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Abstract: We give a description of the dual of W. Singer’s algebraic transfer in the May

spectral sequence and use this description to prove new results on the image of the algebraic

transfer in higher homological degrees.

Key words: Adams spectral sequence; May spectral sequence; Steenrod algebra; algebraic
transfer; hit problem.

1. Introduction. Let A be the mod 2

Steenrod algebra [15,18]. The cohomology algebra,

Ext�;�A ðF2;F2Þ, is a central object of study in

algebraic topology since it is the E2-term of the

Adams spectral sequence converging to the stable

homotopy groups of the spheres [1]. However, it is

notoriously difficult to compute. In fact, only quite

recently has the additive structure of Ext4;�A ðF2;F2Þ
been completely determined [11]. One approach to

better understand the structure of this cohomo-

logy was proposed by W. Singer in [22] where he

introduced an algebra homomorphism from a cer-

tain subquotient of a divided power algebra to

the cohomology of the Steenrod algebra. We will

call this map the algebraic transfer, because it

can be considered as the E2-level in the Adams

spectral sequence of the stable transfer BðZ=2Þsþ !
S0 [17].

Let Vs denote a s-dimensional F2-vector space.

Its mod 2 homology is a divided algebra on s

generators. Let PH�ðBVsÞ be the subspace of

H�ðBVsÞ consisting of all elements that are annihi-

lated by all positive degree Steenrod squares. Let

GLs ¼ GLðVsÞ be the automorphism group of Vs.

It is well-known that the (right) action of the

Steenrod algebra and the action of GLs on H�ðBVsÞ
commute. Thus, there is an induced action of GLs
on PH�ðBVsÞ. For each s � 0, the rank s algebraic

transfer, constructed by W. Singer [22], is an F2-

linear map:

’s:F2 �GLs PH�ðBVsÞ ! Exts;sþ�
A ðF2;F2Þ;

which is known to be an isomorphism for s � 3 (this

is due to Singer himself [22] for s � 2 and to

Boardman [3] for s ¼ 3.) Moreover, the ‘‘total’’ trans-

fer ’ ¼
L

s ’s is an algebra homomorphism [22]. This

shows that the algebraic transfer is highly nontrivial

and should be an useful tool to study the cohomol-

ogy of the Steenrod algebra. In particular, we want

to know how big the image of the transfer in

Exts;sþ�
A ðF2;F2Þ is.
In higher ranks, W. Singer showed that ’4 is

an isomorphism in a range and conjectured that ’s
is a monomorphism for all s. In [5], Bruner, Hà

and Hu’ ng showed that the entire family of elements

fgi : i � 1g is not in the image of the transfer, thus

refuting a question of Minami concerning the so-

called new doomsday conjecture. Here we are using

the standard notation of elements in the cohomol-

ogy of the Steenrod algebra as was used in [4,11,23].

One of the main results of this paper is the

proof that all elements in the family pi are in the

image of the rank 4 algebraic transfer. Combining

the results of Hu’ ng [8], Hà [7] and Nam [19], we

obtain a complete picture of the behaviour of

the rank 4 transfer. It should be noted that in [9],

Hu’ ng and Quỳnh claimed to have a proof that

the family fpi : i � 0g is also in the image of ’4,

but the details have not appeared. Our work is

independent from their, and our method is com-

pletely different.

Very little information is known when s � 5.

At least, it is known that ’5 is not an epimorphism

[22]. In fact, Quỳnh [21] showed that Ph2 is not in

the image of ’5. We have also been able to show, [6],

several non-detection results in even higher rank

using the lambda algebra. For example, h1Ph1 as
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well as h0Ph2 are not in the image of ’6; h
2
1Ph1 is

not in the image of ’7. Often, these results are

available because it is possible to compute the

domain of the algebraic transfer in the given

bidegree.

In this paper, we give a description of the dual

of the algebraic transfer ’�
s in the May spectral

sequence. Using this method, we recover, with

much less computation, results in [6,21] and [9].

Moreover, our method can also be applied, as

illustrated in the case of the generator hn0 i; 0 �
n � 5 and hn0j; 0 � n � 2, to degrees where compu-

tation of the domain of the algebraic transfer seems

out of reach at the moment.

The details of this note will be published else

where.

2. May spectral sequence. In this section

we recall the setup for the May spectral sequence,

following [13] and [14].

2.1. Associated graded algebra of the

Steenrod algebra. The Steenrod algebra is a

cocommutative Hopf algebra [15] whose augmenta-

tion ideal will be denoted by A . The associated

augmented filtration is defined as follows:

FpðA Þ ¼
A ; p � 0,

ðA Þ�p; p < 0.

�
ð2:1Þ

Let E0A ¼ �p;qE
0
p;qA be the associated graded

algebra. This is a bigraded algebra, where E0
p;qA ¼

ðFpA =Fp�1A Þpþq. According to May [14], E0A is

a primitively generated Hopf algebra on the Milnor

generators fPi
j jj � 1; i � 0g (See also [15]). Its

cohomology is described in the following theorem.

Theorem 2.1 [14,23]. H�ðE0A Þ is the ho-

mology of a complex R, where R is a polynomial

algebra over F2 generated by fRi;jji � 0; j � 1g of

degree 2ið2j � 1Þ, and its differential � is given by

�ðRi;jÞ ¼
Xj�1

k¼1

Ri;kRiþk;j�k:

The coKoszul complex R is a quotient of the

cobar complex of E0A (see [20]), and Ri;j is the

image of fðPi
j Þ

�g.
Remark 2.2. It is more convenient for our

purposes to work with the homology version. The

dual complex, denoted as �XX in [14], is an algebra

with divided powers on the generators Pi
j . In fact, �XX

is imbedded in the bar construction for E0A (which

is isomorphic to E1-term of May spectral sequence)

by sending �nðPi
j Þ to

fPi
j jPi

j j . . . jPi
jg ðn factorsÞ

and the product in �XX corresponds to the shuffle

product (see [2, p. 40]). Note that the image of a

cycle under this imbedding is not necessary a cycle

in the bar construction for E0A , so we have to add

some elements if needed. This imbedding technique

was succesfully exploited by Tangora [23, Chapter 5]

to compute of the cohomology of the mod 2

Steenrod algebra, up to a certain range.

2.2. May spectral sequence. Let M be a left

A -module of finite type, bounded below. M admits

a filtration, induced by the filtration of A , given by

FpM ¼ FpAM:

It is clear that FpM ¼ AM ¼M if p � 0, andT
p FpM ¼ 0.

Put

E0
p;qM ¼ ðFpM=Fp�1MÞpþq; E0M ¼

M
p;q

E0
p;qM:

Then E0M is a bigraded E0A -module, associ-

ated to M.

Let �BB�ðMÞ ¼ �BB�ðA ;MÞ be the usual bar con-

struction with induced filtration given by

Fp �BB�ðMÞ ¼
X

Fp1A � � � � � FpnA � Fp0M;

where the sum is taken over all fp0; . . . ; png such

that nþ
Pn

i¼0 pi � p.

Theorem 2.3 [14]. Let M be a A -module of

finite type, bounded below. There exists a spectral

sequence converging to H�ðA ;MÞ, whose E2-term

is E2
p;q;t ¼� H�ðE0A ; E0MÞ�q;qþt and the differentials

are F2-linear maps

dr:Er
p;q;t �! Er

p�r;qþr�1;t:

3. The algebraic transfer. The stable

transfer ��ðBVsÞþ ! ��ðS0Þ admits an algebraic

analogue at the E2 level of the May spectral

sequence. In this section, we give an explicit

description of the algebraic transfer in this E2

level. Because of naturality, it will be clear from

the construction that there is a commutative

diagram

TorE
0A

s;sþtðF2;F2Þ ����!
E2 s ðF2 �E0A E0PsÞt=

=
=)

=
=
=)

TorAs;sþtðF2;F2Þ ����!
’�
s ðF2 �A PsÞt:
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Let P̂P1 be the unique A -module extension

of H�ðRP1Þ ¼ P1 ¼ F2½x1	 by formally adding a

generator x�1
1 of degree �1 and require that

Sqðx�1
1 ÞSqðx1Þ ¼ 1. Let u : A ! P̂P1 be the unique

A -homomorphism that sends � to �ðx�1
1 Þ, and put

 1 ¼ ujA : A ! P1. By induction, we define

 s : A
�s ! Ps;

 sðf�sj� � � j�1gÞ
¼

X
deg�0s>0

�0sðx�1
s Þ�00sð s�1ðf�s�1j . . . j�1gÞÞ;

where we use standard notation for coproduct

�ð�Þ ¼
P
�0 � �00.

It is known, from a theorem of Nam [19], that

 s is a representation for the algebraic transfer on

the bar construction. That is,  s induces the dual of

the algebraic transfer

’�
s : Tor

A
s;sþtðF2;F2Þ ! TorA0;tðF2; PsÞ ¼ ðF2 �A PsÞt:

We use  s to construct a chain map

~  s: �BB�ðA ;F2Þ ! �BB��sðA ;PsÞ;

between the bar constructions as follows. Write
�BBnðF2Þ ¼ �BBn�sðF2Þ �A

s
, then ~  s ¼ 1�  s, that

is:

~  sðf�nj . . . j�1gÞ ¼ f�nj . . . j�sþ1g �  sðf�sj . . . j�1gÞ:

Proposition 3.1. ~  s is a chain homomor-

phism.

Our next result shows that ~  s, for each s � 1,

respects the May filtration.

Proposition 3.2. For each p � 0, s � 1,

there is an induced chain map:

Fp ~  s : Fp �BB�ðF2Þ ! Fp �BB��sðPsÞ:

As a result, there is an induced map between

spectral sequences

Er s : E
r
p;q;tðF2Þ ! Er

p;q�s;t�sðPsÞ:

In particular, we obtain

E2 sðMÞ : TorE0A
s;sþ�ðE0M;F2Þ

! TorE
0A

0;� ðE0M;E0PsÞ:
When M ¼ F2, E

2 sðF2Þ is the E2-level of the

algebraic transfer in the May spectral sequence.

The following is the main theorem of this

section.

Theorem 3.3. The E2-level of the dual of

Singer’s algebraic transfer is induced by the chain

level map

E1 s : E0A
s ! E0Ps;

which is given inductively by

E1 sðf�sj . . . j�1gÞ
¼

X
deg�00s>0

�0sðE1 s�1ðf�s�1j� � � j�1gÞÞ�00sðx�1
s Þ;

Because of the simple structure of E0A , it is

usually quite simple to compute with E1 s. For

example, because Pi
j are primitive in E0A , we have.

Corollary 3.4. Under the chain level E1 s :
E0A

s ! E0Ps, the image of fPis
js
j . . . jPi1

j1
g is

x
2i1 ð2j1�1Þ�1
1 . . .x

2is ð2js�1Þ�1
s .

Theorem 3.3 and Corollary 3.4 are extremely use-

ful to investigate the image of the algebraic transfer.

4. Two hit problems. The study of the

algebraic transfer is closely related to an important

problem in algebraic topology of finding a minimal

basis for the set of A -generators of the polynomial

rings Ps, considered as a module over the Steenrod

algebra. This is called ‘‘the hit problem’’ in liter-

ature [25]. A polynomial f 2 Ps is ‘‘hit’’ if it belongs

to A Ps. There is another, related hit problem that

we are going to discuss. The results in this section

are crucial for applications in Section 5 and 6.

Consider the May spectral sequence for Ps in

homological degree 0. There are isomorphisms

E2
p;�p;tðPsÞ ¼� H0ðE0A ; E0PsÞp;�pþt

¼ ðF2 �E0A ðE0PsÞÞp;�pþt;
so the E2 term concerns with the problem of

determining the generators of E0Ps, considered as

a module over the restricted Lie algebra E0A .

Determining a set of E0A -generators for E0Ps is a

simpler problem, but not without difficulty, even in

the rank 1 case (see [24]).

The E0A -module structure on E0Ps is related

to the A -module structure on Ps via epimorphisms

E2
p;�p;tðPsÞ ! E1

p;�p;tðPsÞ;

where in each fixed internal degree t, E1
p;�p;tðPsÞ are

associated graded components of ðF2 �A PsÞt.
Given a homogeneous polynomial f 2 Ps. We

denote by ErðfÞ and ½f 	 the corresponding classes of

f in Er and F2 �A Ps respectively. In particular,

E1ðfÞ ¼ E0ðfÞ is the class of f in E0Ps. In order to

determine ErðfÞ or ½f	, one only needs to consider

monomials in f of highest filtration degree, we call

this the essential part of f , and denote it by ess(f).

For example,
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essðx71x132 x133 þ x91x
11
2 x

13
3 þ x81x

12
2 x

13
3 Þ ¼ x71x

13
2 x

13
3

because x71x
13
2 x

13
3 is in filtration �4 while the latter

two monomials are in filtrations �5 and �9

respectively.

Lemma 4.1. Let f 2 Ps be a homogeneous

polynomial. If f is a nontrivial permanent cycle,

then essðfÞ is non-hit in Ps.

Example 4.2. Let m ¼ x71x
13
2 x

13
3 2 P3, it is

not difficult to check that m is nonhit in P3. On the

other hand,

m ¼ Sq2ðx71x112 x133 Þ þ x91x
11
2 x

13
3 þ x81x

12
2 x

13
3

þ x71x
12
2 x

14
3 þ x81x

11
2 x

14
3 ;

where x91x
11
2 x

13
3 2 F�5P3 and the last three mono-

mials are in even smaller filtrations. Therefore

E0ðmÞ ¼ P 1
1E

0ðx71x112 x133 Þ 2 E0
�4;37P3:

So E2ðmÞ is trivial.
Thus, m is nonhit in Ps then E0ðmÞ is not

necessary nonhit in E0Ps.

Example 4.3. Consider m ¼ x1x
2
2x

2
3 þ

x21x2x
2
3 þ x21x

2
2x3 ¼ Sq2ðx1x2x3Þ, so m is hit in P3.

On the other hand, since m 2 F�2P3 and there

does not exist any element f�gf 2 F�1ðA � P3Þ
such that �ðfÞ ¼ m (modulo terms in FpP3 with

p < �2), E0ðmÞ is nonhit in E0
�2;7P3.

Thus, E0ðmÞ is nonhit in E0Ps then m is not

necessary nonhit in Ps.

The following is the main result of this section.

Proposition 4.4. Let f 2 Ps be a homo-

geneous polynomial of filtration degree p. f is a

nontrivial permanent cycle if and only if essðfÞ is

non-hit in Ps and there does not exist any non-hit

polynomial g 2 FrPs, with r < p, such that essðfÞ � g

is hit.

5. First application: a non-detection re-

sult. In this section we use the presentation in

E2-term of May spectral sequence of the dual of

the algebraic transfer, constructed in section 3, to

study its image. Using this method, we are able to,

not only reprove by a completely different method

(with much less calculation) for results in [6,21], but

also obtain the description of the image at some

degrees of the algebraic transfer.

Here is our first main result.

Theorem 5.1. The following elements in the

cohomology of the Steenrod algebra

(a) h1Ph1 2 Ext6;16A ðF2;F2Þ;
(b) h20Ph2 2 Ext7;18A ðF2;F2Þ;

(c) hn0 i 2 Ext7þn;30þnA ðF2;F2Þ; 0 � n � 5;

(d) hn0j 2 Ext7þn;33þnA ðF2;F2Þ; 0 � n � 2,
are not detected by the algebraic transfer.

We remark that h60i ¼ h30j ¼ 0 (see [4]).

Sketch proof. We will give the sketch of

proof of (a). The proofs of other parts use similar

idea.

According to Tangora [23], in E1-term of the

May spectral sequence, h1Ph1 has a representation

X ¼ fP 1
1 jP 1

1 g � fP 0
2 jP 0

2 jP 0
2 jP 0

2 g 2 E1:

Note that X 2 F�4ðF2Þ. Here we use the same

notations Pi
j for elements of A and E0A , so X can

be considered as an element in E1, being the bar

construction of E0A .

Corollary 3.4 allows us to find the image of X

under E1 6:

E1 6ðXÞ ¼ x1x2x
2
3x

2
4x

2
5x

2
6 þ all its permutations

¼ Sq4ðx1x2x3x4x5x6Þ:

Therefore, E1 6ðXÞ is hit in P6. In the bar

construction, ðh1Ph1Þ� has a representation X þ x,

where x 2 Fp �BBðF2Þ with p < �4. Thus, if h1Ph1 is

detected, then

 6ððh1Ph1Þ�Þ ¼ E1 6ðXÞ þ y;

where y 2 FpP6 with p < �4, is nonhit in P6. On

the other hand, it can be verified by direct compu-

tation that there is only one possible polynomial:

x41x
4
2x

2
3x

0
4x

0
5x

0
6 (or its permutations). But it is clearly

hit in P6 as well. �

It should be noted that the dimension of the

above elements go far beyond the current computa-

tional knowledge of the hit problem.

Corollary 5.2 [21,22]. Ph1 2 Ext5;14A ðF2;F2Þ
and Ph2 2 Ext5;16A ðF2;F2Þ are not in the image of the

algebraic transfer.

That these elements are not detected are

known, they are due to Singer [22] and Quỳnh [21]

respectively. Our proof is much less computational.

6. Second application: p0 is in the image

of the transfer. In this sections, we show that

our method can also be used to detect elements

in the image of the algebraic transfer. This fact

completes the proof of a conjecture in [8], which

provides a complete picture of the fourth algebraic

transfer.

The following is our second main result.

Theorem 6.1. The element p0 2 Ext4;37A ðF2;

F2Þ is in the image of the fourth algebraic transfer.
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This result is announced in [9], but the details

have not appeared.

Since the squaring operation Sq0, defined by

Kameko [10], acting on the domain of the alge-

braic transfer commutes with the classical Sq0 on

Ext�;�A ðF2;F2Þ [12] through the algebraic transfer

[16], we obtain following result.

Corollary 6.2. Every element in the family

pi 2 Ext4;37�2
i

A ðF2;F2Þ, i � 0, is in the image of the

algebraic transfer.

Sketch proof of Theorem 6.1. According

to Tangora, p0 is represented by R0;1R3;1R
2
1;3, so its

dual p�0 is represented in E1-term of May spectral

sequence by

�pp0 ¼ fP 3
1 g � fP 0

1 g � fP 1
3 jP 1

3 g þ fP 3
1 jP 3

1 g � fP 1
2 g � fP 0

4 g:

Under E1 4, this element is sent to (see

Corollary 3.4)

~pp0 ¼ x01x
7
2x

13
3 x

13
4 þ x71x

7
2x

5
3x

14
4

þ all their permutations:

Using Example 4.2 and the fact that

E0ðx71x72x53x144 Þ ¼ P 1
1E

0ðx71x72x33x144 Þ;

we see that E0ð~pp0Þ is hit in E0P4. Therefore, E
0ð~pp0Þ

does not survive to E1
�4;4;33ðP4Þ.

By direct calculation, we see that, in the bar con-

struction, p�0 ¼ �pp0 þ xþ y, where y 2 F�6
�BBðF2Þ and

x ¼ fP 2
1 jP 2

1 g � fP 1
2 g � fP 0

4 g:
So that,

 4ðp�0Þ ¼  4ð�pp0 þ xþ yÞ
¼ X þXð12Þ þXð132Þ þXð1432Þ þ Y ;

where ð12Þ; ð132Þ; ð1432Þ are elements of the symmet-

ric group S4, their action permutes variables of P4;

X ¼ x01x
7
2x

13
3 x

13
4 þ x01x

13
2 x

7
3x

13
4 þ x01x

13
2 x

13
3 x

7
4

þ x01x
13
2 x

17
3 x

3
4 þ x01x

17
2 x

13
3 x

3
4 þ x01x

17
2 x

3
3x

13
4 ;

Y ¼ ð7; 7Þ � ð5Þ � ð14Þ þ ð16; 5; 7Þ � ð5Þ
þ ð18; 3; 7Þ � ð5Þ þ ð20; 1; 7Þ � ð5Þ
þ ð11; 3; 14Þ � ð5Þ þ ð11; 3Þ � ð5Þ � ð14Þ
þ ð5; 2Þ � ð13; 13Þ þ ð17; 1; 2Þ � ð13Þ
þ ð14; 9; 3; 7Þ þ ð9; 14; 3; 7Þ þ ð9; 3; 14; 7Þ
þ ð7; 14; 3; 9Þ þ ð7; 9; 3; 14Þ þ ð14; 7; 3; 9Þ
þ ð9; 3; 7; 14Þ þ ð9; 7; 3; 14Þ þ ð20; 1; 5; 7Þ
þ ð16; 9; 1; 7Þ þ ð9; 16; 1; 7Þ þ ð5; 16; 9; 3Þ
þ ð9; 5; 16; 3Þ þ ð18; 3; 9; 3Þ þ ð9; 3; 18; 3Þ
þ ð9; 5; 14; 5Þ þ ð9; 5; 5; 14Þ þ ð5; 9; 5; 14Þ:

Here we use ða; b; c; dÞ to denote the monomial

xa1x
b
2x

c
3x

d
4, and use � to denote all permutations that

is similar to shuffle product.

Since X is hit in P4, so are Xð12Þ; Xð132Þ and

Xð1432Þ.
By direct inspection, we show that E0ðY Þ ¼

E0ðð3; 5Þ � ð11Þ � ð14ÞÞ is a nontrivial permanent

cycle. According to Proposition 4.4,  4ðp�0Þ is non-

hit in P4. Thus, p0 is in the image of fourth algebraic

transfer. �
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