A generalization of Gu's normality criterion

By Xiaoyi LIU and Jianming CHANG

Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China

(Communicated by Kenji FUKAYA, M.J.A., April 12, 2012)

Abstract: Let \mathcal{F} be a family of meromorphic functions on a domain $D, k \in \mathbb{N}$ and \mathcal{H} be a normal family of meromorphic functions on D such that 0 is not in \mathcal{H} and \mathcal{H} has no sequence that converges to 0 or ∞ spherically locally uniformly on D. If for every $f \in \mathcal{F}$, $f(z) \neq 0$, and there exists an $h_f \in \mathcal{H}$ such that $f^{(k)}(z) \neq h_f(z)$ at every $z \in D$, then the family \mathcal{F} is normal on D. This generalizes Gu's well-known normality criterion. It is interesting that the condition $f(z) \neq 0$ cannot be replaced by that all zeros of f have large multiplicities, at least k + 3 for instance.

Key words: Meromorphic functions; normality; exceptional functions.

1. Introduction. Let \mathcal{F} be a family of meromorphic functions on a domain $D \subset \mathbb{C}$. Then \mathcal{F} is said to be normal on D in the sense of Montel, if each sequence of \mathcal{F} contains a subsequence which converges spherically uniformly on each compact subset of D to a meromorphic function which may be ∞ identically. See [2,5,8]. We denote by \mathcal{F}' the family of these limit functions, and let $\overline{\mathcal{F}} = \mathcal{F} \cup \mathcal{F}'$. For two functions f and g defined in D, we write $f \neq g$ on D if $f(z) \neq g(z)$ for every $z \in D$; write $f \equiv g$ if $f(z_0) \neq g(z_0)$ for some $z_0 \in D$; and write $f \equiv g$ if f(z) = g(z) for every $z \in D$.

The well-known Gu's normality criterion [1] says that a family $\mathcal{F} = \{f\}$ of functions meromorphic on D is normal if $f \neq 0$ and $f^{(k)} \neq 1$ on D for each $f \in \mathcal{F}$. Our starting point is the following generalization of Gu's theorem proved by L. Yang [7].

Theorem A ([7, Theorem 1]). Let \mathcal{F} be a family of meromorphic functions on D, $k \in \mathbf{N}$ and $h \ (\neq 0)$ be a holomorphic function on D. If for every $f \in \mathcal{F}$, $f \neq 0$ and $f^{(k)} \neq h$ on D, then \mathcal{F} is normal on D.

In Theorem A, the derivatives of all functions in \mathcal{F} omit the same function h. Thus, it is interesting to consider the case that for different functions in \mathcal{F} , their k-th derivatives omit different functions. In this direction, S. Nevo, X. C. Pang and L. Zalcman [3] have proved the following result. We state their result by the following form.

2000 Mathematics Subject Classification. Primary 30D45.

Theorem B ([3, Lemma 3]). Let \mathcal{F} be a family of meromorphic functions on a domain D, $k \in \mathbb{N}$ and \mathcal{H} be a normal family of holomorphic functions on D such that $h \neq 0, \infty$ on D for each function $h \in \overline{\mathcal{H}}$. If for every $f \in \mathcal{F}$, $f \neq 0$ on D, and there exists an $h_f \in \mathcal{H}$ such that $f^{(k)} \neq h_f$ on D, then the family \mathcal{F} is normal on D.

Here, we generalize this result by allowing that \mathcal{H} consists of meromorphic functions and that $h \neq 0, \infty$ for each $h \in \overline{\mathcal{H}}$.

Theorem 1. Let \mathcal{F} be a family of meromorphic functions on a domain D, $k \in \mathbb{N}$ and \mathcal{H} be a normal family of meromorphic functions on D such that $0, \infty \notin \overline{\mathcal{H}}$. If for every $f \in \mathcal{F}$, $f \neq 0$ on D, and there exists an $h_f \in \mathcal{H}$ such that $f^{(k)} \neq h_f$ on D, then the family \mathcal{F} is normal on D.

There are many further studies [4,6] about Gu's criterion and Yang's theorem. For example, we have the following normality criteria.

Theorem C ([4, Theorem 1]). Let $k \in \mathbf{N}$ and \mathcal{F} be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 3, and $h(\neq 0)$ be a holomorphic function on D. If for every $f \in \mathcal{F}$, $f^{(k)} \neq h$ on D, then the family \mathcal{F} is normal on D.

Theorem D ([4, Theorem 3]). Let $k \in \mathbf{N}$ and \mathcal{F} be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 2 and all of whose poles are multiple, and $h(\neq 0)$ be a holomorphic function on D. If for every $f \in \mathcal{F}$, $f^{(k)} \neq h$ on D, then the family \mathcal{F} is normal on D.

Hence, it is natural to ask whether there are similar results for Theorems C and D. The answer is

no. Indeed, for given positive integers M, N and k, we can construct a non-normal family \mathcal{F} of meromorphic functions such that for each $f \in \mathcal{F}$, all poles of f have multiplicity at least M, all zeros of f have multiplicity at least N, and $f^{(k)}$ omits a function contained in a normal family \mathcal{H} satisfying $0, \infty \notin \overline{\mathcal{H}}$.

Example 1. Let M, N, k be positive integers with N > k, and let for every $n \in \mathbf{N}$

$$f_n(z) = \frac{\left(z^M - \frac{1}{n^M}\right)^N}{z^M},$$

$$h_n(z) = \left(\sum_{j=0}^{N-1} \frac{(-1)^j}{n^{Mj}} \binom{N}{j} z^{(N-j-1)M}\right)^{(k)}$$

Then we have

$$f_n(z) = \frac{\sum_{j=0}^N \binom{N}{j} \frac{(-1)^j}{n^{Mj}} z^{(N-j)M}}{z^M} \\ = \frac{(-1)^N}{n^{MN} z^M} + \sum_{j=0}^{N-1} \frac{(-1)^j}{n^{Mj}} \binom{N}{j} z^{(N-j-1)M},$$

and hence

$$f_n^{(k)}(z) = \frac{(-1)^{N+k}(M+k-1)!}{(M-1)!n^{MN}z^{M+k}} + h_n(z) \neq h_n(z).$$

We also see that $\mathcal{H} = \{h_n\}$ is normal on **C** and $0, \infty \notin \overline{\mathcal{H}}$, since $h_n \not\equiv 0, \infty$ on *D* and

$$h_n(z) \to h(z) := (z^{(N-1)M})^{(k)} \neq 0, \infty.$$

However, the sequence $\{f_n\}$ is not normal at 0, since $f_n(0) = \infty$ and $f_n(1/n) = 0$.

This example shows that the condition $f \neq 0$ on D for every $f \in \mathcal{F}$ in Theorem 1 cannot be relaxed in general. The other conditions are also essential.

Example 2. The condition that \mathcal{H} is normal is necessary. Let $f_n(z) = e^{nz}$ for every $n \in \mathbf{N}$, and $h_n(z) = n^k e^{nz} + 1$. Then on \mathbf{C} , f_n is zero-free and $f_n^{(k)} \neq h_n$. We see that both $\{f_n\}$ and $\{h_n\}$ are not normal at 0.

Example 3. The condition that $0, \infty \notin \overline{\mathcal{H}}$ is necessary. Let $f_n(z) = e^{nz}$ for every $n \in \mathbb{N}$. Then on the unit disk $\Delta(0,1), f_n \neq 0, f_n^{(k)}(z) = n^k e^{nz} \neq n^k e^n$ and $f_n^{(k)}(z) \neq n^k e^{-n}$. Obviously, we have $n^k e^n \to \infty$ and $n^k e^{-n} \to 0$. However, $\{f_n\}$ is not normal at 0.

Example 4. The condition $f^{(k)} \neq h_f$ cannot be replaced by $f^{(k)} - h_f \neq 0$, even for all h_f are the same. Let $f_n(z) = 1/(nz)$ for every $n \in \mathbf{N}$, and $h(z) = (-1)^k k! / z^{k+1}$. Then we have $f_n \neq 0$ and $f_n^{(k)} - h \neq 0$ on **C** for n > 1. However, $\{f_n\}$ is not normal at 0.

2. Proof of Theorem 1. Let $\{f_n\} \subset \mathcal{F}$ be a sequence. We are required to prove that $\{f_n\}$ contains a subsequence which converges spherically locally uniformly on D.

By the condition, there exists a corresponding sequence $\{h_n\} \subset \mathcal{H}$ such that $f_n^{(k)} \neq h_n$ on D. If $\{h_n\}$ contains a subsequence in which all functions are the same, then the conclusion follows from Theorem A. So we can assume that the functions h_n are distinct.

Since \mathcal{H} is normal, $\{h_n\}$ contains a subsequence, which we continue to call $\{h_n\}$, such that $\{h_n\}$ converges spherically locally uniformly on D to a meromorphic function h_0 , which may be ∞ identically. Since $0, \infty \notin \overline{\mathcal{H}}$, we have $h_0 \not\equiv 0, \infty$. Set $E = h_0^{-1}(0) \cup h_0^{-1}(\infty)$, where $h_0^{-1}(0)$ and $h_0^{-1}(\infty)$ stand respectively for the set of zeros and the set of poles of h_0 in D. Since $h_0 \not\equiv 0, \infty$, the set E has no accumulation point in D.

We claim that $\{f_n\}$ is normal on $D \setminus E$. It suffices to show that $\{f_n\}$ is normal at every point $z_0 \in D \setminus E$. Let $U = U(z_0)$ be a neighborhood of z_0 such that $\overline{U} \subset D \setminus E$. Then $h_0 \neq 0, \infty$ on \overline{U} . Since $h_n \to h_0$ on D, by Hurwitz's theorem, $h_n \neq 0, \infty$ on U (for sufficiently large n). So the conditions of Theorem B are satisfied on U, and hence the normality of $\{f_n\}$ on U (and hence at z_0) follows.

It follows from the claim that we can say $f_n \rightarrow f_0$ on $D \setminus E$, where f_0 is meromorphic on $D \setminus E$ or $f_0 \equiv \infty$.

Suppose first that $f_0 \neq 0$. Then we have $1/f_n \rightarrow 1/f_0 \neq \infty$ on $D \setminus E$. Since $f_n \neq 0$ on D, $1/f_n$ is holomorphic on D. Hence, by the maximum modulus principle, $1/f_n \rightarrow 1/f_0$ on whole D. It follows that $f_n \rightarrow f_0$ on D.

Suppose now that $f_0 \equiv 0$. Then f_n is locally uniformly holomorphic on $D \setminus E$, i.e., for each bounded and closed sub-domain of $D \setminus E$, there exists an $N \in \mathbf{N}$ such that for n > N, f_n is holomorphic on this sub-domain.

Now let F be a bounded and closed subset of D. Since D is a domain, there exists a bounded and closed sub-domain of D with smooth boundary that contains F. So we can assume that F is a bounded and closed sub-domain of D with smooth boundary ∂F . Also, as E has no accumulation point in D, we can assume that no point in E lies on the boundary ∂F . We denote by F° the interior of F. Thus by $f_n \to f_0 \equiv 0$ on $D \setminus E$, we have $f_n^{(k)} \to 0$ and $f_n^{(k+1)} \to 0$ on $D \setminus E$, and hence $f_n^{(k)} - h_n \to -h_0$ and $f_n^{(k+1)} - h'_n \to -h'_0$ on ∂F . Now we apply the argument principle to the functions $f_n^{(k)} - h_n$. We have

(1)
$$n\left(F^{\circ}, \frac{1}{f_{n}^{(k)} - h_{n}}\right) - n(F^{\circ}, f_{n}^{(k)} - h_{n})$$

 $= \frac{1}{2\pi i} \int_{\partial F} \frac{f_{n}^{(k+1)} - h'_{n}}{f_{n}^{(k)} - h_{n}} dz$
 $\rightarrow \frac{1}{2\pi i} \int_{\partial F} \frac{h'_{0}}{h_{0}} dz$
 $= n\left(F^{\circ}, \frac{1}{h_{0}}\right) - n(F^{\circ}, h_{0}),$

where $n(F^{\circ}, g)$ and $n(F^{\circ}, 1/g)$ are respectively the number of poles of g and the number of zeros of g in F° , counting multiplicity. Since both sides of (1) are integers, it follows that for sufficiently large n,

(2)
$$n\left(F^{\circ}, \frac{1}{f_n^{(k)} - h_n}\right) - n(F^{\circ}, f_n^{(k)} - h_n)$$

= $n\left(F^{\circ}, \frac{1}{h_0}\right) - n(F^{\circ}, h_0).$

From $f_n^{(k)} \neq h_n$, we get $n(F^\circ, \frac{1}{f_n^{(k)} - h_n}) = 0$ and know that $f_n^{(k)}$ and h_n have no common poles. It follows that

(3)
$$n(F^{\circ}, f_n^{(k)} - h_n) = n(F^{\circ}, f_n^{(k)}) + n(F^{\circ}, h_n).$$

Further as $h_n \to h_0$ spherically uniformly on F and $h_0 \neq 0, \infty$ on ∂F , by Hurwitz's theorem, we have $n(F^{\circ}, h_n) = n(F^{\circ}, h_0)$ for sufficiently large n. Thus, by (2) and (3), we have

(4)
$$n(F^{\circ}, f_n^{(k)}) + n\left(F^{\circ}, \frac{1}{h_0}\right) = 0.$$

It follows that each f_n has no pole on F and hence is holomorphic for sufficiently large n. Thus by $f_n \to 0$ on $D \setminus E$ and the maximum modulus principle, $f_n \to 0$ uniformly on F. This shows that $f_n \to 0$ locally uniformly on D.

Acknowledgements. The authors are grateful to the referee for his valuable suggestions. This work was supported by NNSF of P. R. China (Grant No. 11171045).

References

- Y. X. Gu, A normal criterion of meromorphic families, Sci. Sinica, Math. Issue (I), (1979), 267–274.
- [2] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [3] S. Nevo, X. Pang and L. Zalcman, Quasinormality and meromorphic functions with multiple zeros, J. Anal. Math. **101** (2007), no. 1, 1–23.
- X. Pang, D. Yang and L. Zalcman, Normal families of meromorphic functions whose derivatives omit a function, Comput. Methods Funct. Theory 2 (2002), no. 1, 257–265.
- [5] J. L. Schiff, Normal families, Universitext, Springer, New York, 1993.
- W. Schwick, Exceptional functions and normality, Bull. London Math. Soc. 29 (1997), no. 4, 425– 432.
- [7] L. Yang, Normality for families of meromorphic functions, Sci. Sinica Ser. A 29 (1986), no. 12, 1263–1274.
- [8] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.

No. 5]