Dihedral G-Hilb via representations of the McKay quiver

By Alvaro Nolla de Celis
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

(Communicated by Shigefumi Mori, M.J.A., April 12, 2012)

Abstract

For a given finite small binary dihedral group $G \subset \mathrm{GL}(2, \mathbf{C})$ we provide an explicit description of the minimal resolution Y of the singularity \mathbf{C}^{2} / G. The minimal resolution Y is known to be either the moduli space of G-clusters G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$, or the equivalent $\mathcal{M}_{\theta}(Q, R)$, the moduli space of θ-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph Γ an open set $U_{\Gamma} \subset \mathcal{M}_{\theta}(Q, R)$, and calculating the explicit equation of U_{Γ} using the McKay quiver with relations (Q, R).

Key words: McKay correspondence; G-Hilbert scheme; quiver representations.

1. Introduction. The generalisation of the McKay correspondence [8], [12] to small finite subgroups $G \subset \mathrm{GL}(2, \mathbf{C})$ was established after Wunram [15] introduced the notion of special representation. The so-called "special" McKay correspondence relates the G-equivariant geometry of \mathbf{C}^{2} and the minimal resolution Y of the quotient \mathbf{C}^{2} / G, establishing a one-to-one correspondence between the irreducible components of the exceptional divisor $E \subset Y$ and the special irreducible representations. This minimal resolution Y can be viewed as two equivalent moduli spaces: by a result of Ishii [4] it is known that $Y=G$ - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ the G-invariant Hilbert scheme introduced by Ito and Nakamura [5], and at the same time as $Y=$ $\mathcal{M}_{\theta}(Q, R)$ the moduli space of θ-stable representations of the McKay quiver.

In the same spirit as [7] in this paper we treat the problem of describing G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ by giving an explicit affine open cover. In [9] Nakamura introduced the notion of G-graphs, providing a nice and friendly framework to describe G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ for finite abelian subgroups in $\operatorname{GL}(n, \mathbf{C})$. In this paper we consider the non-abelian analogue of a G-graph and provide an explicit method to interpret θ-stable representations of the McKay quiver from G-graphs and vice versa. By using the relations on the McKay quiver, this led us to describe explicitly an open cover $\mathcal{M}_{\theta}(Q, R)$ (hence for G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$) for binary dihedral subgroups in $\mathrm{GL}(2, \mathbf{C})$ with the minimal

[^0]number of open sets. Our method also recovers the ideals defining the G-clusters in G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$.

An alternative description of an open cover for the minimal resolution Y has been discovered independently by Wemyss [13], [14] by using reconstruction algebras instead of the skew group ring.

2. Preliminaries.

2.1. Dihedral groups $\mathrm{BD}_{2 n}(a)$ in $G L(2, C)$. Let G be a finite small binary dihedral subgroup in $\mathrm{GL}(2, \mathbf{C})$. In terms of its action on the complex plane \mathbf{C}^{2} we consider the representation of G, denoted by $\mathrm{BD}_{2 n}(a)$, generated by $\alpha=$ $\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & \varepsilon^{a}\end{array}\right)$ and $\beta=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ subject to relations:

$$
(2 n, a)=1, a^{2} \equiv 1(\bmod 2 n), \operatorname{gcd}(a+1,2 n) \nmid n
$$

where ε is a primitive $2 n$-th root of unity. The group $\mathrm{BD}_{2 n}(a)$ has order $4 n$ and it contains the maximal normal index 2 cyclic subgroup $A:=\langle\alpha\rangle \unlhd G$, which we denote by $\frac{1}{2 n}(1, a)$ (note that $\beta^{2} \in A$). The condition $a^{2} \equiv 1(\bmod 2 n)$ is equivalent to the relation $\alpha \beta=\beta \alpha^{a}$, and $\operatorname{gcd}(a+1,2 n) \nmid n$ implies that the group is small (see [10], $\S 3$ for details).

Definition 2.1. Let $q:=\frac{2 n}{(a-1,2 n)}$, and k such that $n=k q$.

The group $\mathrm{BD}_{2 n}(a)$ has $4 k$ irreducible 1-dimensional representations ρ_{j}^{+}and ρ_{j}^{-}of the form

$$
\rho_{j}^{ \pm}(\alpha)=\varepsilon^{j}, \rho_{j}^{ \pm}(\beta)= \begin{cases} \pm i & \text { if } n, j \text { odd } \\ \pm 1 & \text { otherwise }\end{cases}
$$

where ε is a $2 n$-th primitive root of unity and j is such that $j \equiv a j(\bmod 2 n)$. The values r for which $r \not \equiv a r(\bmod 2 n)$ form in pairs the $n-k$ irreducible

2-dimensional representations V_{r} of the form

$$
V_{r}(\alpha)=\left(\begin{array}{cc}
\varepsilon^{r} & 0 \\
0 & \varepsilon^{a r}
\end{array}\right), V_{r}(\beta)=\left(\begin{array}{cc}
0 & 1 \\
(-1)^{r} & 0
\end{array}\right)
$$

By definition, the natural representation is V_{1}.
In what follows we take the notation as in [16] $\S 10$. Let $V\left(=V_{1}\right)$ a vector space with basis $\{x, y\}$ where G acts naturally. Define $S=\operatorname{Sym} V:=\mathbf{C}\left[V^{*}\right]$ the polynomial ring in the variables x and y. Then the action of G extends to S by $g \cdot f(x, y):=$ $f(g(x), g(y))$ for $f \in S, g \in G$.

Definition 2.2. Let $G=\mathrm{BD}_{2 n}(a), f \in S$.
$f \in \rho_{j}^{ \pm}: \Longleftrightarrow \alpha(f)=\varepsilon^{j} f, \beta(f)= \begin{cases} \pm i f & \text { if } n, j \text { odd } \\ \pm f & \text { otherwise }\end{cases}$

$$
(f, \beta(f)) \in V_{k}: \Longleftrightarrow \alpha(f, \beta(f))=\left(\varepsilon^{k} f, \varepsilon^{a k} \beta(f)\right)
$$

Let $S_{\rho}:=\{f \in \mathbf{C}[x, y]: f \in \rho\}$ the S^{G}-module of ρ-invariants. Note that these are precisely the Cohen Macaulay S^{G}-modules $S_{\rho}=\left(S \otimes \rho^{*}\right)^{G}$ where G acts on S as above and G acts on a representation ρ by the inverse transpose.
2.2. G-Hilb and G-graphs. Let $G=$ $\mathrm{BD}_{2 n}(a) \subset \mathrm{GL}(2, \mathbf{C})$ be a binary dihedral subgroup.

Definition 2.3. A G-cluster is a G-invariant zero dimensional subscheme $\mathcal{Z} \subset \mathbf{C}^{2}$ such that $\mathcal{O}_{\mathcal{Z}} \cong \mathbf{C}[G]$ the regular representation as G modules. The G-Hilbert scheme G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ is the moduli space parametrising G-clusters.

Recall that $\mathbf{C}[G]=\bigoplus_{\rho \in \operatorname{Irr} G}(\rho)^{\operatorname{dim} \rho}$, where every irreducible representation ρ appears $\operatorname{dim} \rho$ times in the sum. Thus, as a vector space, $\mathcal{O}_{\mathcal{Z}}$ has in its basis $\operatorname{dim} \rho$ elements in each ρ. To describe a distinguished basis of $\mathcal{O}_{\mathcal{Z}}$ with this property, it is convenient to use the notion of G-graph.

Definition 2.4. Let $G=\mathrm{BD}_{2 n}(a)$. A G-graph is a subset $\Gamma \subset \mathbf{C}[x, y]$ satisfying the following:
(a) It contains $\operatorname{dim} \rho$ number of elements in each irreducible representation ρ.
(b) If a monomial $x^{\lambda_{1}} y^{\lambda_{2}}$ is a summand of a polynomial $P \in \Gamma$, then for every $0 \leq \mu_{j} \leq \lambda_{j}$, the monomial $x^{\mu_{1}} y^{\mu_{2}}$ must be a summand of some polynomial $Q_{\mu_{1}, \mu_{2}} \in \Gamma$.
For any G-graph Γ there exists an open set $U_{\Gamma} \subset$ G$\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ consisting of all G-clusters \mathcal{Z} such that $\mathcal{O}_{\mathcal{Z}}$ admits Γ for basis as a vector space. It is proved in [11] (see Theorem 3.4) that given the set of all possible G-graphs $\left\{\Gamma_{i}\right\}$, their union covers G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$.

Example 2.5. $\Gamma=\left\{1, x, x^{2}, y, x y\right\}$ is a $\frac{1}{5}(1,3)$-graph. For the non-abelian binary dihedral group $\quad D_{4}=\left\langle\frac{1}{4}(1,3),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle \subset \mathrm{SL}(2, \mathbf{C}), \quad \Lambda=$

Fig. 1. Representation of the G-graphs Γ and Λ.
$\left\{1, x, y, x^{2}+y^{2}, x^{2}-y^{2}, y^{3},-x^{3}, x^{4}-y^{4}\right\} \quad$ is \quad a $\quad D_{4}{ }^{-}$ graph (note that $\left.(x, y),\left(y^{3},-x^{3}\right) \in V_{1}\right)$.

We say that an ideal I represents a G-graph Γ, and we write I_{Γ}, if $\mathbf{C}[x, y] / I$ admits Γ as basis.

In Example 1, $I_{\Gamma}=\left(x^{3}, x^{2} y, y^{2}\right)$ and similarly $I_{\Lambda}=\left(x y, x^{4}+y^{4}\right)$. The pictorial description of Γ and Λ is shown in Fig. 1. Notice that for Λ the elements $x^{2}+y^{2} \in \rho_{2}^{+}$and $x^{2}-y^{2} \in \rho_{2}^{-}$are described by x^{2} and y^{2} respectively, and the relation $x^{4}+y^{4}=0$ identifies x^{4} and y^{4} in $\mathbf{C}[x, y] / I_{\Lambda}$.
3. G-graphs for $\mathrm{BD}_{2 n}(a)$ groups. Let $G=\mathrm{BD}_{2 n}(a)$. The minimal resolution Y of \mathbf{C}^{2} / G is obtained as follows (see [5] §1.2): First act with A on \mathbf{C}^{2} and consider $A-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ as the minimal resolution of \mathbf{C}^{2} / A. To complete the action of G act with $G / A \cong\langle\bar{\beta}\rangle$ on A - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$. The conditions $a^{2} \equiv$ $1(\bmod 2 n)$ and $\operatorname{gcd}(a+1,2 n) \nmid n$ imply that the continued fraction $\frac{2 n}{a}$ is symmetric with respect to the middle entry. Then the coordinates along the exceptional divisor $E=\bigcup_{i=1}^{2 m-1} E_{i}$ are symmetric with respect to the middle curve E_{m}. The action of G / A identifies the rational curves on E pairwise except in E_{m} where we have an involution. Thus the quotient $\widetilde{Y}=A-\operatorname{Hilb}\left(\mathbf{C}^{2}\right) /(G / A)$ has two A_{1} singularities, and the blow-up of these two points gives $G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ by the uniqueness of minimal models of surfaces.

Let us now translate this construction into graphs. Any G / A-orbit in A - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ consists of two A-clusters \mathcal{Z} and $\beta(\mathcal{Z})$, with symmetric A-graphs Γ and $\beta(\Gamma)$ respectively. They are represented by $I_{\Gamma}=\left(x^{s}, y^{u}, x^{s-v} y^{u-r}\right)$ and $I_{\beta(\Gamma)}=$ $\left(y^{s}, x^{u}, x^{u-r} y^{s-v}\right)$, where $e_{i}=\frac{1}{2 n}(r, s), e_{i+1}=\frac{1}{2 n}(u, v)$ are two consecutive lattice points in the boundary of the Newton polygon of the lattice $L:=$ $\mathbf{Z}^{2}+\frac{1}{2 n}(1, a) \cdot \mathbf{Z}$.

If we denote by \mathcal{Y} the corresponding G-cluster, then it is clear that $\mathcal{Z} \cup \beta(\mathcal{Z}) \subset \mathcal{Y}$. Thus $I_{\mathcal{Y}} \subset I_{\mathcal{Z}} \cap$ $I_{\beta(\mathcal{Z})}$ which implies that $\widetilde{\Gamma}:=\Gamma \cup \beta(\Gamma) \subset \Gamma_{\mathcal{Y}}$. Note that the representation of $\widetilde{\Gamma}$ in the lattice of monomials is symmetric with respect to the diagonal, and the inclusion $\widetilde{\Gamma} \subset \Gamma_{\mathcal{Y}}$ is never an equality since Γ and $\beta(\Gamma)$ always share a common subset of elements $R \subset \widetilde{\Gamma}$. The subset $\widetilde{\Gamma}$ is called $q G$-graph.

Thus, to obtain a G-graph from $\widetilde{\Gamma}$ we must add $\sharp R$ elements to $\widetilde{\Gamma}$ preserving the representation spaces contained in R according to Definition 2.4. It is shown in [11] that the extension from a $q G$ graph $\widetilde{\Gamma}$ to a G-graph Γ is unique. The following theorem resumes the classification of G-graphs for $\mathrm{BD}_{2 n}(a)$ groups describing their defining ideals in each case.

Theorem 3.1 ([11]). Let $G=\mathrm{BD}_{2 n}(a)$ be a small binary dihedral group and let Γ_{i} be the A-graph corresponding to the two consecutive lattice points $e_{i}=\frac{1}{2 n}(r, s), e_{i+1}=\frac{1}{2 n}(u, v)$ of the Newton polygon of the lattice L. Denote by $\Gamma:=\Gamma(r, s ; u, v)$ the G graph corresponding to the qG-graph $\Gamma_{i} \cup \beta\left(\Gamma_{i}\right)$. Then we have the following possibilities:

- If $u<s-v$ then Γ is of type A and it is represented by the ideal $I_{A}=\left(x^{u} y^{u}, x^{s-v} y^{u-r}+\right.$ $\left.(-1)^{u-r} x^{u-r} y^{s-v}, x^{r+s}+(-1)^{r} y^{r+s}\right)$.
- If $u-r=s-v:=m$ then Γ is of type B and
(a) If $u<2 m$ then Γ is of type B_{1} and it is represented by the ideal $I_{B_{1}}=\left(x^{r+s}+(-1)^{r} y^{r+s}\right.$, $\left.x^{m+s} y^{m-r}+(-1)^{m-r} x^{m-r} y^{m+s}, x^{u} y^{m}, x^{m} y^{u}\right)$.
(b) If $u \geq 2 m$ then Γ is of type B_{2} and $I_{B_{2}}=$ $\left(x^{2 m} y^{2 m}, x^{s+m}, y^{s+m}, x^{u} y^{m}, x^{m} y^{u}\right)$.

In addition, when $u=v=q:=\frac{2 n}{(a-1,2 n)}$ we have four G-graphs of types C^{+}, C^{-}, D^{+}and D^{-}.

- The G-graphs of types $D^{ \pm}$are represented by the ideals $I_{D^{ \pm}}=\left(x^{q} \pm(-i)^{q} y^{q}, x^{s-r} y^{s-r}\right)$.
- For G-graphs of types $C^{ \pm}$we have two cases:
(a) If $2 q<s$, and we call $m_{1}:=s-q$ and $m_{2}:=q-r$, they are represented by the ideals $I_{C^{ \pm}}=\left(\left(x^{q} \pm(-i)^{q} y^{q}\right)^{2}, x^{s} y^{m_{2}} \pm(-1)^{r} i^{q} x^{m_{2}} y^{s}, x^{m_{1}} y^{m_{2}} \pm\right.$ $\left.(-1)^{m_{2}} x^{m_{2}} y^{m_{1}}\right)$.
(b) If $2 q=r+s$ then $I_{C_{B}^{ \pm}}=\left(y^{m}\left(x^{q} \pm(-i)^{q} y^{q}\right)\right.$, $\left.x^{m}\left(x^{q} \pm(-i)^{q} y^{q}\right), x^{s-r} y^{s-r}, x^{s} y^{m}, x^{m} y^{s}\right)$.

Remark 3.2. The list of ideals in Theorem 3.1 define in G - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ the intersection points of two of the exceptional curves plus the strict transform of the coordinate axis in \mathbf{C}^{2}.

Example 3.3. Consider the $\frac{1}{12}(1,7)$-graphs given by $I_{\Gamma}=\left(x^{7}, y^{2}, x^{5} y\right)$ and $I_{\beta(\Gamma)}=\left(y^{7}, x^{2}, x y^{5}\right)$, with $r=1, s=7, u=2, v=2$. The overlap subset is $R=\{1, x, y, x y\}$ where $1 \in \rho_{0}^{+}, \quad x y \in \rho_{8}^{-}$and $(x, y) \in V_{1}$. Then we must add the elements $x^{5} y-$ $x y^{5} \in \rho_{0}^{+}, \quad x^{8}-y^{8} \in \rho_{8}^{-} \quad$ and $\quad\left(y^{7},-x^{7}\right) \in V_{1}$. The graph is represented by $\left(x^{2} y^{2}, x^{5} y-x y^{5}, x^{8}-y^{8}\right)$.

Theorem 3.4 ([11]). Let $G=\mathrm{BD}_{2 n}(a)$ be small and let $P \in G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ be defined by the ideal I. Then we can always choose a basis for $\mathbf{C}[x, y] / I$ from the list $\Gamma_{A}, \Gamma_{B}, \Gamma_{C^{+}}, \Gamma_{C^{-}}, \Gamma_{D^{+}}, \Gamma_{D^{-}}$. Moreover,
if $\Gamma_{0}, \ldots, \Gamma_{m-1}, \Gamma_{C^{+}}, \Gamma_{C^{-}}, \Gamma_{D^{+}}, \Gamma_{D^{-}}$is the list of $G-$ graphs, then an open cover of $G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ is given by $U_{\Gamma_{0}}, \ldots, U_{\Gamma_{m-1}}, U_{\Gamma_{C^{+}}}, U_{\Gamma_{C^{-}}}, U_{\Gamma_{D^{+}}}, U_{\Gamma_{D^{-}}}$.
4. $\mathcal{M}_{\theta}(Q, R)$ and orbifold McKay quiver. Let $G=\mathrm{BD}_{2 n}(a)$ and let $A=\frac{1}{2 n}(1, a) \unlhd$ G. Denote by $\operatorname{Irr} G$ the set of irreducible representations of G. For the background material on quivers refer to [1]. We consider left modules (and actions), and by a path $p q$ we mean p followed by q. Let (Q, R) a quiver with relations, fix $\mathbf{d}=\left(d_{i}\right)_{i \in Q_{0}}$ the dimension vector of the representations of (Q, R), and let $\mathbf{V}\left(I_{R}\right) \subset \mathbf{A}^{N} \cong \bigoplus_{a \in Q_{1}} \operatorname{Mat}_{d_{t(a)} \times d_{h(a)}}$ the representation space subject to the ideal of relations I_{R}. For θ generic we define $\mathcal{M}_{\theta}:=$ $\mathcal{M}_{\theta}(Q, R)=\mathbf{V}\left(I_{R}\right) / /{ }_{\theta} \Pi \mathrm{GL}\left(d_{i}\right)$ the moduli space of θ-stable representations of (Q, R) (see [6], [3]). Taking Q to be the McKay quiver and a particular choice of generic θ (see $\S 5$) it is well known that $\mathcal{M}_{\theta} \cong G$ - $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$.

The McKay quiver of G, denoted by $\operatorname{McKayQ}(G)$, is defined by having one vertex for every $\rho \in \operatorname{Irr} G$ and by the number of arrows from ρ to σ to be $\operatorname{dim}_{\mathbf{C}} \operatorname{Hom}_{\mathbf{C} G}(\rho \otimes V, \sigma)$. Equivalently, due to Auslander it is known that $\operatorname{McKayQ}(G)$ is the underlying quiver of the algebra $\operatorname{End}_{S^{G}}\left(\bigoplus_{\rho \in \operatorname{Irr} G} S_{\rho}\right)$ where $S_{\rho}=\left(S \otimes \rho^{*}\right)^{G}$ as in 2.2 (see [16] for a proof in dimension 2).

The $\operatorname{McKayQ}(A)$ can be drawn on a torus as follows: Let $M \cong \mathbf{Z}^{2}$ be the lattice of monomials and $M_{\mathrm{inv}} \cong \mathbf{Z}^{2}$ the sublattice of invariant monomials by A. If we take $M_{\mathbf{R}}=M \otimes_{\mathbf{Z}} \mathbf{R}$ we can consider the torus $T:=M_{\mathbf{R}} / M_{\text {inv }}$. The vertices in $\operatorname{McKayQ}(A)$ are precisely $Q_{0}=M \cap T$, and the arrows between vertices are the natural multiplications by x and y in M. It is easy to see that we can always choose a fundamental domain \mathcal{D} for T to be the parallelogram with vertices $0,(k, k),(2 q, 0)$ and $(k+2 q, k)$ where the opposite sides are identified.

Proposition 4.1. (i) The McKay quiver Q of $\mathrm{BD}_{2 n}(a)$ is the $\mathbf{Z} / 2$-orbifold quotient of the McKay quiver for the Abelian subgroup A (see Fig. 2).
(ii) The relations R on the Q which gives the identification between $G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ and \mathcal{M}_{θ} are $a_{i} b_{i+1}=0, f_{i} e_{i+1}=0, b_{i} a_{i}+d_{i} c_{i}=r_{i, 1} u_{i, 1}, c_{i} d_{i+1}=0$, $h_{i} g_{i+1}=0, \quad e_{i} f_{i}+g_{i} h_{i}=u_{i, q-2} r_{i+1, q-2}, \quad u_{i, j} r_{i+1, j}=$ $r_{i, j+1} u_{i, j+1}$, considering subindices modulo k.

Notation 4.2. The source and target for $r_{i, j}$ and $u_{i, j}$ are $r_{i, j}: S_{V_{(i-1)(a+1)+j}} \rightarrow S_{V_{\overline{(i-1)}(a+1)+j+1}}$, and
 $[1, q-2]$, where \bar{i} denotes $i \bmod k$.

Fig. 2. McKay quiver for $\mathrm{BD}_{2 n}(a)$ groups.
Remark 4.3. In the case $q=2$ the relations are $a_{i} b_{i+1}=0, f_{i} e_{i+1}=0, c_{i} d_{i+1}=0, h_{i} g_{i+1}=0$ and $b_{i} a_{i}+d_{i} c_{i}=e_{i} f_{i}+g_{i} h_{i}$.

Proof. (i) Let $\operatorname{Irr} A=\left\{\rho_{0}, \ldots, \rho_{2 n-1}\right\}$. The group G acts on A by conjugation, which induces an action of $G / A \cong \mathbf{Z} / 2$ on A by $\beta \cdot h:=\beta h \beta^{-1}$, for any $h \in A$. Therefore G / A acts on $\operatorname{Irr} A$ by $\beta \cdot \rho_{k}:=$ $\rho_{a k}$, for $\rho_{k} \in \operatorname{Irr} A$. The free orbits are $\left\{\rho_{i}, \rho_{a i}\right\}$ with $a i \not \equiv i \bmod 2 n$, producing the 2 -dimensional representations V_{i} in McKayQ (G). Every fixed point ρ_{j} with $a j \equiv j(\bmod 2 n)$ splits into the two 1-dimensional representations ρ_{j}^{+}and ρ_{j}^{-}in $\operatorname{McKayQ}(G)$.

Note that $\operatorname{McKayQ}(G)$ is now drawn on a cylinder where only the top and bottom sides are identified. The arrows of $\operatorname{McKayQ}(A)$ going in and out fixed representations split into two different arrows, while for the rest we have a 1 to 1 correspondence between arrows in $\operatorname{McKayQ}(A)$ and $\operatorname{McKayQ}(G)$.
(ii) Let $\mathbf{k} Q$ be the path algebra, $S=\mathbf{C}[x, y]$ and V^{*} the natural representation. Tensoring with $\operatorname{det}_{V^{*}}:=\bigwedge^{2} V^{*}$ induces a permutation τ on Q_{0} by $e_{i}=$ $\tau\left(e_{j}\right) \Longleftrightarrow \rho_{i}=\rho_{j} \otimes \operatorname{det}_{V^{*}}$. Now consider an arrow $a: e_{i} \rightarrow e_{j}$ as an element $\psi_{a} \in \operatorname{Hom}_{\mathbf{C} G}\left(\rho_{i}, \rho_{j} \otimes V^{*}\right)$. Then for any path $p=a_{1} a_{2}$ of length 2 we can consider the G-module homomorphism $\rho_{t(p)} \xrightarrow{\psi_{p}} \rho_{h(p)} \otimes$ $V^{* \otimes r} \xrightarrow{\mathrm{id}_{\rho_{h(p)}} \otimes \gamma} \rho_{h(p)} \otimes \operatorname{det}_{V^{*}}$ where ψ_{p} is the composition of the maps $\psi_{a_{1}}$ and $\psi_{a_{2}} \otimes \mathrm{id}_{V}^{*}$, and $\gamma: V^{* \otimes 2} \rightarrow \bigwedge^{2} V^{*}$ sends $v_{1} \otimes v_{2} \mapsto v_{1} \wedge v_{2}$. By Schur's Lemma the composition of the maps above is zero if $\tau(h(p)) \neq$ $t(p)$, a scalar c_{p} otherwise. It is known by [2] that for a finite small $G \subset \mathrm{GL}(2, \mathbf{C})$ (and more generally for any small finite subgroup $G \subset \mathrm{GL}(r, \mathbf{C})$) the skew group algebra $S * G$ is Morita equivalent to the algebra $\mathbf{k} Q /\left\langle\partial_{p} \Phi:\right| p|=0\rangle$, where $\Phi:=\sum_{|p|=2}\left(c_{p} \operatorname{dim} h(p)\right) p$ and ∂_{p} are derivations with respect to paths of length 0 , i.e. vertices e_{i}. Since the θ-stable $S * G$-modules
(θ as in $\S 5$) are precisely the G-clusters, which gives $\mathcal{M}_{\theta} \cong G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$.

For $G=\mathrm{BD}_{2 n}(a)$, $\operatorname{det}_{V^{*}}=\rho_{a+1}^{+}$so τ translates $\operatorname{McKayQ}(G)$ one step diagonally up (see Fig. 2). Only paths of length 2 joining two vertices identified by τ appear in Φ, giving the relations R by derivations with respect to the vertices of Q.
5. Explicit calculation of $G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$.

Let $G=\mathrm{BD}_{2 n}(a)$ and (Q, R) be the McKay quiver as in 4 . Denote the arrows by $\mathbf{a}=(a, A), \mathbf{a}=\binom{a}{A}$, or $\mathbf{a}=\left(\begin{array}{cc}a & A \\ a^{\prime} & A^{\prime}\end{array}\right)$ depending on the dimensions at the source and target of \mathbf{a}. We take representations of Q with dimension vector $\mathbf{d}=\left(\operatorname{dim} \rho_{i}\right)_{i \in Q_{0}}$ and the generic stability condition $\theta=\left(1-\sum_{\rho_{i} \in \operatorname{Irr} G} \operatorname{dim} \rho_{i}\right.$, $1 \ldots, 1$, which imply $G-\operatorname{Hilb}\left(\mathbf{C}^{2}\right) \cong \mathcal{M}_{\theta}$.

Claim 5.1. A representation of Q is stable if and only if there exist $\operatorname{dim} \rho_{i}$ linearly independent maps from the distinguished source, chosen to be $\rho_{0} \in Q_{0}$, to every other vertex ρ_{i} in Q.

Indeed, a representation W is not θ-stable iff $\exists W^{\prime} \subset W$ proper with $\theta\left(W^{\prime}\right)<0$. Since the only nonzero entry of θ corresponds to ρ_{0}^{+}and $\mathbf{d}\left(W^{\prime}\right)$ has to be strictly smaller than $\mathbf{d}(W)$, this is equivalent to say that there are strictly less linearly independent paths from ρ_{0}^{+}to ρ_{i} than $\operatorname{dim} \rho_{i}$, for $i \neq 0$.

By making a correspondence between elements of a G-graph and paths in Q, an open cover of \mathcal{M}_{θ} is given by the ones corresponding to the G-graphs. The G-graphs predetermine the choices of linear independent paths, thus giving a covering of \mathcal{M}_{θ} with the minimal number of open sets.

Theorem 5.2. Let $G=\mathrm{BD}_{2 n}(a)$ and let $\Gamma=$ $\Gamma(r, s ; u, v)$ be a G-graph with $U_{\Gamma} \subset \mathcal{M}_{\theta}$. Then,

- If Γ is of type A then $U_{\Gamma_{A}}$ is given by: $a_{0}, D_{0}, F_{0} \neq 0$, and $e_{i}, g_{i}, r_{i, j}, U_{i, j}^{\prime} \neq 0$ for all i, j. $a_{i}, H_{i} \neq 0$ for i even, and $c_{i}, F_{i} \neq 0$ for i odd. For $0<i<u$ set $b_{i}, D_{i} \neq 0$ if i is even, and $B_{i}, d_{i} \neq 0$ if i is odd. For $i \geq u$ set $B_{i}, D_{i} \neq 0$.
- If Γ is of type B then $U_{\Gamma_{B}}$ is given by: $a_{0}, d_{0}, H_{0} \neq 0, e_{i} \neq 0, g_{i} \neq 0, r_{i, j} \neq 0$ for all i, j. $a_{i}, b_{i}, D_{i}, H_{i} \neq 0$ for i even, and $B_{i}, c_{i}, d_{i}, F_{i} \neq 0$ for i odd. If $r>1$ also $C_{0}, R_{1,1}^{\prime}, \ldots, R_{1, r-2}^{\prime} \neq 0$.

If Γ is of type B_{1} then also set $R_{r+1,1}^{\prime}, \ldots$, $R_{r+1, u-r-2}^{\prime} \neq 0 \quad$ and $\quad U_{i, j}^{\prime} \neq 0, \quad \forall i \neq 0, r \quad$ and $\quad \forall j$. For $i=0, r \quad$ we have $U_{0, r}^{\prime}, \ldots, U_{0, q-2}^{\prime} \neq 0 \quad$ and $U_{r, u-r}^{\prime}, \ldots U_{r, q-2}^{\prime} \neq 0$.
Also if $q>2, C_{r} \neq 0$ if r even, or $A_{r} \neq 0$ if r odd.
If Γ is of type B_{2} then also set $U_{i, j}^{\prime} \neq 0, \forall i>0$ and $\forall j$ and $U_{0, r}^{\prime}, \ldots U_{0, q-2}^{\prime} \neq 0$.

- If Γ is of type C then
(a) The conditions for $U_{\Gamma_{C^{-}}} \subset \mathcal{M}_{\theta}$ are the same as the ones for $\Gamma_{i}(r, s ; q, q)$ with $i=A$ or B, and the condition $F_{0} \neq 0$ instead of $H_{0} \neq 0$.
(b) The open conditions for the case $\Gamma_{C^{+}}$are the same as those for $\Gamma_{C^{-}}$but swapping the conditions for F_{i} for H_{i} and vice versa.
- If Γ is of type D then $U_{\Gamma_{D^{ \pm}}}$is defined by: $a_{0}, C_{0}, d_{0} \neq 0$, and $a_{i}, b_{i}, D_{i} \neq 0$ for i even, B_{i}, c_{i}, $d_{i} \neq 0$ for i odd.
$U_{i, j}^{\prime} \neq 0$ for all $i>0$ and all $j, U_{0, r}^{\prime}, \ldots U_{0, q-2}^{\prime} \neq 0$.
$r_{i, j} \neq 0$ for all i, j except for $r_{i, q-i}, i=\in[2, k-1]$.
$R_{1,1}^{\prime}, \ldots, R_{1, r-2}^{\prime} \neq 0, u_{i, q-i} \neq 0$ for $i \in[2, k-1]$.
If Γ is a G-graph of type D^{+}then we also set e_{0}, $H_{0}, G_{0}, E_{1}, f_{1}, g_{1}, H_{1} \neq 0$. If i is even then E_{i}, g_{i}, $F_{i} \neq 0$, and if i is odd then $e_{i}, G_{i}, H_{i} \neq 0$.
If Γ is a G-graph of type D^{-}we set $E_{0}, F_{0}, g_{0}, e_{1}, F_{1}$, $G_{1}, h_{1} \neq 0$. If i is even then $e_{i}, G_{i}, H_{i} \neq 0$, and if i is odd then $E_{i}, g_{i}, F_{i} \neq 0$ with $i \in[0, k-1]$.

Proof. An open set in \mathcal{M}_{θ} is obtained by making open conditions in the parameter space $\mathbf{V}\left(I_{R}\right) \subset \mathbf{A}^{N}$. We can change basis at every vertex to take 1 as basis for every 1 -dimensional vertex, and $(1,0)$ and $(0,1)$ for every 2-dimensional. Thus, by 5.1 the element $1 \in \rho_{0}^{+}$generates the whole representation with this basis. For instance, we always choose $a_{0}=(1,0)$.

Given any G-graph Γ the corresponding open set $U_{\Gamma} \subset \mathcal{M}_{\theta}$ is obtained by taking the open conditions according to the elements of Γ. This is done by considering Q to be given (see 4) by the $S^{G_{-}}$ modules S_{ρ} as vertices, and the irreducible maps between them to be the arrows. See Fig. 3 for the case n even, where the segment is repeated throughout the quiver. When n is odd replace e_{i} by $\binom{x}{-i y}, f_{i}$ by $(y,-i x), g_{i}$ by $\binom{x}{i y}$ and h_{i} by $(y, i x)$ (to verify the relations in 4.1 we have to multiply $r_{i, j}$ and $u_{i, j}$ by $\sqrt{2}$ for every i, j). By Claim 5.1 these irreducible maps send $1 \in S_{\rho_{0}^{+}}$once to every other $S_{\rho^{ \pm}}$and twice to every other $S_{V_{k}}$ linear independently. Denote the polynomials obtained by $f_{\rho^{ \pm}}$and $\left(g_{V}, g_{V}^{\prime}\right),\left(h_{V}, h_{V}^{\prime}\right)$ respectively. In this way, for any stable representation all modules S_{ρ} have assigned basis polynomials. Thus, if we take the open conditions such that basis elements generated from $1 \in S_{\rho_{0}^{+}}$form the G-graph Γ, we obtain the desired open set $U_{\Gamma} \in \mathcal{M}_{\theta}$.

If $f \in S_{\rho^{ \pm}}$and $f \neq f_{\rho}^{ \pm}$(i.e. $f \notin \Gamma$), then $\exists c \in \mathbf{C}$ such that $f=c f_{\rho}^{ \pm}$where c is the path in the representation connecting 1 and f (similarly $\left(f, f^{\prime}\right)=$ $c_{1}\left(g_{V}, g_{V}^{\prime}\right)+c_{2}\left(h_{V}, h_{V}^{\prime}\right)$ for $\left.c_{1}, c_{2} \in \mathbf{C},\left(f, f^{\prime}\right) \in S_{V}\right)$. Then U_{Γ} parametrises every G-cluster with Γ as G graph, so the union of U_{Γ} covers \mathcal{M}_{θ}. We prove the

Fig. 3. Segment i of the quiver between the modules $S_{\rho_{i}}$.
result case by case. It is worth mentioning that for $\mathrm{BD}_{2 n}(a)$ groups we have $(k, q)=1$ (see [10] §3.3.1). Case A: We start to generate the representation from $\mathbf{1} \in \rho_{0}^{+}$and $\mathbf{a}_{\mathbf{0}}=(1,0)$. We choose to obtain the basis element $(1,0)$ at every 2 -dimensional vertex with horizontal arrows taking $\mathbf{r}_{\mathbf{i}, \mathbf{j}}=\left(\begin{array}{cc}1 & 0 \\ r_{i, j}^{\prime} & R_{i, j}^{\prime}\end{array}\right) \forall i, j, \mathbf{a}_{\mathbf{i}}=$ $(1,0)$ for i even, $\mathbf{c}_{\mathbf{i}}=(1,0)$ for i odd. The open conditions needed are $r_{i, j} \neq 0 \forall i, j, a_{i} \neq 0$ for i even, $c_{i} \neq 0$ and i odd. Similarly, we choose to reach $(0,1)$ at every 2 -dimensional vertex with vertical arrows taking $\mathbf{u}_{\mathbf{i}, \mathbf{j}}=\left(\begin{array}{cc}u_{i, j} & U_{i, j} \\ 0 & 1\end{array}\right), \mathbf{h}_{\mathbf{i}}=(0,1)$ for i even, $\mathbf{f}_{\mathbf{i}}=(0,1)$ for i odd, by the open conditions $U_{i, j}^{\prime} \neq 0 \forall i, j, H_{i} \neq 0$ for i even, $F_{i} \neq 0$ for i odd (including $i=0$).

For the 1-dimensional representations on the right hand side we take $e_{i}=g_{i}=1$ for all i, with the open conditions $e_{i}, g_{i} \neq 0$. On the left hand side, since the G-graph is of type $\Gamma_{A}(r, s ; u, v)$ we have $x^{u} y^{u} \notin \Gamma_{A}$ but $x^{i} y^{i} \in \Gamma_{A}$ for $i<u$. In fact, $x^{i} y^{i} \in \rho_{i(a+1)}^{(-1)}$. Thus, we need to reach $\rho_{i(a+1)}^{(-1)^{i}}$ with a nonzero map for $0<i<u$ with a composition of maps of length i. We can achieve such a map by taking $d_{1}=b_{2}=d_{3}=1, \ldots$ until $d_{u-1}=1$ if u is even, or $b_{u-1}=1$ if u is odd. The condition $x^{u} y^{u} \notin$ Γ_{A} is given by $B_{u}=1$ if u is even, or $D_{u}=1$ if u is odd. Finally, from row u to the top row the choices are always $B_{i}, D_{i} \neq 0, i \neq 0$ and $D_{0} \neq 0$.
Case B: In this case $x^{u} y^{k}, x^{k} y^{u} \notin \Gamma_{B}$, which implies that $x^{i} y^{i} \in \Gamma_{B}$ for $i<u$. This explains the choices at the left hand side of the quiver, while on the right hand side remain the same as before. Since $x^{u} y^{m}, x^{m} y^{u} \in V_{r}$, the conditions $x^{u} y^{m}, x^{m} y^{u} \notin \Gamma_{B}$ are expressed with choices $C_{0}, R_{1,1}, R_{1,2}, \ldots, R_{1, r-2} \neq 0$. If $r \leq k$ we have a G-graph of type B_{1}, otherwise we have a type B_{2}. Case C : If the G-graph $\Gamma(r, s ; q, q)$ is of type B, then the open conditions are made at the special representation V_{r}. The difference between the C^{+}and C^{-}is given by $(+)^{2} \notin \Gamma_{C^{+}}$and $(-)^{2} \notin \Gamma_{C^{-}}$which are the choices on the vertical arrows in the right side of Q. Case D: In this case $(+) \notin \Gamma_{D^{+}}\left(\right.$or $\left.(-) \notin \Gamma_{D^{-}}\right)$. The open condition is made at the special representation ρ_{q}^{+}(or at ρ_{q}^{-}respectively). For instance, in the D^{+}

Fig. 4. The $\mathrm{BD}_{12}(7)$-graphs and the representation ideals, where $(+):=x^{2}+y^{2}$ and $(-):=x^{2}-y^{2}$.

Fig. 5. Open sets $U_{\Gamma_{A}}, U_{\Gamma_{C^{-}}} \subset \mathcal{M}_{\theta}$ for $\mathrm{BD}_{12}(7)$.
Table I. Basis elements of the G-graph $\Gamma_{D^{-}}(1,7 ; 2,2)$

| ρ_{0}^{+} | 1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

case we do not allow a path of length q starting from ρ_{0}^{+}and ending at ρ_{q}^{+}, i.e. $E_{1}=1$.

Example 5.3. Let $G=\mathrm{BD}_{12}(7)$ with $q=2$, $k=3$. The G-graphs is shown in Fig. 4. The open choices for Γ_{A} and $\Gamma_{C^{-}}$are shown in Fig. 5. Using the quiver in Fig. 3 we can calculate the basis polynomials in every irreducible representation (e.g. Table I). The equations of the open cover as hypersurfaces in \mathbf{C}^{3} are $U_{A}: c_{0} d_{1}-\left(c_{0} d_{1}^{2}+1\right) G_{1}, U_{C^{+}}$: $b_{2} D_{1}-\left(b_{2}-1\right) E_{1}, \quad U_{C^{-}}: b_{2} D_{1}-\left(b_{2}-1\right) G_{1}, \quad U_{D^{+}}:$ $e_{1} f_{0}-\left(e_{1}^{2} f_{0}-1\right) D_{1}$ and $U_{D^{-}}: g_{1} h_{0}-\left(g_{1}^{2} h_{0}-1\right) D_{1}$. The dual graph of the exceptional divisor in G $\operatorname{Hilb}\left(\mathbf{C}^{2}\right)$ is ${ }_{-2}^{-2}-3-2$.

References

[1] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge Univ. Press, Cambridge, 2006.
[2] R. Bocklandt, T. Schedler and M. Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), no. 9, 15011522.
[3] A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179-198.
[4] A. Ishii, On the McKay correspondence for a finite small subgroup of GL(2, C), J. Reine Angew. Math. 549 (2002), 221-233.
[5] Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, in New trends in algebraic geometry (Warwick, 1996), 151-233, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge.
[6] A. D. King, Moduli of representations of finitedimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530.
[7] Becky Leng, The McKay correspondence and orbifold Riemann-Roch, Ph.D. Thesis, University of Warwick, 2002.
[8] J. McKay, Graphs, singularities, and finite groups, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), 183-186, Proc. Sympos. Pure Math., 37 Amer. Math. Soc., Providence, RI, 1980.
[9] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757-779.
[10] Alvaro Nolla de Celis, Dihedral groups and G Hilbert schemes, Ph.D. Thesis, University of Warwick, 112 pp., 2008.
[11] Alvaro Nolla de Celis, G-graphs and special representations for binary dihedral groups in GL($2, \mathbf{C}$). (to appear in Glasgow Mathematical Journal).
[12] M. Reid, La correspondance de McKay, Astérisque No. 276 (2002), 53-72.
[13] Michael Wemyss, Reconstruction algebras of type D (I). arXiv:0905.1154v2, 2009.
[14] Michael Wemyss, Reconstruction algebras of type D (II). arXiv:0905.1155v1, 2009.
[15] J. Wunram, Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988), no. 4, 583-598.
[16] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge Univ. Press, Cambridge, 1990.

[^0]: 2010 Mathematics Subject Classification. Primary 14E16; Secondary 16G20, 14C05, 14E15.

