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1. Introduction. In this paper, we will work

over an algebraically closed field k of characteristic

zero or positive characteristic. Let us recall the

definition of log surfaces.

Definition 1.1 (Log surfaces). Let X be a

normal algebraic surface and let � be a boundary

R-divisor on X such that KX þ� is R-Cartier.

Then the pair ðX;�Þ is called a log surface. We

recall that a boundary R-divisor is an effective

R-divisor whose coefficients are less than or equal

to one.

In the preprint [Ta1] together with [Fn], we

have obtained the following theorem, that is, the

minimal model theory for log surfaces.

Theorem 1.2 (cf. [Fn] and [Ta1]). Let � :

X ! S be a projective morphism from a log surface

ðX;�Þ to a variety S over a field k of arbitrary

characteristic. Assume that one of the following

conditions holds:

(A) X is Q-factorial, or

(B) ðX;�Þ is log canonical.

Then we can run the log minimal model program

over S with respect to KX þ� and obtain a sequence

of extremal contractions

ðX;�Þ ¼ ðX0;�0Þ !
’0 ðX1;�1Þ !

’1 � � �

!’k�1 ðXk;�kÞ ¼ ðX�;��Þ
over S such that

(1) (Minimal model) KX� þ�� is semi-ample over

S if KX þ� is pseudo-effective over S, or

(2) (Mori fiber space) there is a morphism

g : X� ! C over S such that �ðKX� þ��Þ is

g-ample, dimC < 2, and the relative Picard

number �ðX�=CÞ ¼ 1, if KX þ� is not pseudo-

effective over S.

We note that, in Case (A), we do not assume that

ðX;�Þ is log canonical. We also note that Xi is Q-

factorial for every i in Case (A) and that ðXi;�iÞ
is log canonical for every i in Case (B). Moreover,

in both cases, if X has only rational singularities,

then so does Xi by Theorem 6.2.

More precisely, we prove the cone theorem, the

contraction theorem, and the abundance theorem

for Q-factorial log surfaces and log canonical

surfaces with no further restrictions.

Theorem 1.2 has been known in Case (B) when

S is a point and � is a Q-divisor (cf. [Ft3], [KK]).

In [Fn], the first author obtained Theorem 1.2

in characteristic zero; there are many Q-factorial

surfaces (i.e. in Case (A)) which are not log

canonical (i.e. in Case (B)).

In [Ta1], the second author establishes

Theorem 1.2 in arbitrary positive characteristic.

The arguments in [Fn] heavily depend on a Kodaira

type vanishing theorem, which unfortunately fails

in positive characteristic. The main part of dis-

cussion in [Ta1] in order to prove Theorem 1.2 is

the Artin–Keel contraction theorem, which holds

only in positive characteristic.

We will give a simplified proof of the Artin–

Keel contraction theorem in Section 2, which is one

of the main purposes of this paper.

Theorem 1.2 implies the following important

corollary. For a more direct approach to

Corollary 1.3, see Section 3.

Corollary 1.3. Let ðX;�Þ be a projective log

surface such that � is a Q-divisor. Assume that X is

doi: 10.3792/pjaa.88.109
#2012 The Japan Academy

2010 Mathematics Subject Classification. Primary 14E30;
Secondary 14D06.

No. 8] Proc. Japan Acad., 88, Ser. A (2012) 109

http://dx.doi.org/10.3792/pjaa.88.109


Q-factorial or ðX;�Þ is log canonical. Then the log

canonical ring

RðX;�Þ ¼
M
m�0

H0ðX;OXðxmðKX þ�ÞyÞÞ

is a finitely generated k-algebra.

Remark 1.4. Let ðX;�Þ be a log canonical

surface and let f : Y ! X be its minimal resolution

with KY þ�Y ¼ f�ðKX þ�Þ. Then ðY ;�Y Þ is a

Q-factorial log surface. The abundance theorem

and the finite generation of log canonical rings for

ðX;�Þ follow from those of ðY ;�Y Þ.
In Section 5, we discuss a key result on the

indecomposable curves of canonical type for the

proof of the abundance theorem for � ¼ 0. The

behavior of the indecomposable curves of canonical

type varies in accordance with the cases: (i)

charðkÞ ¼ 0, (ii) charðkÞ > 0 with k 6¼ Fp, and (iii)

k ¼ Fp. Section 6 is devoted to the discussion

of some relative vanishing theorems, which are

elementary and hold in any characteristic. As

applications, we give some results supplementary

to the theory of algebraic surfaces in arbitrary

characteristic.

For the details of the proofs, we refer the reader

to [Fn] and [Ta1].

Notation. For an R-divisor D on a normal

surface X, we define the ronud-up pDq, the round-

down xDy, and the fractional part fDg of D. We

note that �R denotes the R-linear equivalence of

R-divisors. Let D be a Q-Cartier Q-divisor on a

normal projective surface X. Then �ðX;DÞ denotes

the Iitaka–Kodaira dimension of D. Let k be a field.

Then charðkÞ denotes the characteristic of k. Let A

be an abelian variety defined over an algebraically

closed field k. Then we denote the k-rational points

of A by AðkÞ.
2. The Artin–Keel contraction theorem.

The following (see Theorem 2.1) is Keel’s base point

free theorem for algebraic surfaces (cf. [Ke, 0.2

Theorem]). Although his original result holds in

any dimension, we only discuss it for surfaces here.

The paper [Ke] attributes Theorem 2.1 to [A] even

though it is not stated explicitly there. So, we call it

the Artin–Keel contraction theorem in this paper.

Theorem 2.1 will play crucial roles in the minimal

model theory for log surfaces in positive charac-

teristic. For the details, see [Ta1]. Note that

Theorem 2.1 fails in characteristic zero by [Ke, 3.0

Theorem]. The minimal model theory for log surfaces

in characteristic zero heavily depends on a Kodaira

type vanishing theorem (cf. [Fn]). The second author

discusses the X-method for klt surfaces in positive

characteristic in [Ta2]. For a related topic, see

also [CMM].

Theorem 2.1 (Artin, Keel). Let X be a com-

plete normal algebraic surface defined over an alge-

braically closed filed k of positive characteristic and

let H be a nef and big Cartier divisor on X. We set

EðHÞ :¼ fC j C is a curve on X and C �H ¼ 0g:

Then EðHÞ consists of finitely many irreducible

curves on X. Assume that HjEðHÞ is semi-ample

where

EðHÞ ¼
[

C2EðHÞ
C

with the reduced scheme structure. Then H is semi-

ample. Therefore,

�jmHj : X ! Y

is a proper birational morphism onto a normal

projective surface Y which contracts EðHÞ and is an

isomorphism outside EðHÞ for a sufficiently large

and divisible positive integer.

We give two different proofs of Theorem 2.1.

Proof 1 depends on Artin’s arguments. On the other

hand, Proof 2 uses Fujita’s vanishing theorem.

Proof 1. It is sufficient to prove that H is semi-

ample. Let f : Z ! X be a resolution of singular-

ities. Then Eðf�HÞ consists of finitely many curves

by the Hodge index theorem. Therefore, so does

EðHÞ. Note that H is semi-ample if and only if

f�H is semi-ample. We also note that f�HjEðf�HÞ is

semi-ample since so is HjEðHÞ. Thus, by replacing

X and H with Z and f�H, we may assume that

X is a smooth projective surface. In this case, the

intersection matrix of EðHÞ is negative definite by

the Hodge index theorem.

By Artin’s contraction theorem (see [B,

Theorem 14.20]), there exists a morphism g : X !
W where W is a normal complete two-dimensional

algebraic space such that gðEðHÞÞ is a finite set

of points of W and that gjXnEðHÞ : X nEðHÞ !
W n gðEðHÞÞ is an isomorphism.

By Artin (cf. [A, Lemma (2.10)] and [B, Step 1

in the proof of Theorem 14.21]), there exists an

effective Cartier divisor E with SuppðEÞ ¼ EðHÞ
such that for every effective divisor D � E with

SuppD ¼ EðHÞ, the restriction map PicðDÞ !
PicðEÞ is an isomorphism.
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By replacing H with a multiple, we may assume

that HjEðHÞ is free. Therefore, OEðHÞðHÞ ’ OEðHÞ.
Let p be the characteristic of k and let r be a

positive integer such that qEðHÞ � E where q ¼ pr.
We consider the (ordinary) q-th Frobenius morphism

F : X ! X. By pulling back the exact sequence

0! OXðH � EðHÞÞ ! OXðHÞ ! OEðHÞ ! 0 by F ,

we obtain the exact sequence 0! OXðqH �
qEðHÞÞ ! OXðqHÞ ! OqEðHÞðqHÞ ! 0. Therefore,

OqEðHÞðqHÞ ’ OqEðHÞ. By the above argument,

ODðqHÞ ’ OD for every effective divisor D � E
with SuppD ¼ EðHÞ.

Let w 2 gðEðHÞÞ be a point. Then, by the

theorem of holomorphic functions (cf. [Kn, Theorem

3.1]), we have

ðg�OXðqHÞÞ^w ’ ðg�OXÞ
^
w ’ dOW;wOW;w:

Therefore, g�OXðqHÞ is a line bundle on W . By

considering the natural map

g�g�OXðqHÞ ! OXðqHÞ;

we obtain that g�g�OXðqHÞ ’ OXðqHÞ since the

intersection matrix of EðHÞ is negative definite. This

means that B :¼ g�qH is a Cartier divisor on W and

g�B ¼ qH. By Nakai’s criterion, B is ample on W .

We note that Nakai’s criterion holds for complete

algebraic spaces. Therefore, H is semi-ample. �

Proof 2. It is sufficient to prove that H is semi-

ample. By the same argument as in Proof 1, we may

assume that X is smooth. We may further assume

that OEðHÞðHÞ ’ OEðHÞ by replacing H with a

multiple. Since the intersection matrix of EðHÞ is

negative definite, we can find an effective Cartier

divisor D such that SuppD ¼ EðHÞ and that

�D � C > 0 for every C 2 EðHÞ.
Claim. There exists a positive integer m such

that mH �D is ample.

Proof of Claim. By Kodaira’s lemma, we can

find a positive integer k, an ample Cartier divisor A,

and an effective divisor B such that kH �D �
Aþ B. If ðkH �DÞ � C � 0 for some curve C, then

C � SuppB and C 62 EðHÞ. Therefore, if m	 k,

then ðmH �DÞ � C > 0 for every curve C on X.

This implies mH �D is ample since mH �D is a

big divisor. �

By replacing mH �D with a multiple, we

may assume that mH �D is very ample and

H1ðX;OXðlH �DÞÞ ¼ 0 for every l � m by Fujita’s

vanishing theorem (see [Ft1, Theorem (1)] and

[Ft2, (5.1) Theorem]). Let p be the characteristic of

k and let r be a positive integer such that qEðHÞ � D
where q ¼ pr. By the same argument as in Proof 1,

OqEðHÞðqHÞ ’ OqEðHÞ. Therefore, qHjD � 0. Without

loss of generality, we may further assume that

q � m. By the exact sequence 0 ! H0ðX;OXðqH �
DÞÞ ! H0ðX;OXðqHÞÞ ! H0ðD;ODðqHÞÞ ! 0,

BsjqHj \EðHÞ ¼ ; where BsjqHj is the base locus of

the linear system jqHj. Since mH �D is ample with

SuppD ¼ EðHÞ, we obtain that H is semi-ample. �

Corollary 2.2. Let X be a Q-factorial pro-

jective surface defined over an algebraically closed

field of positive characteristic. Let C be a curve on X

such that C ’ P1 and C2 < 0. Then we can contract

C to a Q-factorial point.

Sketch of the proof. Let H be a very ample

Cartier divisor onX. We set L ¼ ð�C2ÞH þ ðH � CÞC.

Then L is nef and big. Note that LjC is semi-ample

sinceC ’ P1 andL � C ¼ 0. By applying Theorem 2.1

to L, we have a desired contraction morphism. �

Since Pic0ðV ÞðkÞ is a torsion group for any

projective variety V defined over k ¼ Fp, we obtain

the following corollary.

Corollary 2.3 (cf. [Ke, 0.3 Corollary]). Let

X be a normal projective surface over k ¼ Fp and

let D be a nef and big Cartier divisor on X. Then D

is semi-ample.

In [Ke, Section 3], Keel obtained an interesting

example.

Proposition 2.4 (cf. [Ke, 3.0 Theorem]).

Let C be a smooth projective curve of genus g � 2

over an algebraically closed filed k. We consider

S ¼ C 
 C. We set L ¼ ��1KC þ� where � � S is

the diagonal and �1 : S ! C is the first projection.

Then L is semi-ample if and only if the character-

istic of k is positive.

By Proposition 2.4, we obtain the following

interesting example.

Example 2.5. Let U be a nonempty Zariski

open set of SpecZ and let X ! U be a smooth family

of curves of genus g � 2. We set Y ¼ X 
U X.

Let � be the image of the diagonal morphism

�X=U : X ! X 
U X. We set M ¼ p�1KX=U þ�

where p1 : Y ¼ X 
U X ! X is the first projection.

Let p 2 U be any closed point. Then Mp ¼MjYp
is semi-ample and big for every p 2 U , where

� : Y ! U is the natural map and Yp ¼ ��1ðpÞ. On

the other hand, M is not �-semi-ample.

3. charðkÞ ¼ 0 vs. charðkÞ > 0. The fol-

lowing theorem is a special case of the abundance

theorem for log surfaces. It is a key step toward

No. 8] On log surfaces 111



showing the finite generation of log canonical rings

(see Corollary 1.3).

Theorem 3.1. Let ðX;�Þ be a Q-factorial

projective log surface such that � is a Q-divisor.

Assume that KX þ� is nef and big. Then KX þ� is

semi-ample.

When charðkÞ ¼ 0, the proof of Theorem 3.1

heavily depends on a Kodaira type vanishing

theorem and it is one of the hardest parts of [Fn].

Section 4 of [Fn] is devoted to the proof of

Theorem 3.1. On the other hand, when

charðkÞ > 0, the proof of Theorem 3.1 is much

simpler by Theorem 2.1. Therefore, in some sense,

the minimal model theory of log surfaces is easier

to treat in positive characteristic. In charðkÞ ¼ 0, it

follows from the mixed Hodge theory of compact

support cohomology groups. In charðkÞ > 0, it uses

Frobenius maps (see the proof of Theorem 2.1).

Sketch of the proof (charðkÞ > 0). First, we set

EðKXþ�Þ :¼ fC j C is a curve on X and C � ðKX þ
�Þ ¼ 0g. Then EðKX þ�Þ consists of finitely many

irreducible curves on X by the Hodge index theorem.

We take an irreducible curve C 2 EðKX þ�Þ. Then

C2 < 0 by the Hodge index theorem. If ðKX þ CÞ �
C < 0, then C ’ P1 by adjunction and we can

contract C to a point by Corollary 2.2. Therefore,

we may assume that C is an irreducible component

of x�y, C \ Suppð�� CÞ ¼ ;, and ðKX þ�Þ � C ¼
0 for every C 2 EðKX þ�Þ. If C ’ P1 for C 2
EðKX þ�Þ, then it is obvious that ðKX þ�ÞjC is

semi-ample. If C 6’ P1 for C 2 EðKX þ�Þ, then we

can also check that ðKX þ�ÞjC is semi-ample by

adjunction. Therefore, by Theorem 2.1, we obtain

that KX þ� is semi-ample. �

For the details of Theorem 3.1, see [Fn, Section

4] and [Ta1, Section 5].

Sketch of the proof of Corollary 1.3

(charðkÞ > 0). If �ðX;KX þ�Þ � 1, then it is ob-

vious that RðX;�Þ is a finitely generated k-algebra.

So, we assume that KX þ� is big. If KX þ� is not

nef, then we can find a curve C on X such that

ðKX þ�Þ � C < 0 and C2 < 0. Therefore, ðKX þ CÞ �
C < 0. By adjunction, C ’ P1. By Corollary 2.2,

we can contract C. After finitely many steps, we

may assume that KX þ� is nef. By Theorem 3.1,

KX þ� is semi-ample. Thus, RðX;�Þ is a finitely

generated k-algebra. �

4. k 6¼ Fp vs. k ¼ Fp. First, we note the

following important result.

Theorem 4.1 (see, for example, [Ta1,

Theorem 10.1]). Let X be a normal surface defined

over Fp. Then X is Q-factorial.

One of the key results for the minimal model

theory of Q-factorial log surfaces is as follows. It

plays crucial roles in the proof of the non-vanishing

theorem and the abundance theorem for Q-factorial

log surfaces. For details, see [Fn] and [Ta1].

Theorem 4.2 (cf. [Fn, Lemma 5.2] and [Ta1,

Theorem 4.1]). Assume that k 6¼ Fp. Let X be a

Q-factorial projective surface and let f : Y ! X be a

projective birational morphism from a smooth

projective surface Y . Let p : Y ! C be a projective

surjective morphism onto a projective smooth

curve C with the genus gðCÞ � 1. Then every f-

exceptional curve E on Y is contained in a fiber of

p : Y ! C.

Sketch of the proof. By taking suitable blow-

ups, we may assume that E is smooth. Let fEigi2I
be the set of all f-exceptional divisors. Suppose

that pðEÞ ¼ C. We consider the subgroup G of

PicðEÞðkÞ generated by fOEðEiÞgi2I . Since k 6¼ Fp,

ð��Pic0ðCÞÞðkÞ �Z Q nG�Z Q is not empty where

� ¼ pjE : E ! C. Here, we used the fact that

the rank of ð��Pic0ðCÞÞðkÞ is infinite since k 6¼ Fp

(see [FJ, Theorem 10.1]). On the other hand,

ð��Pic0ðCÞÞðkÞ �Z Q � G�Z Q since X is Q-

factorial. It is a contradiction. Therefore, E is in a

fiber of p : Y ! C. �

Theorem 4.2 does not hold when k ¼ Fp.

Example 4.3. We consider C ¼ ðx3 þ y3 þ
z3 ¼ 0Þ � P2 ¼ H, which is a hyperplane in P3,

over k ¼ Fp with p 6¼ 3. Let X be the cone over C in

P3 with the vertex P . Let Z ! P3 be the blow-up at

P and let Y be the strict transform of X. Then Y is

a P1-bundle over C, the singularity of X is not

rational, X is Q-factorial (see Theorem 4.1), and

f : Y ! X contracts a section of p : Y ! C.

If k ¼ Fp, then we can easily obtain the finite

generation of sectional rings.

Theorem 4.4. Assume that k ¼ Fp. Let X be

a projective surface and let D be a Weil divisor on

X. Then the sectional ring

RðDÞ ¼
M
m�0

H0ðX;OXðmDÞÞ

is a finitely generated k-algebra.

Sketch of the proof. As in the proof of

Corollary 1.3, we may assume that D is big. By

contracting curves C with D � C < 0, we may

further assume that D is nef and big. Then D is

112 O. FUJINO and H. TANAKA [Vol. 88(A),



semi-ample by Corollary 2.3. Therefore, RðDÞ is

finitely generated. �

The geometry over Fp seems to be completely

different from that over k 6¼ Fp. The minimal model

theory for log surfaces over k ¼ Fp is discussed in

[Ta1, Part 2], which has a slightly different flavor

from that over k 6¼ Fp.

5. Indecomposable curves of canonical

type. In this section, we discuss a key result for

the proof of the abundance theorem for � ¼ 0:

Theorem 5.1. Note that the abundance theorem for

� ¼ 1 is easy to prove and the abundance theorem

for � ¼ 2 has already been treated in Theorem 3.1.

Theorem 5.1 (cf. [Fn, Theorem 6.2] and

[Ta1, Theorem 7.5]). Let ðX;�Þ be a Q-factorial

projective log surface such that � is a Q-divisor.

Assume that KX þ� is nef and �ðX;KX þ�Þ ¼ 0.

Then KX þ� �Q 0.

Let us recall the definition of indecomposable

curves of canonical type in the sense of Mumford.

Definition 5.2 (Indecomposable curves of

canonical type). Let X be a smooth projective

surface and let Y be an effective divisor on X. Let

Y ¼
Pk

i¼1 niYi be the prime decomposition. We say

that Y is an indecomposable curve of canonical type

if KX � Yi ¼ Y � Yi ¼ 0 for every i, SuppY is con-

nected, and the greatest common divisor of integers

n1; � � � ; nk is equal to one.

The following proposition is a key result. For a

proof, see, for example, [M, Lemma] and the proof of

[To, Theorem 2.1]. See also [Ta1, Proposition 7.3].

Proposition 5.3. Let X be a smooth projec-

tive surface over k and let Y be an indecomposable

curve of canonical type. If OY ðY Þ is torsion and

H1ðX;OXÞ ¼ 0, then Y is semi-ample and

�ðX; Y Þ ¼ 1. If OY ðY Þ is torsion and charðkÞ > 0,

then Y is always semi-ample and �ðX; Y Þ ¼ 1 with-

out assuming H1ðX;OXÞ ¼ 0. Therefore, if k ¼ Fp,

then Y is semi-ample and �ðX; Y Þ ¼ 1 since OY ðY Þ
is always torsion.

For the details of our proof of the abundance

theorem for � ¼ 0, that is, Theorem 5.1, see

[Ta1, Section 7].

6. Relative vanishing theorems. The fol-

lowing theorem is a special case of [KK, 2.2.5 Corol-

lary] (see also [Ko, Theorem 9.4] and [Ta2, Sections

2 and 4]). Note that it holds over any algebraically

closed field. We also note that the Kodaira vanishing

theorem does not always hold for surfaces if the

characteristic of the base field is positive.

Theorem 6.1 (Relative vanishing theorem).

Let ’ : V !W be a proper birational morphism

from a smooth surface V to a normal surface W .

Let L be a line bundle on V . Assume that

L �’ KV þ E þN

where �’ denotes the relative numerical equiva-

lence, E is an effective ’-exceptional R-divisor on V

such that xEy ¼ 0, and N is a ’-nef R-divisor on V .

Then R1’�L ¼ 0.

As an application of Theorem 6.1, we obtain

Theorem 6.2, whose formulation is suitable for our

theory of log surfaces.

Theorem 6.2. Let ðX;�Þ be a log surface.

Let f : X ! Y be a proper birational morphism

onto a normal surface Y . Assume that one of the

following conditions holds.

(1) �ðKX þ�Þ is f-ample.

(2) �ðKX þ�Þ is f-nef and x�y ¼ 0.

Then R1f�OX ¼ 0.

Proof. Without loss of generality, we may as-

sume that Y is affine. When �ðKX þ�Þ is f-ample,

by perturbing the coefficients of �, we may assume

that x�y ¼ 0. More precisely, let H be an f-ample

Cartier divisor onX. Then we can find an effective R-

divisor �0 on X such that x�0y ¼ 0, �0 �R �þ "H
for a sufficiently small positive real number ", and

�ðKX þ�0Þ is f-ample. Let ’ : Z ! X be the min-

imal resolution of X. We set KZ þ�Z ¼ ’�ðKX þ
�Þ. Note that �Z is effective. Then we have

�x�Zy ¼ KZ þ f�Zg � ’�ðKX þ�Þ. By Theorem

6.1, R1’�OZð�x�ZyÞ ¼ R1ðf 
 ’Þ�OZð�x�ZyÞ ¼ 0.

We note that we can write f�Zg ¼ E þM where E is

a ’-exceptional (resp. ðf 
 ’Þ-exceptional) effective

R-divisor with xEy ¼ 0 and M is an effective R-

divisor such that every irreducible component of M

is not ’-exceptional (resp. ðf 
 ’Þ-exceptional). In

this case, M is ’-nef (resp. ðf 
 ’Þ-nef). Since 0!
OZð�x�ZyÞ ! OZ ! Ox�Zy

! 0, we obtain 0!
’�OZð�x�ZyÞ ! OX ! ’�Ox�Zy

! 0. Since x�y ¼
0, x�Zy is ’-exceptional. Therefore, ’�Ox�Zy

is

a skyscraper sheaf on X. Thus, we obtain

� � � ! R1f�ð’�OZð�x�ZyÞÞ ! R1f�OX ! 0. Since

R1f�ð’�OZð�x�ZyÞÞ � R1ðf 
 ’Þ�OZð�x�ZyÞ ¼ 0,

we obtain R1f�OX ¼ 0. �

We close this section with the following impor-

tant results. For definitions, see [KM, Notation

4.1].

Proposition 6.3 (cf. [KM, Proposition 4.11]

and [Fn, Proposition 3.5]). Let X be an algebraic
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surface defined over an algebraically closed field k of

arbitrary characteristic.

(a) Let ðX;�Þ be a numerically dlt pair. Then

every Weil divisor on X is Q-Cartier, that is,

X is Q-factorial.

(b) Let ðX;�Þ be a numerically lc pair. Then it is

lc.

The proof given in [Fn] works over any

algebraically closed field once we adopt Artin’s

lemmas (see [B, Lemmas 3.3 and 3.4]) instead of

[KM, Theorem 4.13] since the relative Kawamata–

Viehweg vanishing theorem holds by Theorem 6.1.

Theorem 6.4 (cf. [KM, Theorem 4.12]). Let

X be an algebraic surface defined over an alge-

braically closed filed k of arbitrary characteristic.

Assume that ðX;�Þ is numerically dlt. Then X has

only rational singularities.

Theorem 6.4 follows from Theorem 6.2 (2).

Remark 6.5. The proof of Proposition 6.3

uses the classification of the dual graphs of the

exceptional curves of log canonical surface singu-

larities. In the framework of [Ta1], we do not need

Proposition 6.3 or the classification of log canonical

surface singularities even for the minimal model

theory of log canonical surfaces (see [Ta1, Part 3]).

So, we are released from the classification of log

canonical surface singularities when we discuss the

minimal model theory of log surfaces.
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