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Abstract: We prove that the growth rates of three-dimensional generalized simplex

reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four

generators are always Perron numbers.
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1. Introduction. A convex polyhedron P of

finite volume in the n-dimensional hyperbolic space

Hn is called a Coxeter polyhedron if its dihedral

angles are submultiples of �. Any Coxeter polyhe-

dron is a fundamental domain of the discrete group

� generated by the set S consisting of the reflections

with respects to its facets. We call ð�; SÞ an n-

dimensional hyperbolic Coxeter group. In particular

when P is a (generalized) simplex of Hn, ð�; SÞ
is also called a (generalized) simplex reflection

group [9]. In this situation we can define the word

length ‘SðxÞ of x 2 � with respect to S by the

smallest integer n � 0 for which there exist s1;

s2; � � � ; sn 2 S such that x ¼ s1s2 � � � sn. The growth

function fSðtÞ of ð�; SÞ is the formal power seriesP1
k¼0 akt

k where ak is the number of elements g 2 �

satisfying ‘SðgÞ ¼ k. It is known that the growth rate

of ð�; SÞ, ! :¼ lim supk!1
ffiffiffiffiffi
akk
p

is bigger than 1 [3]

and less than or equal to the cardinality jSj of S. By

means of Cauchy-Hadamard formula, the radius of

convergence R of fSðtÞ is the reciprocal of !, i.e.

1=jSj � R < 1. In practice the growth function fSðtÞ
which is analytic on jtj < R extends to a rational

function P ðtÞ=QðtÞ on C by analytic continuation

where P ðtÞ; QðtÞ 2 Z½t� are relatively prime. There

are formulas due to Solomon and Steinberg to

calculate the rational function P ðtÞ=QðtÞ from the

Coxeter diagram of ð�; SÞ [11,12]. See also [4].

Theorem 1 (Solomon’s formula). The growth

function fSðtÞ of an irreducible spherical Coxeter

group ð�; SÞ can be written as fSðtÞ ¼
Qk

i¼1½mi þ 1�
where ½n� :¼ 1þ tþ � � � þ tn�1 and fm1;m2; � � � ;mkg
is the set of exponents of ð�; SÞ.

Theorem 2 (Steinberg’s formula). Let ð�; SÞ
be a hyperbolic Coxeter group. Let us denote the

Coxeter subgroup of ð�; SÞ generated by the subset

T � S by ð�T ; T Þ, and denote its growth function by

fT ðtÞ. Set F ¼ fT � S : �T is finiteg. Then

1

fSðt�1Þ
¼
X

T2F

ð�1ÞjT j

fT ðtÞ
:

In this case, t ¼ R is a pole of fSðtÞ. Hence R is

a real zero of the denominator QðtÞ closest to the

origin 0 2 C of all zeros of QðtÞ. Solomon’s formula

implies that P ð0Þ ¼ 1. Hence a0 ¼ 1 means that

Qð0Þ ¼ 1. Therefore ! > 1, the reciprocal of R,

becomes a real algebraic integer whose conjugates

have moduli less than or equal to the modulus of !.

If t ¼ R is the unique zero of QðtÞ with the smallest

modulus, then ! > 1 is a real algebraic integer

whose conjugates have moduli less than the mod-

ulus of !: such a real algebraic integer is called a

Perron number.

For two and three-dimensional cocompact

hyperbolic Coxeter groups, Cannon-Wagreich and

Parry showed that the growth rates are Salem

numbers [1,8], where a real algebraic integer � > 1
is called a Salem number if ��1 is an algebraic

conjugate of � and all algebraic conjugates of

� other than � and ��1 lie on the unit circle.

From the definition, a Salem number is a Perron

number.

Kellerhals and Perren calculated the growth

functions of four-dimensional cocompact hyperbolic

Coxeter groups with at most 6 generators and

showed that ! are not Salem numbers while they

checked that ! are Perron numbers numerically [6].
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In the non-compact case, Floyd proved that the

growth rates of two-dimensional non-compact hy-

perbolic Coxeter groups are Pisot-Vijayaraghavan

numbers, where a real algebraic integer � > 1 is

called a Pisot-Vijayaraghavan number if algebraic

conjugates of � other than � lie in the unit disk [2].

A Pisot-Vijayaraghavan number is also a Perron

number by definition.

From these results for low-dimensional cases,

Kellerhals and Perren conjectured that the growth

rates of hyperbolic Coxeter groups are always

Perron numbers. In the present paper, we go to

the next stage: three-dimensional non-compact

hyperbolic Coxeter groups of finite covolume. We

will show that the growth rate of a three-dimen-

sional generalized simplex reflection group is a

Perron number.

In this paper we consider hyperbolic Coxeter

groups with 4 generators, and we can also prove the

same result for hyperbolic Coxeter groups with 5

generators, even though the same idea doesn’t work

anymore; the details will be presented in our

forthcoming paper [7].

2. Denominators of growth functions.

There are exactly 23 three-dimensional generalized

simplex reflection groups [5,9]. By means of

Steinberg’s formula we can calculate growth func-

tions of them.

Proposition 1. The denominator polyno-

mials QðtÞ of the growth functions fSðtÞ ¼ P ðtÞ=
QðtÞ of 23 three-dimensional generalized simplex

reflection groups ð�; SÞ are as follows:

. ðt� 1Þð3t2 þ t� 1Þ

. ðt� 1Þð3t3 þ t2 þ t� 1Þ

. ðt� 1Þð2t4 þ 3t3 þ t2 � 1Þ

. ðt� 1Þðt5 þ t4 þ t� 1Þ

. ðt� 1Þð2t5 þ t4 þ t2 þ t� 1Þ

. ðt� 1Þð3t5 þ t4 þ t3 þ t2 þ t� 1Þ

. ðt� 1Þðt7 þ t6 þ t5 þ t4 þ t3 � 1Þ

. ðt� 1Þðt7 þ t6 þ t5 þ t4 � 1Þ

. ðt� 1Þðt7 þ t6 þ 2t5 þ 2t4 þ t3 þ t2 � 1Þ

. ðt� 1Þðt7 þ t6 þ 2t5 þ t4 þ t3 þ t� 1Þ

. ðt� 1Þðt8 þ 2t7 þ 2t6 þ 3t5 þ t4 þ t3 � 1Þ

. ðt� 1Þðt9 þ t7 þ t6 þ t4 þ t2 þ t� 1Þ

. ðt� 1Þðt13 þ t12 þ 2t11 þ 2t10 þ 2t9 þ 2t8

þ 2t7 þ 2t6 þ 2t5 þ t4 þ t3 � 1Þ
. ðt� 1Þðt2 þ tþ 1Þðt2 þ t� 1Þ
. ðt� 1Þðt4 þ t3 þ t2 þ tþ 1Þðt2 þ t� 1Þ
. ðt� 1Þðt3 þ t� 1Þ
. ðt� 1Þðt4 þ t3 þ t2 þ tþ 1Þðt3 þ t� 1Þ

. ðt� 1Þðt4 þ t3 þ t2 þ t� 1Þ

. ðt� 1Þðt4 þ t3 þ t2 þ tþ 1Þðt4 þ t3 þ t2 þ t� 1Þ

. ðt� 1Þðt5 þ t4 þ t2 þ t� 1Þ

. ðt� 1Þðt5 þ t3 þ t� 1Þ

. ðt� 1Þðt6 þ t5 þ t4 þ t3 þ t2 þ t� 1Þ

. ðt� 1Þðt10 þ t9 þ t8 þ t7 þ t6 þ t5 þ t4 þ t3
þ t2 þ t� 1Þ.

We remark that the factor ðt� 1Þ appears in

every denominator of fSðtÞ because of the fact that

1=fSð1Þ ¼ �ð�Þ ¼ 0 in the odd-dimensional case due

to a result of Serre [10].

3. Main result.

Theorem 3. The growth rate of a three-

dimensional generalized simplex reflection group is

a Perron number.

In Table I below, we show the distributions

of poles of fSðtÞ for a particular case of three-

dimensional generalized simplex reflection groups.

By Proposition 1, the following lemma is

sufficient to prove the theorem.

Lemma 1. Consider the polynomial of de-

gree n � 2

gðtÞ ¼
Xn

k¼1

akt
k � 1;

where ak is a non-negative integer. We also assume

that the greatest common divisor of fk 2 N j ak 6¼ 0g
is 1. Then there is a real number r0, 0 < r0 < 1

which is the unique zero of gðtÞ having the smallest

absolute value of all zeros of gðtÞ.
Proof. Let us put hðtÞ ¼

Pn
k¼1 akt

k. Note that

gðtÞ ¼ 0 if and only if hðtÞ ¼ 1.

(Step 1) Observe hð0Þ ¼ 0; hð1Þ > 1, and hðtÞ
is strictly monotone increasing where t is in the

Table I

Coxeter diagram

fSðtÞ
ðtþ 1Þ3ðt2 þ 1Þðt2 � tþ 1Þðt2 þ tþ 1Þ
ðt� 1Þðt8 þ 2t7 þ 2t6 þ 3t5 þ t4 þ t3 � 1Þ

poles of fSðtÞ −1.5 −1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0
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open interval ð0; 1Þ. From the intermediate value

theorem, there exists the unique real number r0 in

ð0; 1Þ such that hðr0Þ ¼ 1.

(Step 2) Suppose there exists a complex num-

ber z whose absolute value is less than r0 and

satisfying the condition hðzÞ ¼ 1. Denote z ¼ rei�
where 0 < r < r0 and 0 6 � < 2�. Then

1 ¼ jhðzÞj ¼
Xn

k¼1

akðrei�Þk
�����

����� �
Xn

k¼1

jðakrkÞeik�j

¼
Xn

k¼1

akr
k ¼ hðrÞ < hðr0Þ ¼ 1;

which is a contradiction. Hence r0 has the smallest

absolute value of all zeros of gðtÞ.
(Step 3) Consider a complex number z whose

absolute value is equal to r0. Set z ¼ r0e
i� and

0 6 � < 2�. Then 1 ¼
Pn

k¼1 akr
k
0e
ik� implies

1 ¼
Xn

k¼1

akr
k
0 cos k� �

Xn

k¼1

akr
k
0 ¼ 1

Hence cos k� ¼ 1 for any k 2 N with ak 6¼ 0. The

assumption that the greatest common divisor of

fk 2 N j ak 6¼ 0g is 1 means that � ¼ 0. Therefore

z ¼ r0, and we conclude that r0 is a unique zero of

gðtÞ having the smallest absolute value of all zeros

of gðtÞ. �

4. Remark. By Proposition 1, the next

lemma shows that some growth rates of three-

dimensional generalized simplex reflection groups

are not only Perron numbers but also Pisot-

Vijayaraghavan numbers (see Table II below).

Lemma 2. For n � 2, the polynomial gðtÞ ¼Pn
k¼1 t

k � 1 has the unique zero in the unit disk

ft 2 C j jtj < 1g and does not have zeros on the unit

circle jtj ¼ 1.

Proof. Define h1ðtÞ ¼ tnþ1, h2ðtÞ ¼ �2tþ 1,

and

hðtÞ ¼ h1ðtÞ þ h2ðtÞ ¼ tnþ1 � 2tþ 1 ¼ ðt� 1ÞgðtÞ:

Then for any 1=2 < r < 1 sufficiently close to 1,

hðrÞ < 0. Any complex number t on the circle ft 2
C j jtj ¼ rg satisfies

jh1ðtÞj ¼ jtnþ1j ¼ rnþ1 < 2r� 1 � j2t� 1j ¼ jh2ðtÞj:

Because h2ðtÞ has the unique zero t ¼ 1=2 in the disk

jtj < r, it follows from Rouché’s theorem that hðtÞ
also has the unique zero in the disk jtj < r. Since

this holds for any r < 1 sufficiently close to 1, it

means that hðtÞ, hence gðtÞ has the unique zero in

the unit disk jtj < 1. Finally we show that gðtÞ does

not have zeros on the unit circle jtj ¼ 1. Suppose

there exists � 2 R such that gðei�Þ ¼ 0. Then

hðei�Þ ¼ 0 implies that 1 ¼ jeiðnþ1Þ�j ¼ j2ei� � 1j.
Hence ei� ¼ 1, which contradicts to gð1Þ 6¼ 0.

Therefore gðtÞ has the unique zero in the unit disk

ft 2 C j jtj < 1g and does not have zeros on the unit

circle jtj ¼ 1. �
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