defined by

$$
w_{i}\left(\xi^{k} j\right)= \begin{cases}\xi^{k+1} j & (j=i) \\ \xi^{k} j & (j \neq i)\end{cases}
$$

An element $\tau \in W_{n}^{m}$ is determined by the images from the base space X_{n}, which is embedded in $X_{n m}$ with $k=0$ in (4). Namely, it can be written as

$$
\begin{align*}
\tau & =\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\xi^{s_{1}} \sigma(1) & \xi^{s_{2}} \sigma(2) & \cdots & \xi^{s_{n}} \sigma(n)
\end{array}\right) \tag{5}\\
& =\sigma \prod_{i=1}^{n} w_{i}^{s_{i}} \in W_{n}^{m}
\end{align*}
$$

with $\sigma \in S_{n}$ and $s_{j} \in\{0,1,2, \ldots, m-1\}$. Denote by M the canonical representation $M: W_{n}^{m} \rightarrow G L_{n}(\mathbf{C})$ of W_{n}^{m} defined by $M(\tau)=\left(\xi^{s_{i}} \delta_{\sigma(i), j}\right)_{i, j=1, \ldots, n}$.

We define a function $\chi=\chi_{\tau}$ on the set of primitive cycles p of σ given by (2) as

$$
\begin{align*}
\chi: \quad \operatorname{Cyc}(\sigma) & \rightarrow \mathbf{C}^{\times} \\
p & \mapsto \xi^{\int_{p} \tau} \tag{6}
\end{align*}
$$

with $\int_{p} \tau=\sum_{i \in p} s_{i}$. We also define the attached L function as

$$
\begin{equation*}
L_{\sigma}(s, \chi)=\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\chi(p) N(p)^{-s}\right)^{-1} \tag{7}
\end{equation*}
$$

Our first main result is the determinant expression of $L_{\sigma}(s, \chi)$ described in Theorem 1 below. It is a natural extension of (3) from the viewpoint of absolute mathematics, because the symmetric group is interpreted as $S_{n}=G L\left(n, \mathbf{F}_{1}\right)$, and the generalized permutation group is $W_{n}^{m}=G L\left(n, \mathbf{F}_{1^{m}}\right)$. As corollaries of Theorem 1, we obtain the functional equation and the tensor structure of $L_{\sigma}(s, \chi)$.

Finally in the last section we reach a factorization formula which is an analog of the decomposition of the Dedekind zeta function of an abelian extension into Hecke L-functions.
2. Determinant expression. In our previous paper [3] we proved the following proposition.

Proposition 1. Let X and Y be finite sets. Put $|X|=n$. For $\sigma \in S_{n}$, the following properties hold.
(i) $\zeta_{\sigma}(s)$ has a determinant expression

$$
\zeta_{\sigma}(s)=\operatorname{det}\left(1-M_{0}(\sigma) e^{-s}\right)^{-1}
$$

where $M_{0}(\sigma)=\left(\delta_{\sigma(i), j}\right)_{i, j=1, \ldots, n}$ is the matrix representation $M_{0}: S_{n} \rightarrow G L_{n}(\mathbf{C})$.
(ii) $\zeta_{\sigma}(s)$ satisfies an analog of the Riemann hypothesis: $\zeta_{\sigma}(s)=\infty$ implies $\operatorname{Re}(s)=0$.
(iii) $\zeta_{\sigma}(s)$ satisfies the functional equation

$$
\zeta_{\sigma}(-s)=\zeta_{\sigma}(s)(-1)^{n} \operatorname{sgn}(\sigma) e^{-n s}
$$

(iv) $\zeta_{\sigma}(s)$ has the Euler product

$$
\zeta_{\sigma}(s)=\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-N(p)^{-s}\right)^{-1}
$$

(v) The singularities of $\zeta_{\sigma}(s)$ satisfy an additive structure under the tensor product. Namely, the sum of a pole of $\zeta_{\sigma}(s)$ for $\sigma \in \operatorname{Aut}(X)$ and a pole of $\zeta_{\tau}(s)$ for $\tau \in \operatorname{Aut}(Y)$ is a pole of $\zeta_{\sigma \otimes \tau}(s)$, and all poles of $\zeta_{\sigma \otimes \tau}(s)$ are given by this way. Here for $\sigma \in \operatorname{Aut}(X)$ and $\tau \in \operatorname{Aut}(Y)$, we denote their tensor product by $\sigma \otimes \tau \in$ $\operatorname{Aut}(X \times Y)$.
(vi) The Laurent expansion of $\zeta_{\sigma}(s)$ around $s=0$ is given as follows:

$$
\zeta_{\sigma}(s)=s^{-m} c(\sigma)^{-1}+O\left(s^{-m+1}\right)
$$

where m is the multiplicity of the eigenvalue 1 of $M_{0}(\sigma)$ and $c(\sigma)=\prod_{p \in \operatorname{Cyc}(\sigma)} l(p)$.
In this section we prove a generalization of this proposition to $L_{\sigma}(s, \chi)$.

Theorem 1. Let X be a finite set with $|X|=n$, and $\xi \in \mathbf{C}$ be a primitive m-th root of unity. For a generalized permutation $\tau \in W_{n}^{m}$ with a decomposition given by (5), the L-function $L_{\sigma}(s, \chi)$ satisfies the determinant expression

$$
\begin{equation*}
L_{\sigma}(s, \chi)=\operatorname{det}\left(1-M(\tau) e^{-s}\right)^{-1} \tag{8}
\end{equation*}
$$

Note that the matrix $M(\tau)$ is not uniquely determined for each given χ. In other words, more than one τ 's (or s_{i} 's) may possibly correspond to the same χ. The determinant in (8), however, is welldefined for each χ not depending on the choice of τ or s_{i} 's.

Proof of Theorem 1. We put the decomposition of a permutation σ into cyclic permutations as

$$
\begin{aligned}
& \sigma= \sigma_{1} \cdots \sigma_{r} \\
&=\left(i_{1}, \ldots, i_{l(1)}\right)\left(i_{l(1)+1}, \ldots, i_{l(1)+l(2)}\right) \\
& \cdots\left(i_{l(1)+\cdots+l(r-1)+1}, \ldots, i_{n}\right) .
\end{aligned}
$$

Let $\pi \in S_{n}$ be the permutation such that $\pi(k)=i_{k}$ for $k=1,2,3, \ldots n$. Then

$$
\begin{aligned}
\pi^{-1} \sigma \pi=(1 & \cdots l(1))(l(1)+1 \cdots l(1)+l(2)) \\
& \cdots(l(1)+\cdots+l(r-1)+1 \cdots n)
\end{aligned}
$$

Hence

$$
M(\pi)^{-1} M(\tau) M(\pi)=\operatorname{diag}\left(C_{l(1)}, C_{l(2)}, \cdots, C_{l(r)}\right)
$$

with

$$
C_{l(k)} \in\left(\begin{array}{cccc}
0 & \boldsymbol{\mu}_{m} & & \\
& \ddots & \ddots & \\
& & \ddots & \boldsymbol{\mu}_{m} \\
& & & 0
\end{array}\right)
$$

being a generalized cyclic permutation matrix of size $l(k)$. We define integers $t_{1}, \ldots, t_{n} \in$ $\{0,1,2, \ldots, m-1\}$ by

$$
C_{l(k)}=\left(\begin{array}{cccc}
0 & \xi^{t_{l(k-1)+1}} & & \\
& \ddots & \ddots & \\
& & \ddots & \xi^{t_{l(k-1)+l(k)-1}} \\
\xi^{t_{l(k-1)+l(k)}} & & & 0
\end{array}\right)
$$

with $l(0)=0$ by convention. Note that $\left\{t_{j}\right\}$ is a reordered sequence of $\left\{s_{j}\right\}$. Since a cyclic permutation is corresponding to a cycle, we may write

$$
\chi\left(C_{l(k)}\right)=\prod_{j=1}^{l(k)} \xi^{t_{l(k-1)+j}}
$$

by taking the definition (6) into consideration. Then

$$
\begin{aligned}
\operatorname{det} & \left(1-M(\tau) e^{-s}\right) \\
= & \operatorname{det}\left(1-M(\pi)^{-1} M(\tau) M(\pi) e^{-s}\right) \\
= & \prod_{j=1}^{r} \operatorname{det}\left(I_{l(j)}-C_{l(j)} e^{-s}\right) \\
= & \prod_{j=1}^{r}\left(1-\chi\left(C_{l(j)}\right) e^{-l(j) s}\right),
\end{aligned}
$$

where the last identity is deduced by the following lemma. It holds that

$$
\operatorname{det}\left(1-M(\tau) e^{-s}\right)=\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\chi(p) N(p)^{-s}\right)
$$

Theorem follows from the definiton (7).
Lemma 1. Let

$$
C_{l}=\left(\begin{array}{cccc}
0 & \xi^{t_{1}} & & \\
& \ddots & \ddots & \\
& & \ddots & \xi^{t_{l-1}} \\
\xi^{t_{l}} & & & 0
\end{array}\right)
$$

be a generalized permutation matrix. Put

$$
\chi\left(C_{l}\right)=\prod_{j=1}^{l} \xi^{t_{j}}
$$

The following identity hold:

$$
\begin{aligned}
& \operatorname{det}\left(I_{l}-C_{l} u\right)=1-\chi\left(C_{l}\right) u^{l} . \\
& \text { Proof. } \\
& \operatorname{det}\left(I_{l}-C_{l} u\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & -\xi^{t_{1}} u & & \\
& \ddots & \ddots & \\
& & \ddots & -\xi^{t_{l-1}} u \\
-\xi^{t_{l}} u & & & 1
\end{array}\right) \\
& =1 \cdot\left|\begin{array}{cccc}
1 & -\xi^{t_{1}} u & & \\
& 1 & \ddots & \\
& & \ddots & -\xi^{t_{l-2}} u \\
& & & 1
\end{array}\right| \\
& +(-1)^{l+1}\left(-\xi^{t_{l}} u\right)\left|\begin{array}{cccc}
-\xi^{t_{1}} u & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & -\xi^{t_{l-1}} u
\end{array}\right| \\
& =1+(-1)^{l+1}(-u)(-u)^{l-1} \chi\left(C_{l}\right) \\
& =1-\chi\left(C_{l}\right) u^{l} \text {. }
\end{aligned}
$$

Corollary 1 (Functional equation). For a generalized permutation $\tau \in W_{n}^{m}$ with a decomposition given by (5), the L-function $L_{\sigma}(s, \chi)$ satisfies the functional equation

$$
L_{\sigma}(-s, \chi)=(-1)^{n} \operatorname{det} M(\tau)^{-1} e^{-n s} L_{\sigma}(s, \bar{\chi})
$$

where $\bar{\chi}$ is the complex conjugation of χ which is given by replacing ξ with $\bar{\xi}$.

Proof. By Theorem 1, it follows that

$$
\begin{aligned}
& L_{\sigma}(-s, \chi) \\
&=\operatorname{det}\left(1-M(\tau) e^{s}\right)^{-1} \\
& \quad=\operatorname{det}\left(\left(-M(\tau) e^{s}\right)\left(1-M(\tau)^{-1} e^{-s}\right)\right)^{-1} \\
&=(-1)^{n}(\operatorname{det} M(\tau))^{-1} e^{-n s} \operatorname{det}\left(1-M(\tau)^{-1} e^{-s}\right)^{-1}
\end{aligned}
$$

The determinant expression in Theorem 1 also gives the tensor structure of L-functions in the following sense.

Let ξ_{k} be a primitive m_{k}-th root of unity for $k=1,2$. For generalized permutations $\tau_{1} \in W_{n_{1}}^{m_{1}}$ over $X_{n_{1}}=\left\{1, \ldots, n_{1}\right\}$ and $\tau_{2} \in W_{n_{2}}^{m_{2}}$ over $X_{n_{2}}=$ $\left\{1, \ldots, n_{2}\right\}$ with their decomposition given by
(9) $\quad \tau_{k}=\left(\begin{array}{cccc}1 & 2 & \cdots & n_{k} \\ \xi_{k}^{s_{k, 1}} \sigma_{k}(1) & \xi_{k}^{s_{k, 2}} \sigma_{k}(2) & \cdots & \xi_{k}^{s_{k, n}} \sigma_{k}(n)\end{array}\right)$

$$
=\sigma_{k} \prod_{i=1}^{n_{k}} w_{k, i}^{s_{k, i}} \in W_{n_{k}}^{m_{k}}
$$

we define their tensor product $\tau_{1} \otimes \tau_{2} \in W_{n_{1} n_{2}}^{m_{1} m_{2}}$ as follows. As we saw in the notation (5), any element in $W_{n_{1} n_{2}}^{m_{1} m_{2}}$ is determined if we give the image of every element in the base space $X_{n_{1} n_{2}} \cong X_{n_{1}} \times X_{n_{2}}$, which is given by

$$
\begin{array}{cccc}
\tau_{1} \otimes \tau_{2}: & X_{n_{1}} \times X_{n_{2}} & \rightarrow & X_{n_{1}, m_{1}} \times X_{n_{2}, m_{2}} \\
& (i, j) & \mapsto & \left(\xi_{1}^{s_{1, i}} \sigma_{1}(i), \xi_{2}^{s_{2, j}} \sigma_{2}(j)\right) \\
& & \hookrightarrow & X_{n_{1} n_{2}, m_{1} m_{2}} \\
& & \xi^{m_{2} s_{1, j}+m_{1} s_{2, j}}\left(\sigma_{1}(i), \sigma_{2}(j)\right)
\end{array}
$$

with ξ a primitive $m_{1} m_{2}$-th root of unity. In other words, if we identify $\tau_{k} \in W_{n_{k}}^{m_{k}}$ as the linear map $\tau_{k}: \mathbf{C}^{n_{k}} \rightarrow \mathbf{C}^{n_{k}}$ introduced by the representation M, the tensor product

$$
\tau_{1} \otimes \tau_{2}: \mathbf{C}^{n_{1}} \otimes \mathbf{C}^{n_{2}} \rightarrow \mathbf{C}^{n_{1}} \otimes \mathbf{C}^{n_{2}}
$$

is defined by the usual tensor product of linear maps with the representation matrix given by the Kronecker tensor product $M\left(\tau_{1}\right) \otimes M\left(\tau_{2}\right)$ of matrices.

In the following corollary, we define $\chi_{1}=\chi_{\tau_{1}}$, $\chi_{2}=\chi_{\tau_{2}}$, and $\chi_{1} \otimes \chi_{2}:=\chi_{\tau_{1} \otimes \tau_{2}}$.

Corollary 2 (Tensor structure). The singularities of $L_{\sigma}(s, \chi)$ satisfy an additive structure under the tensor product. Namely, the sum of a pole of $L_{1}(s):=L_{\sigma_{1}}\left(s, \chi_{1}\right)$ and a pole of $L_{2}(s):=L_{\sigma_{2}}\left(s, \chi_{2}\right)$ is a pole of $L_{\sigma_{1} \otimes \sigma_{2}}\left(s, \chi_{1} \otimes \chi_{2}\right)$, and all poles of $L_{\sigma_{1} \otimes \sigma_{2}}\left(s, \chi_{1} \otimes \chi_{2}\right)$ are given in this way.

Proof. By Theorem 1,

$$
\begin{aligned}
& L_{\sigma_{1} \otimes \sigma_{2}}\left(s, \chi_{1} \otimes \chi_{2}\right) \\
& \quad=\operatorname{det}\left(1-M\left(\tau_{1} \otimes \tau_{2}\right) e^{-s}\right)^{-1} \\
& \quad=\operatorname{det}\left(1-M\left(\tau_{1}\right) \otimes M\left(\tau_{2}\right) e^{-s}\right)^{-1}
\end{aligned}
$$

We put the eigenvalues of $M\left(\tau_{1}\right)$ and $M\left(\tau_{2}\right)$ as α_{j} $\left(j=1, \ldots, n_{1}\right)$ and $\beta_{k}\left(k=1,2, \ldots, n_{2}\right)$, respectively. We see from Theorem 1 that the poles of $L_{\sigma_{1}}\left(s, \chi_{1}\right)$ and $L_{\sigma_{2}}\left(s, \chi_{2}\right)$ are given by $s \equiv \log \alpha_{j}$ and $s \equiv \log \beta_{k} \quad(\bmod 2 \pi i \mathbf{Z})$. Thus the set of poles of $L_{\sigma_{1} \otimes \sigma_{2}}\left(s, \chi_{1} \otimes \chi_{2}\right)$ is given by
$\left\{\log \alpha_{j} \beta_{k} \bmod 2 \pi i \mathbf{Z} \mid 1 \leq j \leq n_{1}, 1 \leq k \leq n_{2}\right\}$.
The result follows from

$$
\log \alpha_{j} \beta_{k} \equiv \log \alpha_{j}+\log \beta_{k}(\bmod 2 \pi i \mathbf{Z})
$$

Theorem 1 also describes the order of the L function at $s=0$ as follows.

Corollary 3. The Laurent expansion of $L_{\sigma}(s, \chi)$ around $s=0$ is given as follows:

$$
L_{\sigma}(s, \chi)=s^{-K} c(\tau)+O\left(s^{-K+1}\right)
$$

where K is the multiplicity of the eigenvalue 1 of $M(\tau)$ and

$$
c(\tau)=\prod_{\substack{p \in \operatorname{Cyc}(\sigma) \\ \chi(p)=1}}(l(p))^{-1} \times \prod_{\substack{p \in \operatorname{Cyc}(\sigma) \\ \chi(p) \neq 1}}(1-\chi(p))^{-1} .
$$

Moreover, K is equal to the number of primitive cycles p of σ such that $\chi(p)=1$.

Proof. By Theorem 1, we have

$$
\begin{aligned}
L_{\sigma}(s, \chi) & =\operatorname{det}\left(1-M(\tau) e^{-s}\right)^{-1} \\
& =\left(\left(1-e^{-s}\right)^{K} \prod_{\alpha \neq 1}\left(1-\alpha e^{-s}\right)\right)^{-1}
\end{aligned}
$$

where in the last product α runs through the eigenvalues of $M(\tau)$ such that $\alpha \neq 1$. Hence $L_{\sigma}(s, \chi)$ has a pole of order K at $s=0$. The leading coefficient is calculated from (iv):

$$
\begin{aligned}
& \prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\chi(p) N(p)^{-s}\right)^{-1} \\
& =\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\chi(p)+\chi(p) l(p) s+O\left(s^{2}\right)\right)^{-1} \\
& =s^{-K} \prod_{\substack{p \in \operatorname{Cyc}(\sigma)}}(l(p))^{-1} \\
& \quad \times \prod_{\substack{x(p)=1 \\
p \in \operatorname{Cyc}(\sigma) \\
\chi(p) \neq 1}}(1-\chi(p)+\chi(p) l(p) s)^{-1}+O\left(s^{-K+1}\right)
\end{aligned}
$$

3. Factorization formulas. It is classical that for any finite abelian extention K / k of algebraic number fields of finite degree, the Dedekind zeta function $\zeta_{K}(s)$ is decomposed into the product of Dirichlet L-functions over Dirichlet characters:

$$
\begin{equation*}
\zeta_{K}(s)=\prod_{\chi} L_{k}(s, \chi) \tag{10}
\end{equation*}
$$

In this section we obtain an analog of this phenomenon by restricting ourselves to the case when the function χ has the form

$$
\chi(p)=\theta^{l(p)} \quad(\forall p \in \operatorname{Cyc}(\sigma))
$$

for some fixed $\theta \in \boldsymbol{\mu}_{m}$. Namely,

$$
\begin{aligned}
L_{\sigma}(s, \chi) & =\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\theta^{l(p)} e^{-l(p) s}\right)^{-1} \\
& =\zeta_{\sigma}(s-\log \theta)
\end{aligned}
$$

For $\theta=\exp \left(\frac{2 \pi i}{m}\right) \quad(m \in \mathbf{N})$, we denote $\chi=\chi_{m}$. The following factorization formula is analogous to (10).

Theorem 2. Let $\sigma \in S_{n}$, and $\tau=\sigma \prod_{i=1}^{n} w_{i} \in$ W_{n}^{m}.

Put $\tilde{\sigma}$ to be the permutation τ regarded as an element in $S_{n m}$. Then it holds for any $m \in \mathbf{N}$ that

$$
\zeta_{\tilde{\sigma}}(s)=\prod_{b=0}^{m-1} L_{\sigma}\left(s, \chi_{m}^{b}\right)
$$

Before proving this theorem, we set up some analogous notions on lifting and splitting by following the theory of extensions of number fields. Consider the following commutative diagram

where $f: \widetilde{X} \rightarrow X$ is a surjective map of finite sets with $\sigma \in \operatorname{Aut}(X)$ and $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{X})$. Then a primitive cycle $\mathfrak{p} \in \operatorname{Cyc}(\widetilde{\sigma})$ is called a lift of $p \in \operatorname{Cyc}(\sigma)$ if and only if $f(\mathfrak{p})=p$. The inverse image $f^{-1}(p)$ of $p \in$ $\operatorname{Cyc}(\sigma)$ is a (not necessarily primitive) cycle of $\widetilde{\sigma}$, and it can be decomposed into the form $f^{-1}(p)=$ $\sum_{i=1}^{g} \mathfrak{p}_{i}$ with each \mathfrak{p}_{i} a lift of p. In this setting we say that p remains primitive if $g=1$, and that p splits if $g \geq 2$. Moreover, when $\left|f^{-1}(x)\right|=m$ for all $x \in X$, it holds that $g \leq m$, and we say that p splits completely if $g=m$.

Proof of Theorem 2. We appeal to the cyclotomic equation

$$
\prod_{b=0}^{k-1}\left(1-\zeta_{k}^{b} X\right)=1-X^{k}
$$

with ζ_{k} a primitive k-th root of unity. By putting $X=e^{-l(p) s}$ and $k=\frac{m}{(m, l(p))}$, we have

$$
\begin{aligned}
& \prod_{b=0}^{m-1} L_{\sigma}\left(s, \chi_{m}^{b}\right) \\
& \quad=\prod_{b=0}^{m-1} \prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-\zeta_{m}^{b l(p)} e^{-l(p) s}\right)^{-1} \\
& \quad=\prod_{p \in \operatorname{Cyc}(\sigma)} \prod_{b=0}^{m-1}\left(1-\zeta_{m}^{b l(p)} e^{-l(p) s}\right)^{-1} \\
& \quad=\prod_{p \in \operatorname{Cyc}(\sigma)} \prod_{b=0}^{\frac{m}{(m, l(p))}-1}\left(1-\left(\zeta_{m}^{l(p)}\right)^{b} e^{-l(p) s}\right)^{-(m, l(p))} \\
& \quad=\prod_{p \in \operatorname{Cyc}(\sigma)}\left(1-e^{-\frac{m l(p)}{(m, l(p))^{s}}}\right)^{-(m, l(p))}
\end{aligned}
$$

It remains to prove that the lifts of $p \in \operatorname{Cyc}(\sigma)$ are ($m, l(p)$) primitive cycles of $\tilde{\sigma}$ which are of length $\frac{m l(p)}{(m, l(p))}$.

To see this, we use the expression (4). Let $\xi^{k} i \in$ $X_{n, m}$ be a fixed point of $\tilde{\sigma}^{j}$. Then,

$$
\begin{aligned}
\tilde{\sigma}^{j}\left(\xi^{k} i\right)=\xi^{k} i & \Longleftrightarrow \sigma^{j}(i)=i \quad \text { and } \quad \theta^{j} \xi^{k}=\xi^{k} \\
& \Longleftrightarrow l(p) \mid j \quad \text { and } \quad m \mid j,
\end{aligned}
$$

where p is the primitive cycle to which $i \in X_{n}$ belongs. Thus the length of the orbit of $\xi^{k} i$ is equal to the least common multiple of $l(p)$ and m, which is $\frac{m l(p)}{(m, l(p))}$.

The number of elements belonging to $f^{-1}(p)$ in \tilde{X} is $m l(p)$. Thus the number of lifts of p is $(m, l(p))$ with their length $\frac{m l(p)}{(m, l(p))}$.

From the proof of Theorem 2, we have the following facts immediately.

Corollary 4. Let σ be a permutation of X_{n}, and p be a primitive cycle which belongs to $\operatorname{Cyc}(\sigma)$ with $l=l(p)$ defined as in (2).

In the lifted permutation

$$
\tilde{\sigma}: X_{n, m} \rightarrow X_{n, m}
$$

of $\sigma: X_{n} \rightarrow X_{n}$, it holds that

$$
\begin{cases}p \text { remains primitive } & \text { if }(l, m)=1, \\ p \text { splits } & \text { if }(l, m)>1\end{cases}
$$

In the extreme case, p splits completely, if and only if $m \mid l$.

This is analogous to the decomposition law of prime ideals for finite extensions of number fields.

Example 1. $n=5, \sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$.
$\operatorname{Cyc}(\sigma)$ consists of two primitive cycles p_{1} and p_{2}, where $l\left(p_{1}\right)=2$ and $l\left(p_{2}\right)=3$. Consider the covering with $m=2$, that is, $\xi=-1$. The cycle p_{1} splits completely, since there exist two cycles above p_{1}, which are $(1 \mapsto-2 \mapsto 1)$ and ($2 \mapsto-1 \mapsto 2$). Thus we find that p_{1} splits completely in the extension $X_{5,2}$ of X_{5}. This is the case with $(m, l)=(2,2)=2$, which satisfies $m \mid l$.

On the other hand, the cycle p_{2} remains primitive, because $p_{2}=(3 \mapsto 4 \mapsto 5 \mapsto 3)$ is lifted to only one cycle $(3 \mapsto-4 \mapsto 5 \mapsto-3 \mapsto 4 \mapsto-5 \mapsto$ 3) of length 6. This is the case with $(l, m)=$ $(3,2)=1$.

Example 2. $n=8, \sigma=(12)(345678)$. $\operatorname{Cyc}(\sigma)$ consists of two primitive cycles p_{1} and p_{2}, where $l\left(p_{1}\right)=2$ and $l\left(p_{2}\right)=6$. Consider the covering with $m=4$, that is, $\xi=\sqrt{-1}=i$. Above the cycle p_{1} there exist two cycles of length 4 , which are ($1 \mapsto$
$2 i \mapsto-1 \mapsto-2 i \mapsto 1)$ and $(2 \mapsto i \mapsto-2 \mapsto-i \mapsto 2)$. We find that p_{1} splits in the extension $X_{8,4}$ of X_{8}. This is the case with $(l, m)=(2,4)=2>1$. The other cycle p_{2} also splits, because there exists two cycles of length 12 above p_{2}. This is the case with $(l, m)=(6,4)=2>1$.

Acknowledgement. The authors would like to express their gratitude to the referee for many valuable comments.

References

[1] H. Can, Representations of the generalized symmetric groups, Beiträge Algebra Geom. 37 (1996), no. 2, 289-307.
[2] J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2) 8 (1974), 615-620.
[3] S. Kim, S. Koyama and N. Kurokawa, The Riemann hypothesis and functional equations for zeta functions over \mathbf{F}_{1}, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 6, 75-80.

[^0]: 2000 Mathematics Subject Classification. Primary 11M41.
 *) Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
 **) K-kai, Kawaijuku, 2-6-1 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan.
 \dagger) Current Address: Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan

