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A study of curvature using infinitesimals
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Abstract:

Motivated by a profound observation of A’Campo we investigate the behaviour

of the curvature of f(z,w) = ¢, f € C{z,w}, |c| small, along infinitesimals. We use the language of
infinitesimals as introduced in [2]. Along the way we introduce the important notion of gradient
canyon, and prove several theorems in which this notion plays the key role. In this paper we give
three such theorems and mention several other facts, to be published elsewhere.
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1. Introduction. Let f(z,y) € R{z,y} be a
real analytic function germ, f(0,0) = 0. The level
curves f =¢, 0 <|c| < ¢, have “bumps” near 0, as
we all know.

Consider two simple examples:

folzy) =32 -4 fi(z,y) =1" — 4.

We all know fa(z,y) =c attains maximum
curvature when crossing the y-axis. However, a
profound observation of N. A’Campo is that this is
rather an isolated case. For example, the curvature
of fi = c is actually 0 on the y-axis; the maximum
is attained instead as the level curve crosses = =
+ay*? + -, a # 0 a certain constant.

Motivated by this observation we explore this
idea using the language of Newton-Puiseux infini-
tesimals (2], [3], recalled below) and the notion of
“gradient canyon”.

Given f(z,w) € C{z,w}. A level curve
f(z,w) =c is a Riemann Surface in C? =RY,
having Gaussian curvature

2|A¢(z, w)[?
(1.1) K(z,w) L+ PP
oo fa [
Ap(z,w) = | fuz  fow fu
f- Juw 0

(This is actually the negative of the usual Gaussian
curvature defined in text books.)
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Take a holomorphic map germ
a: (C,0) — (C%0), aft)#0.

Let «, := Im(a) be the image set germ. Being an
irreducible curve germ in C?, it has a unique
tangent T'(«v.) at 0; T'(cw) is a point of the Riemann
Sphere CP'.

We call a. a (Newton-Puiseuz) infinitesimal
at T(a.). The FEnriched Riemann Sphere is
CP! = {a.}.

The image of t— (at,bt) is identified with
[a : b] € CP'; hence CP' C CPL.

The curvature computed along a., if not zero,
can be written as

K(at)=as*+---, a>0, LeQ,

where s = s(t) is the arc length. This is dominated
by the leading term as”
If K=0 along ., we write (a,L) := (0,00).
Hence we introduce the notations
(a,L) :=ad", 0y := 06>,
V(R) := {ad" | a # 0} U {0},
where 6 is a symbol.
A lexicographic ordering on V(R) is defined: 0,
is the smallest element, and
ab® > a'6" if and only if either L < L/,

orelse L=L, a>ad.

as s — 0.

Write ad” > a'6" (substantially larger than) if
L <L eq., 26%% > 62 > 10962 > 0y.

The curvature function K, on CP! and the
component L,, are defined as follows:

K,.:CP' — V(R), o, ad"; L.(a):=1L.
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We define the A’Campo bumps of K,. We tell
how to compute them in Theorem A; Theorem B
asserts that a bump is a local maximum of K,.
Theorem D gives a formula on the total curvature
over a gradient canyon.

A different approach was taken in [1], [4], [5].

To exclude the uninteresting cases, we shall
assume throughout this paper that O(f) > 2, and
that K, # const on CPL.

For example, f = (z — w?)? has K, = 8, a con-
stant. To us, there is no A’Campo bump.

2. Structures on CP!; main results. Re-
call that the classical Newton-Puiseux Theorem
asserts that the field F of convergent fractional
power series in an indeterminate y is algebraically
closed. ([6], [7].)

A non-zero element of F is a (finite or infinite)
convergent series

(2.1) /N

a(y):aoy +..._|_aiy”1/N_~_...7
ng<ng <---, n; €74,

where 0 # a; € C, N € Z*, GCD(N,ng,n1, ..
The conjugates of « are

)=1.

o) () =3y N, 0<k<N -1,
0:= e%:
The order is Oy(a) :=ny/N, Oy(0) := +o0.
The following D is an integral domain with
quotient field F, ideals Dy, Dq+:

D:={aecF|Oy(a) >0}, Dy :={a|Oy(a) > 1},
D+ :={a|Oy(a) > 1}.

As in Projective Geometry, CP! is a union of
two charts: CP! = C, U C/,

C.:={B. € CP | T(B,) # [1: 0]},
C.={p. € CP | T(B.) #[0:1]}.

Take a € Dy as expressed in (2.1). The map
germ (abusing notation)

a:(C,0) — (C%0), t— (a(tY),tV),

is holomorphic. Hence a, € C,; all conjugates of
a(y) give the same «,.

The Newton-Puiseux coordinate system on C,
is, by definition, the surjection

m:D; — C,,

.

If «a, is given, the congugate class of « is unique;
a € Dy+ if and only if T'(aw,) = [0 : 1].
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To define the contact order Cyrq(au, By), we can
of course assume ay, 5, € C,. Then

Cm”d(a*aﬂ*)
00 if o, = Gs,
~ | maxi {0, (0, (w) — Y ()} if a. # B
The horn subspaces of CP! centred at o, of
degree e, e' are, respectively,

He(ow) == {Bs | Cora(aus, Bi) > e},
Hes () == {Bs | Coralas, Bi) > e}

In particular, Corg(au, 8) = 1 if T(a,) # T(Bs), and
Hi(a,) = CP! for all .

When there is no need to specify a., we write
He == He(ow).

We can see that if n(y) = a(y) + [cy* + -],
¢ € C generic, then L.(n,) is a constant. We write
this constant as L, (HI).

A horn interval of radius v, r>0, is, by
definition,

He(aw,r) = {0 | Bly) = aly) + ey + -+, |ef <7}

Definition 2.1.
curvature tableland if
(1) B € He(aw) = Lu(Bs) = Li(HI“(a)); and

(2) in the case e > 1, there exists ¢/, 1 <€ <e,
such that

Ve € He’(a*) - He(a*)
= Lu(vi) > L(H7" (o).

(&

A horn subspace H,(a.) is a

For f = 2> —w? H; is not a curvature table-
land, L.(0,) = —4 < L.(H{™) = 0.

Definition 2.2. Let H, be a curvature
tableland. Take (. € H.. We say K, has an
A’Campo bump on H+(B,), or simply say He-(05:)
is an A’Campo bump, if

(2.2) Fe>0, pe € He(Bs,€) = K. (Bs) > Ki(pts)-

Let us apply a unitary transformation (if
necessary) so that f is mini-regular in z, i.e.,
(23) f(Z, ’U)) = Hm(z7 ’U)) + Hrn+1(27 U)) + - )
H,,(1,0) # 0,

where m = O(f), Hy(z,w) a homogeneous form of
degree k. Let us also write

(2.4)

Hy(z,w) = c(z — cqw)™ -+ (2 — c;w)™,
m721, C77élefZ7éj,
where 1 <r <m, > m; =m, ¢#0. Thus H,,(z,w)

is degenerate if and only if r < m.
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Let (; denote the Newton-Puiseux roots of
f(z,w), and +; those of f.:

(25)  f(zw) =unit- [T, (2 = Gi(w)),
fo(zw) = unit - [ (2 = (),

where O, (), Ow(7j) > 1. Each ~;, or ~;, is called
a polar.

Definition 2.3. Given a polar v. Let dg ()
denote the smallest number e such that
26) 0wl Grad (o w), w)])

= Oy(||Grad f(y(w) + ww®, w)|),

where u € C is a generic number. We call dg(7)
the gradient degree of ~.
The D-gradient canyon of v, and the x-gradient
canyon of v, are, respectively,
G(v) =={aeDi|Oy(a—~) = dj},
g*(%ﬂ) = Hd(’}/*)v d:= d{/’r'('}/)'
When there is no confusion, we write
d:= dgr(7)> G:= g(7)7 G = g*(’y*)

The degree and multiplicity of G, G, are,
respectively,

dgr(G) = dgr(G:) = dgr(7),
m(G) :=m(G.) = H{klG(n) = G(7)}-
Note. In general, m(G) # 8{k|lv € G(7)}. See
Example 2.5.

Definition 2.4. We say v is maximal, or has
mazimal gradient degree, if
(1) dgr(7) < o0,
(2) O('yj - ’Y) > dgr(’Y) e dgr('yj) = dgr(7)7
G(v) € G(v) = G(v;) = 9(7)-
In this case we say the D-gradient canyon G(v) is
minimal.
Note. If v is a multiple root of f(z,w), then

d=o0,G(7) = {7}
Example 2.5. Take f=2"—w", 2<m<
n. There is only one polar v = 0,
m(G) =m — 1.
100

Take ¢=z*—22%w? — w'",
tw. Then dg (1) =97, dg(12) = 1,

G(m) C G(72) = G(13) = Dy,
m(G(y)) =2, t{kln € G(n)} =3.

Here v; is maximal, but s, 73 are not.

i.e.,

=0, 73=
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Given 7. We now define L, € Q, and a rational
function R,(u), R,(u) >0, u € C.

We can assume v € Dy so that T'(y,.) = [0: 1].
If d > 1, define L., R,(u) by

27)  K(v(y) +uy’,y) = 2R, (w)y?™ + -+,
R, (u) #0,
where y can be considered as the arc length of
(v(y) + uy?), since limy/s = 1.
In the case d =1, L, and R,(u) are defined by
2L,
Y _|_ cey

28) K Wy y.—
Ry(u) £0.
Lemma 2.6. The function R,(u)>0 s
defined and continuous for all u € C,

(2.9) Ly =—d, lim, .. R, (u)=0.

Hence the absolute mazimum of R (u) is attained.
(There may be many local mazima.)

Theorem A. A minimal D-gradient canyon
is a curvature tableland, and vice versa.

Take a maximal polar v and a local maximum
R,(c) of R,(u). Then Hg (v %) is an A’Campo
bump, where Y (y) :=y(y) +cy’. All A’Campo
bumps can be found in this way.

No A’Campo bump arises from a multiple root
of f(z,w). We can ignore such polars.

Example 2.7. For fo(z,w) =322 — Fw?,
there is only one polar v = 0, having d = 2,

Ry(u) = (Jul’ + )7, K.((v +uy”),) = 2R, (w)s*.

In this example, R,(u) is maximum at u = 0.
Next, consider fy(z,w)= iz4 — %w57 having

_ — 4
7_O7d_§7

A = 2uwd(42 = 3u°), R, (u) = 9ul'(Jul® +1)7".

Here R,(0) =0, a minimum; R,(u) attains maxi-
mum on the circle |u| = (2/7)1/6.

We now define the perturbation topology on
V(R): a closed set is V(R), or 0, or
Ceo ={a1d" |eg < a1 < o0} U---

U{as6% | es < ay < o0},

where € := {e,...,€6},6 >0, 0:={q1,...,q:} C Q.
(The closure of 0y is the whole space V(R).)

The perturbation topology on C, is the induced
one. A neighbourhood of p, is

N (1)
=A{ve | v(y) —wly) = ay’ +---, |al]6? ¢ Ce o}
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The topology on C is similarly defined; that on
CP! is generated by these two.

Theorem B. Fvery p, in an A’Campo bump
Ha+ (7€) is a local mazimum of K, in the perturba-
tion topology.

Theorem C. Suppose

Then

1 <d:=dg(y) < oo.

/g k= 2{/RZ R, (u) dz A dy} 82

=m(@ms ™, G:=G(y),

where u=1x+1y € C. The integral is called the
total Gaussian curvature over G.

3. The Lojasiewicz exponent function
L.(e). Let vy be given. Take e > 1, u € C (or an
indeterminate). Write

(2.10)

(3.1) 1Ay +uy’, )
= N(ﬂ/,e)(u)yQLA(%e) + - N(“/,e)(u) ?é O,
| Grad f((y) +uy’, y)|I”
= D(’Y,c)(u)yQLGw(%e) + ey D(’y’-,fi) (u) ?_é 0,

where N, (u), Dy (u) are real-valued, non-neg-
ative, polynomials of u, u. We define

(32) L”r(e) = LA(V? e) - 3LG7YL(1(75 6)7

Riy,0)(u) 1= N (1) Dy ()~
Note that La(v,e), Larad(y,€) are also defined
when e is irrational. Thus, when - is fixed, these are
piece-wise linear, continuous, increasing functions
ofe, 1 <e< .
As in Calculus, we say ¢(z) is increasing (resp.
decreasing, resp. strictly decreasing) if

T < o — gf)(fbl) < ¢(I2)
(resp. ¢(x1) > P(x2), Tesp. ¢p(x1) > ¢(2)).

Now let 7 be a given polar. Note that

Ry g)(u) = Ry (u) in (2.7). We write

(33)  Cr(v) :=Cs(1)
= max{Oy(y — ) | 1 < < m},
G in (2.5).
Lemma 3.1. If 1<d<oo, then L.(d)=
—d = L,, L, being the constant defined in (2.7).
Ifd=1, then Cy(y) =1, L(1) = =1 = L.
4. Newton polygon relative to a polar.
Let 7 be a given polar, not a multiple root of f(z,w)
(fixed in what follows), i.e., f(y(w),w) # 0. We can

apply a unitary transformation, if necessary, so that
T(v.) =[0:1], v € Dy
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(0,h—1)

A

Fig. 1.

NP(F), NP(Fy).

Let us change coordinates:
Z:=z—v(w), W:=uw,
F(Z,W) := f(Z +~(W), W),

and write A ~ B when A/B — 1, then

(42)  As(zw) = Ap(Z,W) ++"(W)F3,

|Grad. . f|| = || GradzwF||.

(4.1)

An important step is to study the relationship
between the Newton Polygons NP(F) and NP(Fy).
This is illustrated in Fig. 1, which is deliberately
drawn off scale for clarity; a number of key argu-
ments are also exposed.

Recall that a monomial term aZ'W4, a # 0,
q € Q, is represented by a “Newton dot” at (i, q).
We shall simply say (4,q) is a dot.

If i > 1, then (i,q) is a dot of F(Z,W) if and
only if (i — 1,q) is one of Fy. Since = is a polar, Fy
has no dot of the form (0,q); F(Z,W) has no dot of
the form (1,q).

As  f(y(w),w) #0, we know F(0,W)#0.
Hence

(4.3)  FO,W):=aW"+...,

h = Ow(F(0,W)),

and then (0, h) is a vertex of NP(F), (0,h — 1) is one
of N'P(Fu)

Let Ej,, denote the top edge of NP(F), i.e., the
edge with left vertex (0,h). Let (myop, qiop) denote
the right vertex of Ey,,, and 0y, the angle of E,,, as
shown in Fig. 1,

a#0,
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tan 0y,, = co-slope of Ey,,,

where the co-slope of a line passing through (z,0)
and (0,y) is, by definition, y/x.

Notations. Let a weight system w = (wy,1)
be given. The weighted initial form of G(Z,W)
(in the weighted Taylor expansion) is denoted by
Z,(G)(Z, W), or simply Z,(G).

Let Z,(G) := 3" a;;Z/W//N . The weighted order
of G is O,(G) :=iwz + j/N.

As usual, the degree of a polynomial P(Z) is
written as deg P(Z).

In Fig. 1, £ denotes the line joining (0,h — 1)
(which is not a dot of Fz) and a dot of Fy such that
no dot of Fz lies below L*.

No dot of Fyy lies below £*; if dg-(y) > 1, (0,h —
1) is the only dot of Fy lying on L*.

Finally, the line, £, through (1,h—1) is
parallel to £* and its co-slope is precisely dg, ().

For f(z,w) in Example (2.5), £* is the line
joining (0,n — 1), (m — 1,0); dg(y) = &=L

m—1°
Scketch of Proof of Theorem C. We already
know L,(d) = —d from Lemma 3.1. O
Let w=(d,1). Write p(u):=7Z,(Fz)(u,l),

¢ := |ha|, and G := G(v). Note that
degp(u) = m(9), Niya(w) = c'|p'(u),
Dy iy (u) = ¢ + [p(u)[*.
Now let us write
p(u) :=U(z,y) +iV(z,y), u=x+iyeC,

where U, V satisfy the Cauchy-Riemann equations.
Using the latter we find
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. Ay (w)? _

/Ry(u)du Ada = /ﬁ du A du

[ + [p(u)[]

/ dU A dV

-2 [ — .
[1+U2+V?
The mapping u — p(u) is a m(G)-sheet branch
covering of C. Hence

dU A dV
Rﬁudu/\dﬂ:—%mg/ —_—
/c ) ) R [1+ U2 + V2P

= —mim(g),

and (2.10) follows from the identity duAdu =
—2idx A dy.
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