
An area minimizing scheme for anisotropic mean curvature flow

By Tokuhiro ETO
�Þ, Yoshikazu GIGA

��Þ,���Þ and Katsuyuki ISHII
����Þ

(Communicated by Masaki KASHIWARA, M.J.A., Dec. 12, 2011)

Abstract: We consider an area minimizing scheme for anisotropic mean curvature flow

originally due to Chambolle (2004). We show the convergence of the scheme to anisotropic mean

curvature flow in the sense of Hausdorff distance by the level set method provided that no

fattening occurs.
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1. Introduction. We provide a variational

approximation scheme to the anisotropic mean

curvature flow; a family f�tgt�0 of closed hyper-

surfaces in RN evolving by the following equation

V ¼ ��ðnÞdiv�t �ðnÞ:ð1Þ

Here n is the outer unit normal vector field of �t, V

is the normal velocity of �t in the direction of n,

div�t denotes the surface divergence on �t, � ¼ �ðpÞ
is a surface energy density and � ¼ r� is called

the Cahn-Hoffman vector. We assume that � is

nonnegative, convex, even, positively homogeneous

of degree 1 and satisfies �jpj � �ðpÞ � �jpj for

p 2 RN and some 0 < � � � < þ1. Such �’s are

called anisotropy. Besides, we assume that � 2
C2ðRNnf0gÞ.

As well known, many people studied various

algorithm to compute the mean curvature flow

(MCF for short). Among them, Almgren-Taylor-

Wang [1] introduced a variational approach to

constructing the anisotropic MCF. It is based on a

time-discretization on a minimization problem for

computing the surface. However, the main draw-

back of their approach is the lack of the uniqueness

of the minimizer to their variational problem. To

resolve this uniqueness problem, Chambolle [6]

proposed another approach which provides a mo-

notonous selection of the discrete evolution of [1].

He also proved in [6] the convergence of his scheme

to the MCF in L1-topology, whenever no fattening

occurs.

In this note we provide a new scheme via

Chambolle’s one [6] and show the locally uniform

convergence of our scheme to the level set equation

for (1) (cf. Giga [11]). This yields the convergence of

the level set for our scheme to the level set flow for

(1) in the sense of the Hausdorff distance, whenever

no fattening occurs. Notice that Eto [10] essentially

already obtained such results in the case where N ¼
2 and �ðpÞ ¼ jpj (isotropic case) although a com-

plete proof is not given. Thus our results extend [10]

to the case where N � 2 and � is anisotropic and are

sharper than that of [6].

In the following of this note we state our main

results and some key ingredients which are not

explicit in [10] even for �ðpÞ ¼ jpj almost without

proofs; the details will be published elsewhere.

Recently, we learned that in [7] and [8] Chambolle

and Novaga considered approximation schemes to

(1), which are the anisotropic versions of [3] and [6].

However, their results and proofs are different from

ours.

2. Preliminaries. Let � be a surface energy

density satisfying the same assumption as in

section 1. The dual function �� for � is defined by

��ðpÞ :¼ sup�ðqÞ�1hp; qi. In the following of this note,

we make the following assumptions in addition to

those in the previous section:

�; �� 2 C2ðRNnf0gÞ;
r2�2;r2ð��Þ2 > O in RNnf0g:
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We denote by @�ðpÞ the subdifferential of � at

p 2 RN . For a set E � RN , we define the aniso-

tropic signed distance function dE to @E by

dEðxÞ :¼ inf
y2E

��ðx� yÞ � inf
y2RNnE

��ðx� yÞ:

Then rdEðxÞ ¼ nðxÞ=��ðnðxÞÞ for all x 2 @E where

rdE exists. Moreover, the anisotropic mean curva-

ture �EðxÞ at x 2 @E is defined by

�EðxÞ :¼ �div�t �ðnðxÞÞ

for x 2 @E whenever r2dEðxÞ exists.

Let � be an open subset of RN . We say a

function u 2 L1ð�Þ is a function of bounded varia-

tion, denoting by u 2 BV ð�Þ, if its distributional

gradient Du is a (vector-valued) Radon measure.

For any u 2 BV ð�Þ, we define the anisotropic total

variation of u with respect to � in � byZ
�

�ðDuÞ :¼ sup
’2D�

Z
�

u div’dx;

D� :¼ f’ 2 C1
0ð�; RNÞ j ��ð’Þ � 1 in �g:

(cf. [2]).

For any g 2 L2
locðRNÞ and h > 0, we consider

the following elliptic inclusion:

u� h div @�ðruÞ 3 g in RN:ð2Þ

This equation can be derived as the Euler-Lagrange

equation for the minimization problem:

JðuÞ ¼ min
v2L2ð�Þ

JðvÞ for u 2 L2ð�Þ \ BV ð�Þ;ð3Þ

JðvÞ :¼

Z
�

�ðDvÞ þ
1

2h
kv� gk2

L2ð�Þ

if v 2 L2ð�Þ \BV ð�Þ;
þ1

if v 2 L2ð�ÞnBV ð�Þ:

8>>>>><
>>>>>:

We say u 2 L2
locðRNÞ \ BVlocðRNÞ is a solution of

(2), provided that there exists a vector field z 2
L1ðRN ; RNÞ, div z 2 L2

locðRNÞ satisfying

zðxÞ 2 @�ðruðxÞÞ a.e. x 2 RN;

ðz;DuÞ ¼ �ðDuÞ locally as measures in RN;

u� h div z ¼ g in D0ðRNÞ:
Here BVlocðRNÞ :¼ fu 2 L1

locðRNÞ j u 2 BV ðKÞ for

any compact set K � RNg. Applying [6], [2],

and [15], one is able to show the existence and

uniqueness of solutions of (2). Even in a rigorous

sense (2) is the Euler-Lagrange equation for the

minimization problem (3). Indeed, we observe that

u is a solution of (2) if and only if u satisfies the

following variational inequality: For any R > 0 and

� 2 C1
0ðBð0; RÞÞ,Z

Bð0;RÞ
�ðDuÞ þ

1

2h
ku� gk2

L2ðBð0;RÞÞ

�
Z
Bð0;RÞ

�ðDðuþ �ÞÞ

þ
1

2h
kðuþ �Þ � gk2

L2ðBð0;RÞÞ:

See [5] and [15] for the detail.

Let E be a closed set in RN and let dE be

the anisotropic signed distance function. We

then observe by the same argument as in [6], [5]

and [10] that there is a unique solution u 2
CðRNÞ \ BVlocðRNÞ of (2) satisfying krukL1ðRN Þ <
þ1.

3. Chambolle’s version of the Almgren-

Taylor-Wang scheme. Let E0 be a closed sub-

set of RN and fix a time step h > 0. Let wE0

��;h be a

unique solution of (2) with g ¼ dE0
. We set

T��;hðE0Þ :¼ fx 2 RN j wE0

��;hðxÞ � 0g;

Eh
t :¼ T ½t=h���;h ðE0Þ for t 2 ½0; T Þ;

where ½t=h� is the integer part of t=h and

Tk��;hðE0Þ :¼ T��;hðTk�1
��;h ðE0ÞÞ for k 2 N. Letting

h! 0, we formally obtain in the limit a flow

fEtgt�0 of a closed subset of RN whose boundary

evolves by (1). This is confirmed in measure

theoretic sense (L1 sense) by Chambolle [6].

4. Set operator and function operator.

Denote by CðRNÞ the family of all closed subsets

of RN . Let T��;h be the set operator defined in the

previous section. Then we observe that T��;h maps

from CðRNÞ to CðRNÞ and that it satisfies the

following properties: For E, E0, En 2 CðRNÞ, x 2
RN and u 2 UCðRNÞ,

T��;hðEÞ � T��;hðE0Þ if E � E0;
T��;hðEnÞ & T��;hðEÞ if En & E;

T��;hðxþ EÞ ¼ xþ T��;hðEÞ;\
�2R

T��;hð½u � ��Þ ¼ ;;
[
�2R

T��;hð½u � ��Þ ¼ RN:

Here UCðRNÞ is the class of all uniformly contin-

uous functions on RN .

Following Matheron [14] and Cao [4], we

convert the set operator T��;h to a function operator

S��;h in the following way: For any u 2 CðRNÞ,
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½S��;hu�ðxÞ :¼ supf� 2 R j x 2 T��;hð½u � ��Þg;ð4Þ
½u � �� :¼ fx 2 RN j uðxÞ � �g:

Then we observe from the properties of T��;h
mentioned above that S��;h maps from UCðRNÞ to

UCðRNÞ and that for any u, v 2 UCðRNÞ, c 2 RN

and nondecreasing g 2 CðRÞ,
S��;hu � S��;hv in RN if u � v in RN;

½S��;hu�ðxþ cÞ ¼ ½S��;huð	 þ cÞ�ðxÞ for all x 2 RN;

S��;hðg � uÞ ¼ g � S��;hu:
Moreover, applying a theorem (for morphological

operators) due to [14] (cf. [4]), we obtain the sup-

inf representation for S��;h: For u 2 CðRNÞ and

h > 0,

½S��;hu�ðxÞ ¼ sup
X2B�� ;h

inf
y2X

uðxþ yÞð5Þ

for all x 2 RN , where B��;h :¼ fX 2 CðRNÞ j
½S��;hð�dXÞ�ð0Þ � 0g. We use this formula to derive

the generator of S��;h in the next section.

5. Key estimates. We obtain that the

supremum in (5) is actually achieved. A precise

form of our assertion is stated below. Set r1 :¼
2N=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

and U1 :¼ fy 2 RN j ��ðyÞ � r1

ffiffiffi
h
p
g.

Proposition 5.1. Let u 2 CðRNÞ. For any

h > 0 and x 2 RN , there exists X1 2 B��;h such that

½S��;hu�ðxÞ ¼ inf
y2X1\U1

uðxþ yÞ:ð6Þ

Let  2 C1ðRNÞ and assume that  ð0Þ ¼ 0

and r ð0Þ ¼ jr ð0ÞjeN ð6¼ 0Þ (eN :¼ ð0; 	 	 	 ; 0; 1Þ).
Then there is � > 0 such that for all y 2 Bð0; 4�Þ,

1

2
jr ð0Þj � jr ðyÞj � 2jr ð0Þj:ð7Þ

Let X1 2 B��;h satisfy (6) with u ¼  and x ¼ 0.

We get from (6) and (7)

X1 ¼ ½ � ½S��;h �ð0Þ�; X1 \ U1 6¼ ;:

From (7) and this, we have

j½S��;h �ð0Þj � 2jr ð0Þjr1

ffiffiffi
h
p

:ð8Þ

Using suitable barrier functions and the com-

parison principle for (2), we are able to approximate

wE��;h by the anisotropic mean curvature of a closed

set E as follows.

Proposition 5.2. Let  2 C1ðRNÞ satisfy

the above assumption and take � > 0 so that (7)

holds. Set E :¼ ½ � ��. For each h > 0, let wE��;h be

a unique solution of (2) with g ¼ dE. Then for any

" > 0, there exist r 2 ð0; �Þ and h1 > 0 such that

jwE��;h � ðdE þ h�EÞj � "h on Bð0; rÞð9Þ

for all h 2 ð0; h1Þ.
By Proposition 5.2 we may assume j�j � C1h

for some C1 > 0 independent of h > 0. We observe

by the anisotropy of � that jdEð0Þ � �=�ðr ð0ÞÞj �
C2h

2 for some C2 > 0 independent of small h > 0.

Thus applying (9) and this estimate, we obtain the

following estimate for ½S��;h �ð0Þ.
Theorem 5.1. Let  and E be the same as

in Proposition 5.2. Then for any " > 0, there is

h2 > 0 such that

j½S��;h �ð0Þ � h�ðr ð0ÞÞ�Eð0Þj � "h

for all h 2 ð0; h2Þ.
Let � 2 C1ðRNÞ and z 2 RN satisfy r�ðzÞ 6¼ 0.

Since we easily see that ½S��;h��ðxÞ ¼ �ðxÞ þ
½S��;h �ð0Þ ( ðyÞ :¼ �ðxþ yÞ � �ðxÞ) for all x close

to z, we use Theorem 5.1 to obtain the generator of

S��;h.

Theorem 5.2. Let � 2 C1ðRNÞ, z 2 RN and

" > 0. Then if r�ðzÞ 6¼ 0, then there exist � > 0 and

h0 > 0 such that for all x 2 Bðz; �Þ and h 2 ð0; h0Þ,
½S��;h��ðxÞ � �ðxÞ þ f�F ðr�ðxÞ;r2�ðxÞÞ þ "gh;
½S��;h��ðxÞ � �ðxÞ þ f�F ðr�ðxÞ;r2�ðxÞÞ � "gh;

where F ðp;XÞ :¼ ��ðpÞ trðr2�ðpÞXÞ.
We have mentioned in section 4 that S��;h maps

from UCðRNÞ to UCðRNÞ. As for this fact, we have

the following estimate.

Proposition 5.3. For u0 2 UCðRNÞ, we have

j½S��;hu0�ðxÞ � ½S��;hu0�ðyÞj � !0ðjx� yjÞ

for all x, y 2 RN , where !0 denotes the modulus of

continuity of u0.

6. Convergence. Let u0 2 UCðRNÞ. For

t � 0 and x 2 RN , define

uhðt; xÞ :¼ ½S½t=h���;h u0�ðxÞ;
uðt; xÞ :¼ lim sup

ðs;yÞ!ðt;xÞ
h!0

uhðs; yÞ;

uðt; xÞ :¼ lim inf
ðs;yÞ!ðt;xÞ

h!0

uhðs; yÞ:

Here ½Sk��;hu0�ðxÞ :¼ ½S��;h½Sk�1
��;hu0��ðxÞ for k 2 N. We

then verify by Theorem 5.2 that u (resp., u) is a

viscosity subsolution (resp., supersolution) of

ut þ F ðru;r2uÞ ¼ 0 in ð0; T Þ 
RN;ð10Þ

and by Proposition 5.3 that they satisfy uð0; xÞ ¼
uð0; xÞ ¼ u0ðxÞ for x 2 RN (cf. [13], [11] and [10]).
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Applying the comparison principle and the stability

for viscosity solutions (cf. [12], [9], [13] and [11]),

we obtain the following convergence result.

Theorem 6.1. Assume u0 2 UCðRNÞ. Then

as h! 0, uh converges to u 2 Cð½0; T Þ 
RNÞ locally

uniformly in ½0; T Þ 
RN and u is a unique viscosity

solution of (10) satisfying uð0; xÞ ¼ u0ðxÞ for

x 2 RN .

Let E0 be a compact set in RN . We choose

u0 2 UCðRNÞ satisfying u0 > 0 in intE0, u0 ¼ 0

on @E0 and u0 < 0 in RNnE0. Then we see by [10]

that ½S½t=h���;h u0 � 0� ¼ T ½t=h���;h ðE0Þ ¼ Eh
t . Set Et :¼

½uðt; 	Þ � 0�, where u is a unique viscosity solution

of (10) satisfying uð0; xÞ ¼ u0ðxÞ for x 2 RN . By use

of Theorem 6.1, we establish the convergence of

the discrete evolution fEh
t gt�0 to fEtgt�0.

Theorem 6.2. For any compact set E0 in

RN , let fEh
t gt�0 and fEtgt�0 be defined as above.

Assume that ½uðt; 	Þ � 0� ¼ ½uðt; 	Þ > 0� for each t 2
½0; T Þ. Then Eh

t converges to Et in the sense of

Hausdorff distance as h! 0. This convergence is

locally uniform in ½0; T Þ.
Remark 6.1. Chambolle and Novaga con-

sidered in [7] and [8] approximation schemes to (1),

which are the anisotropic versions of [3] and [6].

In these papers they obtained the Hausdorff

convergence of the approximate flows. However,

their convergence is only in the pointwise sense

with respect to the t-variable and the result of

Theorem 6.2 is sharper than theirs. Moreover, their

proofs of the convergence consist of the construc-

tion of suitable sub- and super-solutions, based on

the Gauss error function, and some variational

techniques. These methods are different from the

proofs of Theorems 6.1 and 6.2.
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