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Abstract: Let F be a family of meromorphic functions on a domain D, k 2 N and H be a

normal family of meromorphic functions on D such that 0 is not in H and H has no sequence that

converges to 0 or 1 spherically locally uniformly on D. If for every f 2 F , fðzÞ 6¼ 0, and there

exists an hf 2 H such that f ðkÞðzÞ 6¼ hfðzÞ at every z 2 D, then the family F is normal on D. This

generalizes Gu’s well-known normality criterion. It is interesting that the condition fðzÞ 6¼ 0

cannot be replaced by that all zeros of f have large multiplicities, at least kþ 3 for instance.
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1. Introduction. Let F be a family of

meromorphic functions on a domain D � C.

Then F is said to be normal on D in the sense

of Montel, if each sequence of F contains a

subsequence which converges spherically uniformly

on each compact subset of D to a meromorphic

function which may be 1 identically. See [2,5,8].

We denote by F 0 the family of these limit functions,

and let F ¼ F [ F 0. For two functions f and g

defined in D, we write f 6¼ g on D if fðzÞ 6¼ gðzÞ for

every z 2 D; write f 6� g if fðz0Þ 6¼ gðz0Þ for some

z0 2 D; and write f � g if fðzÞ ¼ gðzÞ for every

z 2 D.

The well-known Gu’s normality criterion [1]

says that a family F ¼ ffg of functions meromor-

phic on D is normal if f 6¼ 0 and f ðkÞ 6¼ 1 on D for

each f 2 F . Our starting point is the following

generalization of Gu’s theorem proved by L.

Yang [7].

Theorem A ([7, Theorem 1]). Let F be a

family of meromorphic functions on D, k 2 N and

h ð6� 0Þ be a holomorphic function on D. If for every

f 2 F , f 6¼ 0 and f ðkÞ 6¼ h on D, then F is normal

on D.

In Theorem A, the derivatives of all functions

in F omit the same function h. Thus, it is

interesting to consider the case that for different

functions in F , their k-th derivatives omit different

functions. In this direction, S. Nevo, X. C. Pang and

L. Zalcman [3] have proved the following result. We

state their result by the following form.

Theorem B ([3, Lemma 3]). Let F be a

family of meromorphic functions on a domain D,

k 2 N and H be a normal family of holomorphic

functions on D such that h 6¼ 0;1 on D for each

function h 2 H. If for every f 2 F , f 6¼ 0 on D, and

there exists an hf 2 H such that fðkÞ 6¼ hf on D, then

the family F is normal on D.

Here, we generalize this result by allowing

that H consists of meromorphic functions and that

h 6� 0;1 for each h 2 H.

Theorem 1. Let F be a family of meromor-

phic functions on a domain D, k 2 N and H be a

normal family of meromorphic functions on D such

that 0;1 =2 H. If for every f 2 F , f 6¼ 0 on D, and

there exists an hf 2 H such that fðkÞ 6¼ hf on D, then

the family F is normal on D.

There are many further studies [4,6] about Gu’s

criterion and Yang’s theorem. For example, we

have the following normality criteria.

Theorem C ([4, Theorem 1]). Let k 2 N

and F be a family of meromorphic functions on D,

all of whose zeros have multiplicity at least kþ 3,

and hð6� 0Þ be a holomorphic function on D. If for

every f 2 F , fðkÞ 6¼ h on D, then the family F is

normal on D.

Theorem D ([4, Theorem 3]). Let k 2 N

and F be a family of meromorphic functions on D,

all of whose zeros have multiplicity at least kþ 2 and

all of whose poles are multiple, and hð6� 0Þ be a

holomorphic function on D. If for every f 2 F ,

fðkÞ 6¼ h on D, then the family F is normal on D.

Hence, it is natural to ask whether there are

similar results for Theorems C and D. The answer is
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no. Indeed, for given positive integers M, N and k,

we can construct a non-normal family F of mer-

omorphic functions such that for each f 2 F , all

poles of f have multiplicity at least M, all zeros of

f have multiplicity at least N, and f ðkÞ omits a

function contained in a normal family H satisfying

0;1 =2 H.

Example 1. Let M;N; k be positive integers

with N > k, and let for every n 2 N

fnðzÞ ¼
zM � 1

nM

� �N
zM

;

hnðzÞ ¼
XN�1

j¼0

ð�1Þj

nMj

N

j

� �
zðN�j�1ÞM

 !ðkÞ
:

Then we have

fnðzÞ ¼
PN

j¼0
N

j

� �
ð�1Þj
nMj z

ðN�jÞM

zM

¼
ð�1ÞN

nMNzM
þ
XN�1

j¼0

ð�1Þj

nMj

N

j

� �
zðN�j�1ÞM;

and hence

f ðkÞn ðzÞ ¼
ð�1ÞNþkðM þ k� 1Þ!
ðM � 1Þ!nMNzMþk

þ hnðzÞ 6¼ hnðzÞ:

We also see that H ¼ fhng is normal on C and

0;1 =2 H, since hn 6� 0;1 on D and

hnðzÞ ! hðzÞ :¼ ðzðN�1ÞMÞðkÞ 6� 0;1:

However, the sequence ffng is not normal at 0,

since fnð0Þ ¼ 1 and fnð1=nÞ ¼ 0.

This example shows that the condition f 6¼ 0

on D for every f 2 F in Theorem 1 cannot be

relaxed in general. The other conditions are also

essential.

Example 2. The condition that H is normal

is necessary. Let fnðzÞ ¼ enz for every n 2 N, and

hnðzÞ ¼ nkenz þ 1. Then on C, fn is zero-free and

f
ðkÞ
n 6¼ hn. We see that both ffng and fhng are not

normal at 0.

Example 3. The condition that 0;1 =2 H is

necessary. Let fnðzÞ ¼ enz for every n 2 N. Then on

the unit disk �ð0; 1Þ, fn 6¼ 0, f
ðkÞ
n ðzÞ ¼ nkenz 6¼ nken

and f
ðkÞ
n ðzÞ 6¼ nke�n. Obviously, we have nken !1

and nke�n ! 0. However, ffng is not normal at 0.

Example 4. The condition f ðkÞ 6¼ hf cannot

be replaced by f ðkÞ � hf 6¼ 0, even for all hf are the

same. Let fnðzÞ ¼ 1=ðnzÞ for every n 2 N, and

hðzÞ ¼ ð�1Þkk!=zkþ1. Then we have fn 6¼ 0 and

f
ðkÞ
n � h 6¼ 0 on C for n > 1. However, ffng is not

normal at 0.

2. Proof of Theorem 1. Let ffng � F be a

sequence. We are required to prove that ffng
contains a subsequence which converges spherically

locally uniformly on D.

By the condition, there exists a corresponding

sequence fhng � H such that f
ðkÞ
n 6¼ hn on D. If fhng

contains a subsequence in which all functions are

the same, then the conclusion follows from

Theorem A. So we can assume that the functions

hn are distinct.

Since H is normal, fhng contains a subse-

quence, which we continue to call fhng, such that

fhng converges spherically locally uniformly on D

to a meromorphic function h0, which may be 1
identically. Since 0;1 =2 H, we have h0 6� 0;1. Set

E ¼ h�1
0 ð0Þ [ h�1

0 ð1Þ, where h�1
0 ð0Þ and h�1

0 ð1Þ
stand respectively for the set of zeros and the set

of poles of h0 in D. Since h0 6� 0;1, the set E has no

accumulation point in D.

We claim that ffng is normal on D n E. It

suffices to show that ffng is normal at every point

z0 2 D n E. Let U ¼ Uðz0Þ be a neighborhood of z0

such that U � D n E. Then h0 6¼ 0;1 on U . Since

hn ! h0 on D, by Hurwitz’s theorem, hn 6¼ 0;1 on

U (for sufficiently large n). So the conditions of

Theorem B are satisfied on U, and hence the

normality of ffng on U (and hence at z0) follows.

It follows from the claim that we can say fn !
f0 on D n E, where f0 is meromorphic on D n E or

f0 � 1.

Suppose first that f0 6� 0. Then we have 1=fn !
1=f0 6� 1 on D n E. Since fn 6¼ 0 on D, 1=fn is

holomorphic on D. Hence, by the maximum mod-

ulus principle, 1=fn ! 1=f0 on whole D. It follows

that fn ! f0 on D.

Suppose now that f0 � 0. Then fn is locally

uniformly holomorphic on D n E, i.e., for each

bounded and closed sub-domain of D n E, there

exists an N 2 N such that for n > N, fn is

holomorphic on this sub-domain.

Now let F be a bounded and closed subset of D.

Since D is a domain, there exists a bounded and

closed sub-domain of D with smooth boundary that

contains F . So we can assume that F is a bounded

and closed sub-domain of D with smooth boundary

@F . Also, as E has no accumulation point in D, we

can assume that no point in E lies on the boundary

@F . We denote by F � the interior of F .
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Thus by fn ! f0 � 0 on D n E, we have f
ðkÞ
n !

0 and f
ðkþ1Þ
n ! 0 on D n E, and hence f

ðkÞ
n � hn !

�h0 and f
ðkþ1Þ
n � h0n ! �h00 on @F . Now we apply

the argument principle to the functions f
ðkÞ
n � hn.

We have

n F �;
1

f
ðkÞ
n � hn

 !
� nðF �; f ðkÞn � hnÞð1Þ

¼
1

2�i

Z
@F

f
ðkþ1Þ
n � h0n
f
ðkÞ
n � hn

dz

! 1

2�i

Z
@F

h00
h0
dz

¼ n F �;
1

h0

� �
� n F �; h0ð Þ;

where nðF �; gÞ and nðF �; 1=gÞ are respectively the

number of poles of g and the number of zeros of

g in F �, counting multiplicity. Since both sides

of (1) are integers, it follows that for sufficiently

large n,

n F �;
1

f
ðkÞ
n � hn

 !
� nðF �; f ðkÞn � hnÞð2Þ

¼ n F �;
1

h0

� �
� n F �; h0ð Þ:

From f
ðkÞ
n 6¼ hn, we get nðF �; 1

f
ðkÞ
n �hn

Þ ¼ 0 and know

that f
ðkÞ
n and hn have no common poles. It follows

that

nðF �; fðkÞn � hnÞ ¼ nðF �; f ðkÞn Þ þ nðF �; hnÞ:ð3Þ

Further as hn ! h0 spherically uniformly on F and

h0 6¼ 0;1 on @F , by Hurwitz’s theorem, we have

nðF �; hnÞ ¼ nðF �; h0Þ for sufficiently large n. Thus,

by (2) and (3), we have

nðF �; f ðkÞn Þ þ n F �;
1

h0

� �
¼ 0:ð4Þ

It follows that each fn has no pole on F and hence is

holomorphic for sufficiently large n. Thus by fn ! 0
on D n E and the maximum modulus principle,

fn ! 0 uniformly on F . This shows that fn ! 0

locally uniformly on D. �
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