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Abstract: We give a simple, short, and easy proof to the Masaoka theorem that if Dirichlet

finiteness and boundedness for harmonic functions on a Riemann surface coincide with each other,

then the dimension of the linear space of Dirichlet finite harmonic functions on the Riemann

surface and the dimension of the linear space of bounded harmonic functions on the Riemann

surface are finite and identical. The essence of our proof lies in the observation that the former of

the above two Banach spaces is reflexive while the latter is not unless it is of finite dimension.
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1. Introduction. We denote by HðRÞ the

linear space of harmonic functions u on an open (i.e.

noncompact) Riemann surface R. Among various

linear subspaces of HðRÞ, two subspaces HDðRÞ
and HBðRÞ are the most fundamental (cf. e.g. [1]):

one is

HDðRÞ :¼ fu 2 HðRÞ : Dðu;RÞ < þ1g;ð1:1Þ

where Dðu;RÞ is the Dirichlet integral of u taken

over R, i.e.

Dðu;RÞ :¼
Z
R

du ^ �du

¼
Z
R

jruðzÞj2dxdy ðz ¼ xþ iyÞ;
ð1:2Þ

which plays a powerful role in analyzing the space

HðRÞ related to the Dirichlet principle such as in

solving the Dirichlet problem based upon the Weyl

lemma; the other is

HBðRÞ :¼ fu 2 HðRÞ : ku;Rk1 < þ1g;ð1:3Þ

where ku;Rk1 is the supremum norm of u taken

over R, i.e.

ku;Rk1 :¼ sup
z2R

juðzÞj;ð1:4Þ

which also plays another important role in the

analysis of HðRÞ based upon the harmonic version

of the normal family argument.

In the classification theory of Riemann sur-

faces, it is known (cf. e.g. [16], see also [12]) that for

any n 2 N, the set of positive integers, there exists a

Riemann surface R such that

dimHDðRÞ ¼ dimHBðRÞ ¼ n;ð1:5Þ

where dimX is the dimension of the linear space

X in the following sense, i.e. if X has a basis

consisting of a finite n 2 N number of elements in

X, then dimX ¼ n, and if there is an infinite sub-

set Y � X whose arbitrary finite subset is always

linearly independent, then dimX ¼ 1. In general,

for any Riemann surface R, (1.5) implies that (cf.

e.g. [16])

HDðRÞ ¼ HBðRÞ:ð1:6Þ

Related to this fact, Masaoka [7–9] discovered the

following result.

Theorem A. The identity (1.6) is equivalent

to the formula (1.5) for some n 2 N.

As stated above, the implication from (1.5) to (1.6)

is well known and actually quite easy to derive and

therefore the essential part here is the implication

from (1.6) to (1.5) for some n 2 N. Under (1.6),

dimHDðRÞ ¼ dimHBðRÞ is just trivial. Really

essential assertion here is thus

Assertion 1.7. The identity (1.6) implies

dimHBðRÞ < 1:

The origial proof of the above assertion by Masaoka

himself relies upon the ingeneous Doob generaliza-

tion [3] to the Martin boundary setting for general
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Green spaces of the classical and important result

of Douglas ([4], see also [15]) which gives a concrete

characterization for a L1 function on the boundary

unit circle @D of the unit disc D in the complex

plane to be the boundary function of a function in

HDðDÞ so that the above original proof of Masaoka

[7–9] may be said to be not too easy and simple.

The present author [10] gave an alternative proof to

Assertion 1.7 based upon his result on capacities on

the Royden harmonic boundary (cf. [11]), which is

relatively simple, easy, and elementary.

Recently we found a surprisingly simple and

easy elementary ultrashort proof of Assertion 1.7

based upon only an introductory knowledge of the

functional analysis of undergraduate level to pres-

ent which is the purpose of this paper. Roughly it

goes as follows. We need a little bit more care to

say the following but anyway in essence the space

HDðRÞ forms a Hilbert space so that it is a reflexive

Banach space. On the other hand the Banach space

HBðRÞ is seen to be isometrically isomorphic to

the continuous function space CðSÞ on a compact

Hausdorff space S, i.e. HBðRÞ ¼ CðSÞ as Banach

spaces, and CðSÞ is not reflexive unless it is of

finite dimension (cf. §3 below). Therefore (1.6) must

imply dimHBðRÞ ¼ dimCðSÞ < 1. Extremely short

and simple, isn’t it?

2. Relative classes. Fix a relatively com-

pact parametric disc R0 in R and let W :¼ R nR0.

Take the linear space HðW ; @W Þ given by

HðW ; @W Þ
:¼ fu 2 HðW Þ \ CðRÞ : ujR0 ¼ 0g;

ð2:1Þ

which is referred to as the relative class to HðRÞ.
Consider the directed set f�g of regular subregions

� of R with � � R0, which exhuasts R. For any

u 2 HðRÞ, let J�u 2 HðW \ �Þ \ CðRÞ with J�u ¼
u on R0 and J�u ¼ 0 on R n � ¼ W n �. It is easily
seen that Ju :¼ lim�"R J�u exists locally uniformly

on R. Then set

Iu :¼ u� Ju:

The linear operator I : HðRÞ ! HðW ; @W Þ is bijec-
tive if and only if R is hyperbolic characterized

by the existence of the Green function on R or

equivalently by I1 < 1 on W , in notation R 62 OG,

the class of parabolic Riemann surfaces character-

ized by the nonexistence of Green function (cf. [13],

see also [14]). Furthermore, still under the assump-

tion R 62 OG, the operator I preserves the linearity,

order, and the supremum norm; a bit delicate is the

situation concerning the Dirichlet integrals and

somehow

Dðu;RÞ 5 DðIu;RÞ ¼ DðIu;W Þ 5 þ1

for every u 2 HðRÞ, and, DðIu;W Þ and Dðu;RÞ are
simultaneously finite or infinite. If R 2 OG, then

HDðRÞ ¼ HBðRÞ ¼ R, the real number field (cf.

e.g. [16]), and avoiding this trivial case we may and

will assume hereafter in this paper that R 62 OG.

Then

HXðRÞ ¼� HXðW ; @W Þ
ðisomorphic as linear spaces by IÞð2:2Þ

for X ¼ D and B. Thus the condition (1.6) is

equivalent to

HDðW ; @W Þ ¼ HBðW ; @W Þð2:3Þ

and

dimHBðRÞ < 1

is equivalent to

dimHBðW ; @W Þ < 1:

We are to prove Assertion 1.7 but after the above

reduction, we now see Assertion 1.7 is equivalent to

the following

Assertion 2.4. The identity (2.3) implies

dimHBðW ; @W Þ < 1:

Thus our task is to prove the above in an easy and

simple manner. The reason why we replace HðRÞ by
HðW ; @WÞ lies in the fact that HBðRÞ equipped

with k� ;Rk1 is certainly a Banach space while

HDðRÞ with Dð� ;RÞ1=2 is not but both of ðHBðW ;

@W Þ; k� ;Wk1Þ and ðHDðW ; @W Þ; Dð� ;W Þ1=2Þ are

Banach spaces. We can consider the mutual

Dirichlet integral

Dðu; v;W Þ :¼
Z
W

du ^ �dv

¼
Z
W

ruðzÞ � rvðzÞdxdy ðz ¼ xþ iyÞ
ð2:5Þ

of functions u and v in HDðW ; @WÞ taken over

W , which is the inner product on HDðW ; @WÞ and
Dð� ;WÞ1=2 is the norm induced by the inner prod-

uct Dð�; � ;WÞ. Hence ðHDðW;@WÞ; Dð� ;WÞ1=2Þ is

a Hilbert space.

In general it is often convenient to consider one

more linear subspace
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HBDðW ; @WÞ :¼ HBðW ; @W Þ \HDðW ; @W Þ:
Using the combined norm

ku;WkBD :¼ ku;Wk1 þDðu;WÞ1=2ð2:6Þ

we may also give the above subspace by

HBDðW ; @W Þ
:¼ fu 2 HðW ; @W Þ : ku;WkBD < 1g:

ð2:7Þ

It is also easily seen that ðHBDðW ; @W Þ; k� ;WkBDÞ
forms a Banach space.

Let S be the Wiener harmonic boundary of

R (cf. [2,16]; see also [6]), which is a compact

Hausdorff space. Then the restriction u 7! ujS
gives an isometrical isomorphism of ðHBðW ; @W Þ;
k� ;Wk1Þ onto ðCðSÞ; k� ;Sk1Þ so that

ðHBðW ; @WÞ; k� ;W Þk1Þ ¼ ðCðSÞ; k� ;Sk1Þð2:8Þ

as Banach spaces. Recall that the dual space CðSÞ�
of CðSÞ is the space of signed Radon measures on S.

3. Proof of Assertion 2.4. Since we are

assuming (2.3), we have

HDðW ; @W Þ ¼ HBðW ; @W Þ
¼ HBDðW ; @W Þ

ð3:1Þ

simply as subsets of HðW ; @W Þ. For simplicity we

write

X :¼ ðHDðW ; @WÞ; Dð� ;W Þ1=2Þ

as a Hilbert space, and

Y :¼ ðHBðW ; @W Þ; k� ;Wk1Þ
and

Z :¼ ðHBDðW ; @W Þ; k� ;WkBDÞ

as Banach spaces. We denote by T1 : Z ! X and

T2 : Z ! Y linear operators given by the identity

mapping. Since

kT1zkX ¼ Dðz;W Þ1=2

5 kz;Wk1 þDðz;W Þ1=2 ¼ kzkZ
for every z 2 Z and thus the operator norm kT1k 5

1 and similarly

kT2zkY ¼ kz;Wk1
5 kz;Wk1 þDðz;W Þ1=2 ¼ kzkZ

for every z 2 Z and hence the operator norm

kT2k 5 1, we see that T1 and T2 are bounded linear

operators. By the Banach open mapping principle

(cf. e.g. [5,17]), T�1
1 and T�1

2 are also bounded. Then

the linear operators T :¼ T2 � T�1
1 : X ! Y and

T�1 ¼ T1 � T�1
2 : Y ! X, which are just identity

mappings, are also bounded. Then, on setting

K :¼ maxðkTk; kT�1kÞ 2 ½1;þ1Þ, T : X ! Y is a

K-quasiisometric isomorphism, i.e. T : X ! Y is

linearly isomorphic and

K�1kxkX 5 kTxkY 5 KkxkXð3:2Þ

for every x 2 X. Then the dual operator T � : Y � !
X� and the double dual operator T �� : X�� ! Y �� of
T are also K-quasiisometric isomorphisms, where

X� is the dual space of X. Moreover, T ��X̂X ¼ ŶY ,

where X̂X (ŶY , resp.) is the natural injection of X (Y ,

resp.) into X�� (Y ��, resp.) so that X̂X ¼ X (ŶY ¼ Y ,

resp.) (isometrically (i.e. 1-quasiisometrically) iso-

morphic) as Banach spaces. Since X is reflexive (i.e.

X̂X ¼ X��) in view of the fact that X is a Hilbert

space, we see that ŶY ¼ T ��X̂X ¼ T ��X�� ¼ Y �� so

that Y as the Banach space ðCðSÞ; k� ;Sk1Þ (by

(2.8)) is also reflexive. As a consequence of the

Alaoglu theorem (cf. e.g. [5,17]), the reflexivity of

CðSÞ implies the weak compactness of the unit ball

CðSÞ1 in CðSÞ, i.e. for any directed net ð’�Þ�2� �
CðSÞ1 there is a subnet ð’�Þ�2M (where M is a

cofinal directed subset of �) weakly convergent

to a ’ 2 CðSÞ1 so that
R
S ’�d� !

R
S ’d� for every

Borel measure � on S and in particular ð’�Þ�2M
converges pointwise to ’ on S, which is seen by

taking as � the Dirac measure �s supported by any

s 2 S.

Choose and then fix an arbitrary point s0 2 S.

We denote by V ¼ fV g the totality of open neigh-

borhoods V of s0. We make V a directed set by

giving the order V1 5 V2 by V1 � V2. For each

V 2 V we assign a continuous function ’V on S

such that ’V jS n V ¼ 1, ’V ðs0Þ ¼ 0, and 0 5 ’V 5 1

on S. By the weak compactness of CðSÞ1, the

directed net ð’V ÞV 2V � CðSÞ1 contains a weakly

convergent subnet ð’UÞU2U (U � V and U is a base

of neighborhoods of s0) converging weakly to a

’ 2 CðSÞ1. Since ð’UðsÞÞU2U converges to ’ðsÞ
for every s 2 S, we see that ’jS n fs0g ¼ 1 and

’ðs0Þ ¼ 0. This assures that s0 is an isolated point

in S so that the compact set S consists of only

isolated points. Hence there is an n 2 N such

that S ¼ fs1; s2; � � � ; sng. Then CðSÞ ¼ Rn and a

fortiori

dimHBðW ; @W Þ ¼ dimCðSÞ ¼ dimRn ¼ n 2 N:

This is what we have to derive. �
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