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A quantitative result on polynomials with zeros in the unit disk
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Abstract:

On Sendov’s conjecture, M. J. Miller states the following in his paper [10,11]; if

a zero 0 of a polynomial which has all the zeros in the closed unit disk is sufficiently close to the
unit circle, then the distance from ( to the closest critical point is less than or equal to 1. It is
desirable to quantify this assertion. In this paper, we estimate the radius of the disk with center
at 0 containing all the critical points and estimate the range of the zero [ satisfying the above
for the first step. This result, moreover, implies that if Sendov’s conjecture is false, then the

polynomial must be close to an extremal one.
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1. Introduction. Let 0<g3< 1. Define
S(n,B) to be the set of complex polynomials of
degree n with all the zeros in the closed unit disk
and at least one zero at 3 and let [P|; be the
distance from (3 to the closest zero of P’. Under
the notation, Sendov’s conjecture (see [7,p. 25
Problem 4.5]) is stated as

Conjecture (Sendov).
|Ply < 1.

In addition, we believe that an extremal poly-
nomial should be of the form P(z) = c(z" — "),
where ¢ # 0 and 6§ are any complex and real number,
respectively. Now a polynomial P of degree n is
extremal if the maximum value of the distance from
a zero to the closetst critical point of P is larger than
or equal to those of any polynomials of degree n.

Sendov’s conjecture is true in the case 2 <n <
8 (see [1-4,9,12,13], for example). This is also true
in the case when f is close to 0 even if n > 8. We
should, therefore, show that in the opposite case,
that is, the case when [ is close to 1. In this
situation, M. J. Miller proved the following.

Theorem A (Miller [10]). There are constants
K,, > 0 so that, if B is sufficiently close to 1 and P €
S(n+1,8), then |P|; <1— K,(1 — ). Furthermore,
one can choose the K, so that lim,, ., K, = 1/3.

This implies that Sendov’s conjecture is true
if 0 is sufficiently close to 1. We, however, do not
know how close (3 is to 1 nor how large K, is. In the

For P e S(n,p),
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proof, Miller uses the fact that under the assump-
tion |P|; > 3, if 3 is close to 1, then the polynomial
must be close to the extremal one, while it is not
constructed as any proposition. Nevertheless, it is
a key to Theorem A. In this paper, our aim is to
quantify this proposition for the first step, though
our intended objective is to quantify Theorem A.

Let A, be a unique positive root (note that
0< A, <1)of 2%+ Cyz —C, =0 with
220=2(n — 1)*(2n — 3)*"*(1 + 4sin®(7/n))

(n —2)*"*sin®(x/n) ‘

Then our result is stated as

Main Theorem. Suppose that A, <a <1
and that P € S(n,a). If {z€ C; |z—a| <1} con-
tains no zero of P'(z), then all zeros (
(G=1,...,n—=1) of Pl(z) satisfy || <é+1—a,
where 6 = (C,,(1 — a))-2.

Since A, and C,, are constants depending only on
n, 6 converges to 0 as a tends to 1, which implies that
all the critical points are near the origin if a is
sufficiently close to 1. The result, therefore, also
implies that for a sufficiently close to 1, if we deny
Sendov’s conjecture, namely, assume that |P|, > 1,
then the polynomial must be close to the extremal one.
The result will be used in the author’s forthcoming
paper [5]. We will quantify Theorem A in the paper,
where the result of this paper will play a vital role.

2. Preliminary results. Let P € S(n,a),
where a is real (by rotation) and satisfies
0<a<1. If |[P|,>p for p€a,1), then we know
the following two results.

Cn =


http://dx.doi.org/10.3792/pjaa.86.165

166 T. CHIJIWA

Lemma A (Dieudonné [6]).
P € S(n,a). Then, for |z <1,

P(pz+a) = P(a)(1+ 2(2))""

Let |P|, > p for

for an f analytic in the closed unit disk and less than
one in modulus.

Lemma B (Kumar and Shenoy [8]). If|P|, >
p for P € S(n,a), then P(z) has no zero in {z € C;
|z —a| < 2psin(r/n)}.

In Lemma A, we need an estimate of f(z).
Putting P(2) = (z — a) [[}Z} (z — z) = (2 — @) Q(2),
we obtain

@) _ 1 LU
(1) Q(a)_a—zl+ +-+

a — 29

Q'(a) _ P'(a)
Q) 2P 2
by simple calculations. From this point on, suppose
that |P|, > p > a for the real zero a < 1 and n > 4.

Lemma 1. If a>1/(1+2sin(n/n)), then
1—e < Ref(0) <1 with

(3)

(2)

1—a?

E=—5——.
4a? sin®(7/n)

Proof. Since the second inequality is trivial by
Lemma A, it is sufficient to show the first one.
Lemma B implies |a — z;| > 2psin(n/n) for each
k. If a>1/(1+2sin(n/n)), then {z€ C; |z—a|] =
2psin(m/n)} intersects {z € C; |z| = 1}. The real part
xo of the image of the intersection by 1/(a — 2) is

_ 4p? sin?(1/n) — (1 — a?)
8ap? sin®(m/n)

(4) xo :
Hence, Rel/(a — z) > xy for each k. Thus, since

QI(CL) B n—1
Re Qla) Re;a_ -

> (n— 1)z

from (1),
Re f(0) > 2px
from (2). If p > a, then
4p%sin*(m/n) — (1 — a?)
4apsin®(T/n)
S 4a? sin®*(r/n) — (1 — a?)

. 4a? sin®(m/n)

2[)1’0 =

=1-—e¢.
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Remark 1. If 1/y/1+4sin?(n/n) <a <1,

then
1—a?

— < 1,
4a? sin®(m/n)

namely, 0 < € < 1, which implies that 0 < 2pzy < 1.
Here, 1/4/1+4sin?(r/n) is always greater than
1/(1 + 2sin(w/n)) for n > 4.
3. The estimate of Re f(z).
following lemma to estimate Re f(z).
Lemma 2. For 0<z<1, (1—z)’<k<1
and 0 <r <1,

We need the

1—r+kr—12
1— kr?

1— 72 1+7r
> 1

— x — x.
1 — kr? 1—r

Proof. Since the derivative of the left hand side
with respect to k is

r(1+ (1 —z)r)(1 —r?)

> 0,
(l—lm"Z)2
1—r+kr—12 1—72
1— kr? 1—lf7"2ng
>1—r+(1—x)2r—r2 1—q2
1—(1—a)%? 1—(1—a)%?
1
zl—ix
1-1—-2)r
1
>1-— +Tx.
1—r

O
Lemma 3. If a>1/+/1+4sin®(n/n), then
1-(1+ne/(1—r)<Ref(z) <1 for|z|=r.
Proof. The Schwarz-Pick lemma implies
(z) — 10)
1—f(0)f(2)
on the open unit disk. Put w = f(z) and ¢ = f(0) for
the sake of simplicity. Then |(w—¢)/(1 —cw)| <
|z| =7 on {z € C; |z| = r}. This implies
r(1—|ef
()

1-— |c|21"2 .

<7

1—7?
5
®) 1-— |c|27"2

Here, since by Lemma 1

1—7?
> —Re|lw———>—c¢
1—|e|™r?

2
(1 _6)a

’ 1—72

w————c
1— |c|21"2

1—1r

> —Rew+ ——5—
1—|c|2r2

from (5) we obtain
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1—r+ |c|2r g2 1 — 42 where equality holds for any p € (0,1) if and only if
Rew > 2 5 - 2 5 °¢ f(z) = c2" for some complex number c.
1—|efr 1—|e|r . .
14 Moreover, by the maximum modulus prin-
>1-— ! € ciple,
1—r
. . 2 ~ n—2 1+ 6 o
via Lemma 2 with z = ¢ and k = |¢|". O Ip(2) —po(2)| < réE(n —1)(1 + 1)

4. The proof of Main Theorem. We now
estimate the radius of the disk with center at 0
containing all the critical points by proving.

Lemma 4. Suppose that A, <a<p<]1,
where A, is a unique positive root of

(6) 2?4 Cox—C,=0
with

c. — 221#2(” _ 1)2(27L _ 3)27173 (1 + 4Sin2(7r/n)) .

' (n — 2)*"*sin®(n/n)

If {z € C; |2| <1} contains no zero of P'(pz+ a),
then all zeros ¢; (j=1,...,n—1) of P'(2) satisfy
(¢ —a)/p+ 1| < & with

1

(7) § = (Cu(1 - a))z2.
Proof. Put

p(z) = (14 2f(2)"" and po(z) = (1 +2)""

for f(z) in Lemma A, and the zeros of p(z) are those
of P'(pz+ a) from Lemma A. Let § be given by (7).
Note that by Lemma 3 and a simple calculation
|f(z) = 1] <&:=/2(1+r)e/(1—7) for |s] =r. On
{z€ C; |z| =7},

Ip(2) — po(2)]
S 1+ ) = (14 2
) - D)+ A )+ 2
k=0

n—2
<rEY (14"
k=0

=ré(n—1)(1+7)""2

Hence, we obtain

r

n—1
Ip(2) — po(2)] < ré(n —1)(1 +7)" > (1_+6>

on {z€C; |z =1+ 6} via

Lemma C (Rahman and Schmeisser [12, p. 406
Remark 12.1.5]). Let f be a polynomial of degree at
most n and p any positive number less than 1. Then

max|f(z)] 2 max|f(z)lp" (0= p<1),

r
on |z+1| =46, too. Letting r=(n—-2)/(n—1) to
minimize the right hand side,

ré(n —1)(1 + T)n,Q (1 + 5) n—1

r

—&n-1) (1 i r)wu L6

—En—1) (2;"23)"_2(1 et
=220 = 3)e(n—1) (i:‘_;’) H(l Loy
=2 zm) (n—1) ((2:__23))5 (1+6)""
< 2"1(5;/‘;) n_l)w
211 (n — 1)(2n — 3)" "2 /1 + 4sin(x/n
[~ iv(z - 2)")2 m

D=

(1 =a)
=+/Ch(l—a)
— 6"_1
= [po(2)]
on {z€ C;|z+ 1] =6} by making use of §<1

and 1/4/1+4sin?(r/n) < A, < a < 1. Therefore,

since

[p(z) — po(2)| < |po(2)] omn {z€ C; |z+ 1| =6},

Rouché’s theorem implies that p(z) and py(z) have
the same number of zeros, counted according to
their multiplicities, inside |z+ 1| = 4. Now, since
po(z) has n—1 zeros inside |z+ 1| =48, so does
p(2). O

Remark 2. F(z):=z2""?%+C,x—C, is
monotone increasing if x>0 since F'(z)=
(2n —2)2*"3 4+ C, >0 and F(z) satisfies that
F(0) < 0 and F(1) > 0. The equation (6), therefore,
has the unique root A, in the interval (0,1). A
numerical computation gives the approximate val-
ues of 1 — A,;
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1— A,
1.481468313 x 1076
3.134606298 x 10~®
8.259759265 x 10710
2.492744903 x 10711
8.267420496 x 10713
2.942709427 x 104
10 1.107262403 x 10715

On the other hand, the disk {z € C; |z + 1| < §} is
contained in the disk {z€ C;|z+a/p|<é+1-—
a/p} and since

© 0O O3

6= (Cal1 - a))7

< a27172)ﬁ
14+a-
—a < —22F
0

for a > A, p6 + p — a < 1. This implies

Corollary 1. Suppose that A, <a<p<1,
where A, is given in Lemma 4 and that P € S(n,a).
If {z € C; |2| <1} contains no zero of P'(pz+ a),
then all zeros (; (j=1,...,n—1) of P'(z) satisfy
(i —a)/p+al/p| <6+1—a/pwithé in (7).

Obviously, the following theorem is equivalent
to Corollary 1.

Theorem 1. Suppose that A, <a<p<l1,
where A, is given in Lemma 4 and that P €
S(n,a). If {z€ C; |z —a| < p} contains no zero of
P'(z), then all zeros ¢; (j=1,....,n—1) of P'(2)
satisfy |¢;] < pb + p — a, where § is given by (7).

Letting p tend to 1, we obtain Main Theorem.
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