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Time-weighted energy method for quasi-linear hyperbolic systems

of viscoelasticity
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Abstract:

The aim in this paper is to develop the time-weighted energy method for quasi-

linear hyperbolic systems of viscoelasticity. As a consequence, we prove the global existence and
decay estimate of solutions for the space dimension n > 2, provided that the initial data are small

in the L2-Sobolev space.

Key words:
estimate.

1. Introduction. We consider the second
order quasi-linear hyperbolic systems of viscoelas-
ticity
(1) uy— Z bj(azu)zj + Z K% x Ug o, + Ly = 0,

J Jk

with the initial data
(2) u(z,0) = up(x),

Here u is an m-vector function of x = (xy,...,2,) €
R" (n>1) and t > 0; b(v) are smooth m-vector
functions of v = (vi,...,v,) € R™, where v; € R™
corresponds to u,; K7*(t) are smooth m x m real
matrix functions of t > 0 satisfying K7 (t)" = K*(t)
for each j, k, and ¢ >0, and L is an m x m real
symmetric constant matrix; the symbol “x” denotes
the convolution with respect to t.

We assume that there exists a smooth function
¢(v) (the free energy) such that

(3) bj(v) = vab(”)a

where D, ¢(v) denotes the Fréchet derivative of
¢(v) with respect to v;. We define

(4) Bjk(v) = DUkb](U) = DU};D’Ujd)(rU)'

u(x,0) = up(x).

It then follows that B*(v)" = B¥(v) for each j, k,
and v € R™". Notice that (1) is written as
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(5)  up— Z Bjk(O)uWk + Z K7* « Uy, + Ly
Jk gk

where  ¢/(9,u) = b/(0,u) — b/(0) — >, B*(0)u,, =
O(|0,u)?). We introduce the following symbols of
the differential operators associated with (5):

B,(0) : =Y B*(0)wjws,
Tk

Ko(t): =Y K (t)wjwr
Tk

for w= (wy,...,w,) € S" 1. We see that B,(0) and

K,(t) are real symmetric matrices. Using these

symbols, we impose the following structural con-

ditions.

[A1]. B,(0) is positive definite for each w € "1,
while K, (t) is nonnegative definite for each
we 8" and t >0, and L is real symmetric
and nonnegative definite.

. B,(0) — K(t) is positive definite for each

w € S"~! uniformly in ¢ > 0, where K, (t) :=

[y Ko(s) ds.

K,(0)+ L is (real symmetric and) positive

definite for each w € S"~ L.

K, (t) is smooth in ¢ > 0 and decays exponen-

tially as t — oo. Precisely, there are positive

constants Cy and ¢y such that —CyK,(t) <

K, (t) < —coK,(t) and —CoK,(t) < K, (t) <

CoK,(t) for we "' and ¢>0, where

K, (t) := 0,K,(t) and K, (t) := 2K, (t).

Notations. For a nonnegative integer s, H® =

H*(R") denotes the Sobolev space of L? functions

[A3].

[A4].
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on R", equipped with the norm | -|g.. For a
nonnegative integer I, &, denotes the totality of all
the [-th order derivatives with respect to = € R".
Also, for an interval I and a Banach space X, C'(I; X)
denotes the space of [-times continuously differential
functions on I with values in X. Throughout the
paper, C' denotes various generic positive constants.

2. Time-weighted energy estimate and
decay estimate. In this section, we first state
our result on the time-weighted energy estimate
for small solutions to the problem (1), (2). Then,
as a corollary, we prove the global existence and
quantitative decay of small solutions. For this
purpose, we introduce the time-weighted energy

norm E(¢t) and the corresponding dissipation
norm D(t):
E(t)’ =Y En(t)*,
m=0
£l s—1
2 A2 2
D(t)* =" Dn(®)’+ Y Du(t)’,
m=0 m=0
where
En(t)” = sup (1+17)"x
0<r<t

<||(8;’"ut, O ) () + i: QKWQ“U](T)) :
l=m

D1 (1) = /Ot(1 + 7)™

Do(t)? = / A+ (10 = Py ()

+ i: Qr[05M)(7) |dr,

l=m

<||(8;"'ut, L) (1) |3 + Z Qx [aiﬂu](r)) dr.
l=m

Here I and P are the identity matrix and the
orthogonal projection matrix onto ker(L), respec-
tively. Also, the quantity Qx is defined as

Qx[du] = Q0] + Q[drul,
Qiclowu] =

I R”

Q5 [0,u] := Z/ (Kjkuzﬂuzk)dx,
7.k §

Kﬂ“[uwj, Uy, | de,

where
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Kby, i) (8) =
/ <Kjk(t _ 7—) (¢](t) — w]-(T)), 1[1k;(t) - T/Jk(T) > dr.

0

Our time-weighted energy estimate involves the
following time-weighted L™ norm N(t):

©)  N(t) = sup {[|@u(r)p~

(L4 1)@, 020) (7)1 }

and is given as follows:

Proposition 1 (Time-weighted energy esti-
mate). Suppose that all the conditions [A1]-[A4]
are satisfied. Let n > 1 and s > [n/2] +2. Assume
that (uy,0yup) € H® and put Ey = ||(u1, Opwo)l| gs -
Let u be a solution to the problem (1), (2) satisfying
(uy, O,u) € CU([0,T); H®)  for T >0 such that
No(T) = supg<r<r |[(0pu, Opur, 02u) ()| 1 is suitably
small. Then we have the following time-weighted
energy estimate for t € [0,T):

(7)  E(t)’+ D(t)* < CE? + CN(t)D(t)*.

As a simple corollary, we can show the global
existence and quantitative decay estimate of small
solutions when n > 2. In fact, using the Gagliardo-
Nirenberg inequality ||v]|;~ < C||8%0v]/%.]v]12? with
sp=1[n/2]+1 and 6 =n/(2sp), we can estimate
(0, Bpur, O2u)(t)|| = in terms of the time-weight-
ed energy norm E(t) as

10:u(t)]| .« < CE@)(1 + t)w/47
(D, ) ()] e < CE(E)(1+1) 42,

where we have used s> sy + 1. This shows that
N(t) < CE(t) for n > 2. Consequently, the energy
inequality (7) is reduced to E(t)’ + D(t)* < CE2 +
CE(t)D(t)?, from which we can deduce E(t)*+
D(t)* < CE?, provided that Ej is suitably small and
n > 2. Thus we obtain the following result on the
global existence and quantitative decay estimate of
solutions.

Theorem 1 (Global existence and decay esti-
mate). Suppose that all the conditions [A1]-[A4]
are satisfied. Let n > 2 and s > [n/2] +2. Assume
that (u1,0.u0) € H® and put Ey = ||(w1, Opwo)l| gs -
Then there is a positive constant 6y such that if
Ey < by, then the problem (1), (2) has a unique global
solution u verifying (uy, 0,u) € C°([0,00); H*). The
solution satisfies the time-weighted energy estimate

E(t)? + D(t)* < CE?
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fort > 0. In particular, we have the following decay
estimates:

8) @, T w)(t)l| < CEo(1+1) "2

fort >0, where 0 <m < s.

In our previous paper [1], we have proved the
global existence and asymptotic decay (without
decay rate) of small solutions to the problem (1),
(2) for all space dimensions n > 1. The above
theorem gives the quantitative decay estimate of
solutions obtained in [1] for n > 2. For more de-
tailed decay estimate of solutions to the corre-
sponding linearized system (i.e., (5) with ¢/ = 0),
we refer the reader to [3]. Also, we refer to [5,8] for
related results for simpler equations of viscoelas-
ticity.

3. Time-weighted energy method. In
this section, we develop the time-weighted energy
method for the system (1) and give the outline of
the proof of Proposition 1; the detailed proof will
be given in our forthcoming paper [2]. The time-
weighted energy method was first effectively used
by Matsumura [7] in the study of the compressible
Navier-Stokes equation. Then similar time-weight-
ed energy methods were used for many other
nonlinear systems of partial differential equations,
such as hyperbolic systems of balance laws [6], the
dissipative Timoshenko system [4], the compressi-
ble Euler-Maxwell system [9], and so on. Our time-
weighted energy method developed below is quite
similar to the one employed in [6,7].

We apply . to (1) to obtain

9wy =Y BH(0:u)d

ik
+ Z Kjk * a.’iuzﬂk + Lai:ut = f(l)’
ik
where fU) =37 (0%, B*(0,u)]ty,, and [-, -] de-

notes the commutator. As the first step of our time-
weighted energy method, we take the inner product
of (9) with 0\, and integrate in x over R". Then we
multiply the resulting equation by (1+¢)", inte-
grate with respect to ¢, and add for [ withm <[ < s.
After tedious computations as in [1], we arrive at
the basic energy estimate of the form

(10)  En(t)* + Dn(t)?
< CE} + CON(t)D(t)* + mCD,, 1(t)*,

where 0 < m < s; the last term on the right-hand
side of (10) is absent if m = 0.
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In the second step, we produce a part of the
dissipation in D(t). We take the inner product of
(9) with Zj’k_(Kjk % Oy 4,), and integrate over R”.
Moreover, we multiply the result by (1+¢)",
integrate with respect to ¢, and add for [ with
m <[<s—1. Then the technical computations
in [1] yield

(11) / (14 7)™ 0 ()
< CE? + CN(t)D(t)?

2
Hs-m-1 dr

2
Hs—m-1 dr

+ a/o (14 7)™ [0 2u(r)|
+ Co(Em(t)? + Dy ()?) + mCDp_y (£)?

for any a >0, where 0 <m <s—1 and C, is a
constant depending on «; the last term on the right-
hand side of (11) is absent if m = 0. In the third
step, we create the remaining part of the dissipation
in D(t). We apply 9. to (5), take the inner product
with Q,llflu, and integrate over R". Moreover, we
multiply the result by (1+1¢)", integrate with
respect to ¢, and add for [ with m <[ < s— 1. Then
the technical computations as in [1] give

(12) /0 t(l + 7)™ 02 (7 || 2
< CE? + CN(t)D(t)?
i C/ot“ )0 g () s
+ C(En(t)? + D (t)?) + mC Dy (1),

where 0 <m < s—1; the last term on the right-
hand side of (12) is absent if m =0. Now we
combine (11) and (12). Taking o > 0 suitably small,
we have
(13) D, (t)* < CE? + CN(t)D(t)?

+ C(Ep(t)* + Dp(t)?) + mCD,,_1 (1),
where 0 < m < s— 1. Moreover, substituting (10)
into (13), we obtain

(14) D, (t)* < CE} + CN(t)D(t)* + mCD,, 1(t)°

for 0 < m < s — 1, where the last term on the right-
hand side of (14) is absent if m = 0.

Finally, we apply to (10) and (14) the induction
argument with respect to m, and conclude that

E(t)’ + D (t)’ < CEj + CN(t)D(1),
D,.(t)* < CE2 + CN(t)D(t)?
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for 0 <m < sand 0 <m < s — 1, respectively. This
gives the desired estimate (7). Thus the proof of
Proposition 1 is complete.
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