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Abstract:

We present a formula describing modularity gap for Eisenstein series, which is

written in terms of a certain double series. Limit values of the gap at nonzero rational points are
expressible by Hurwitz zeta values. Our gap estimates near the origin are applied to examining the
asymptotic behaviour of Ramanujan g-series and g-zeta values near the natural boundary |g| = 1.
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1. Introduction. For s & C, consider the

Ramanujan g¢-series

s—1

B0 = YL =S o e

n=1"~ q n=1

3

with o,-1(n) =324, d*~!, which is holomorphic for
lg] <1 (cf.[1]). If s is an even positive integer satisfy-
ing s > 4, the Eisenstein series

¢(1—s)

E 1) = 5

+ (1)571 (627Ti7')
for 7€ C with Im(7) >0 admits the modularity
E,(-1/7)=71°Es(1). If s=2, then FEy(-1/7) =
2By (1) — 7/(4mi). For each positive integer s,
Kurokawa [5] expressed the gap Es(—1/7) — 7°E,(7)
in terms of a multiple cotangent function, and com-
puted its limit values as 7 — 1,2,1/2 (Im(7) > 0).

In this paper we make a more direct approach
toward this problem, and present a formula describ-
ing modularity gap, which is continuous in s € C
with Re(s) > 2. Our gap formula is written in terms
of a certain double series. Using this, we show that
the limit values of the gap as 7 — p € Q\ {0} may
be expressed by Hurwitz zeta values, in particu-
lar, by ((s—1) and L(s,x) if pu (or 1/u) € N.
Furthermore, for the gap near 7 = 0, order estimates
are given.

Kaneko et al. [3] introduced a g-analogue of the
Riemann zeta function defined by
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for Re(s) > 1, and proved that, for each ¢ satisfying
0 <g¢<1, the function (,(s) is continued mero-
morphically to the whole complex plane, and that
lim,1-0G(s) =((s) for every se€ C\{l}. For
every integer s > 2, the Ramanujan g-series ®;_1(q)
is related to (4(s) through the equality

(1.1)

n

G == > (")

n=1
=0 (g
(s—1r &
with x7 such that
s—1
n(n =) (- (s—2)) = S i,
r=1
in particular kI | =1, kKl ,=—(s—1)(s—2)/2

(cf. [3, p. 185]). For g-zeta values (,(s1), ..., G (si) (or
D, -1(q), ..., Ps—-1(q)) with s1,...,s € N, Pupyrev
[8] discussed linear and algebraic independence over
C(q) as g-series, by using order estimates for them
as ¢ tends to a root of unity (see also [9]).

As applications of our gap estimates near 7 = 0,
we examine the asymptotic behaviour of @, ;(q)
and (,(s) near the natural boundary |¢| = 1.

2. Results. For s € C and for 7€ C with
Im(7) > 0, consider the Eisenstein series

((1—s)
2

_ F(S)<(S) s 2miT
= WCQS? + O, (™),

ES(T) — + (I)s_l(€2m"r)

and let us set
Ay(T) =7 Es(—1/7) — Es(7).

The modularity gap is described as follows:
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Theorem 2.1. For Re(s)>2 and for Im(7) >0,

2iT'(s) s

A(1) =— @) sin 5

. (< 2 (JT—ch) +TS2+1<(8))’

k)eN2
where the branches of T and j7T + k are taken so that
arg(7), arg(j7+ k) € (0, 7).
Remark 2.1. Substitution 7 €™ /7 yields
another relation of the form

((=1/7) = Ei(7)
2iT(s) . ws

~en M2

y (( Z (jTeiisk>s+(e T*;) +1<(S)>

Jj,k)eN?

A(r) = (e"77!)°E

with arg(e™r71), arg(jr — k) € (0, ).

For each >0, the sum 7, cne(J7+4k)7"
(respectively, > pene(J7 — k)™*) with Re(s) > 2
is holomorphic around 7 = p (respectively, 7= —pu).
As an immediate consequence of Theorem 2.1 and
Remark 2.1 we obtain the following

Theorem 2.2. Suppose that Re(s) > 2. Then,
for each p >0,

Ay(r) = 2&(;) sin -
x (M) + 152 ¢(s) + O - )
and
Ai(r) =g sin Ty
x (M) + “78; Lets)+ 00 + W)

as T — p (Im(7) > 0) and as 7 — —p (Im (1) > 0),
Z(j,k)eNQ (Ju + k)is

For each positive rational number u, the series
A, (s) may be expressed as a finite sum of Hurwitz

respectively, where A, (s) :=

zeta functions.
Theorem 2.3.
prime positive integers, and set A 4(a,b) :

Let g and h be given relatively
= a/h +
b/g for positive integers a,b. Then, for each p =
g/ h, we have

[Vol. 86(A),

1 (h.9)
Agn(s) = E (Z;)q(((s =1, Ang(a, b))
(1 Mg 9)) s Mg )
gi f:) (g( — 1, My(ab) — 1)
+(1

— Ang(a,b) )C(S,Ah,g(a, b) — 1)),

where ZE% is the summation over the pairs (a,b)
satisfying 1 < a<h, 1 <b<g and the inequality
(). Moreover, if u = g is a positive integer,

1

Ayfs) = 25 = 1) = 5 (1+.97) + Hyfs).

> 1 1
2 wreon)

The quantity Hy(s) may be represented as a linear
combination of Dirichlet L-functions L(s,x) with
coefficients in Q(e¥™/%9) g5 ... g7%), where gilg
(1<j<d)

Example 2.1. Since Hi(s) = Hs(s) =0, the
limit values of A4(7) as 7 — 1,2 agree with the result
of [5]. Moreover,

1 1
H;(s) = EL(S,Eg), Hy(s) = ZL<S’E4)’
1 . . —_
Hi(s) = 55 ((3 = )L(s, %) + (3 + DL(s %.) ).
1 27
Hg(s) = 3 (s,e6) + 5 L(s,e3).
Here ¢,=-¢4(n) (g=3,4,6) (respectively, x. =
X«(n)) is the character such that e4(n) = +1 if n =
+1 (mod g) (respectively, x.(n)==£1 if n==+1

(mod 5), x«(n) ==4i if n =22 (mod 5)) and that
g4(n) = 0 (respectively, x.(n) = 0) otherwise.

Remark 2.2. Let p,(z) (n=1,2,3,..
polynomials defined by

.) be

(1 + 2%)p., (z)/n.

If s is an odd integer, it is known [6, §5.3] that

l,z;((gu—li—b)S B (gy+1g_ b)s) = Z—:ps (cot%b)

p1 (.’L‘) =, Pn+l (x> =
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Remark 2.3. Since A/ (s) =g°Ay(s), the
value Ay (s) is also expressible by ((s), {(s — 1) and
L(s,x). By Theorem 2.2 the limit value of A¥(7) as
T — —g/h is written in terms of Hurwitz zeta values.

In what follows 6y denotes a given positive num-
ber such that 6y < w/2. The following gives gap
estimates near 7 = 0.

Theorem 2.4. For Re(s) > 2

A(T) = _wsinﬂ—s (7782+ ! ¢(s) + O(Tﬁl))

(2m)* 2
as 7 — 0 through the sector w/2 — 6y < arg(t) < 7/2,
and

200(s) . s

(2m)* 2
emr ) 1
(L o)+ 06 )
as T — 0 through the sector /2 < arg(T) < 7/2 + .
Using these estimates, we obtain asymptotic
expressions for ®,_;(¢) and (,(s) near the natural
boundary |q| = 1.

NGE

Theorem 2.5. We have
2 1/2 1
®1le) = logg((1>/q) - log(/l/q) 24
+ O((1 — q) e /It
_ @) _@+12 (@) +7
(1-¢° 1-4 24
+0(1—-9q)

and, for each s € C such that Re(s) > 2
e—co/[1—q|
Bens(0) = 1)) (e )
+ O(sin(s/2)(1 — q) ")
_ D(s)¢(s) s
=t (73
+0((1-9)7")

as ¢ — 1 through the sector |arg(l — q)| < 0y, where
¢ s some positive number depending on 0.

e*ﬂ'is/Z

- (2n) )

1-4)+0((1-q)))

Theorem 2.6. We have
oo S22 12 1
Cq(2> =(1-gq) (logg(l/q) log(1/q) + 24)
+ O(e—CU/H—Q\)

=@ - (¢ +3)a-9)

(2 D gp o1 - 0?)
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and, for each integer s > 3,

1fq nr'(r+1

Cq (s—1)! logH_l 1/(] +0((1 - Q)S_l)
:a$—§eaﬁ+@—zx@—wy1—@
+0((1-9))

as ¢ — 1 through the sector |arg(l — q)| < 6y.

Let g and h be given relatively prime integers
satisfying |g| > 1 and h > 2. Set ¢ = e*™/"t with
|t| < 1. Then we have the following results, where a
constant related to the symbol O may be taken inde-
pendently of h and g.

Theorem 2.7. For each integer s > 2,

Dy 1(g) = By (t1) + OB (1 — ¢1) 1)

as t — 1 through the sector | arg(1 — t)| < 6.
Theorem 2.8. For each integer s > 2,

Gls) = (T2 cuts) + 0+ (1~ )7

as t — 1 through the sector | arg(1 — t)| < 6.
It is known that the Chazy equation

"o g(y/)Q

(" =d/dz) admits a family of solutions

" — 2yy

yo(z) == mi(1 — 24@1(627”(2_0))) (CeQ)

(cf. [1, 2]). Note that yc(z) possesses the natural
boundary Im (z — C) = 0 corresponding to |¢| =1 of
®;(g). As an immediate corollary to Theorem 2.7,
we have

Corollary 2.9. The solution yc(z) is holomor-
phic in the half-plane Im(z — C') > 0, and

yo(C + g/h +ni) = —wih*n (1 + O(h'n))

as n — 0 through the sector | arg(n)| < bp.
3. Proof of Theorem 2.1. For Re(s) >2
and for Im(7) > 0, the function

@) =3 (k)

2mimT

admits the Fourier expansion Y _; aye , whose

coefficients are given by

141 1+
727sz7'
Am = / f(ndr = E /
i

keZ
00+t
. —5
—/ u e
—00+1

72mm7’

T+k

—2mimu du
7
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where arg(u) varies from 7 to 0. Observe that the
path of integration may be changed into the contour
C(0) that starts from u = €*™/%00, encircles u = 0 in
the negative sense, and ends at u = e~™/2
—7i/2

0. By put-
ting 2mmu =e
form

/ u7'96727TZTTL1Ld’LL
C(0)

= —ie™2(2rm)*! / v e "dv
C(0)

v, this integral is written in the

— _Z-em's/2(1 _ 672m’s)(2ﬂ,m)8*1

THT(s),

where C'(0) := {v = 2mme™/?u|u € C(0)}. Thus we
have

r(l-s)

— 6771’15/2(271')

77115/2 277 8§ 0

f(T) st 1 2mm7’
-1
and hence
1
=) f(7)
R T 2
—7rzs/2 27'r s

o0 o0
— § :E :ms 1 2m]m7
Jj=

m=1

B 6771'2-8/2(27.[.)5 00 . e
T T(s) e-1(m)

2minT
n=1
efm’s/Q (2,”.) s

_ e?m"r
- T(s) s )

(for a positive integer s, the same expression of mul-
tiple Eisenstein series is given by [4, Theorem 3]).
Then,

67772'5/2(271_)5

—Ss

I'(s)¢(s) 7rs>

I (s) (Bu(-1/m) - Sy
- Y [Tt R
_MZENZ((’WI—J) *(z;f;)) J;vejm

[Vol. 86(A),

*TZS 1
fr .5‘ Jr
jezz,k:eN (kT—H J%NZ (kr +3)°
(e =)
e ™52 (2m)* I'(s)¢(s) s
T'(s) ( () =G 53 )
+ Z + (7™ = 77°)((s),
(4,k) eN2 kT + ]
from which the desired formula follows. |

4. Proof of Theorem 2.3. For each g/h, we
have (cf. [7, p. 290])

ri/ n(s) =n° Z

EN? ]+hk
h g oo o 1
=} i
ZZZ PR ETrEy)
h g oo
v+1
:hS - 00000
a:l};;; (ghv + ag + bh)®
ifjii”“’“’”b) (1= Nigla,D)
gs a=1 b=1 v=0 (V‘FA}“}(CL b))

Dividing the double summation > >9_, into two
parts for Ay 4(a,b) < 1 and for A, 4(a,b) > 1, we ob-
tain the desired equality. If 4 = g, then

which implies the expression as in the theorem. To
verify the final assertion of this theorem, it is sufficient
to consider Y 7 ((gv+b)"" — (gv+g—b)"") such
that g and b are relatively prime. Set

(Z/92Z)" = {&r (mod g)| 1 <1< ¢(g)/2},

wherery =1 <19 < -+
©(9)/2), let p; be the mapping (Z/gZ)* —

< To(g)/2- For each [ (1 <[<
{0,+1}
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such that p;(+r;) = £1 and that p;(n) = 0 otherwise.
Then the summation mentioned above is written as
Yomeq pp(n)n 5. Let x1,..., Xy(g)2 be the characters
such that x;(£1) = £1 (1 <1< (g)/2). Then

(P15 Potg)2)U

(Xla cee Xgo(g)/Z) =

with the square matrix U whose (o, ()-entry is
xs(ra). Since (1/4/¢(g)/2)U is unitary, p, may be
written as a linear combination of y; (1 < I <
©(g)/2) with coefficients in Q(e*™/#9)). This com-
pletes the proof. O

5. Proof of Theorem 2.4. To derive the
estimate for Ay(7) it is sufficient to show

S oGtk

(j,k) eN?

(5.1) =0(r™")

as 7 — 0 through the sector 7/2 — 6y < arg(r) <
7/2. In this sector, (j7+k)° = O((jn+ k)*RC(S))
uniformly for (j,k) € N?, where = Im(7). Since

> (in+ k)T

jEN
< (n+k) R /1 Oo(n:c + k) gy
=0(n _1(77+k) +1)’
we have
N Z Gin + k)R = ()((77 + 1) RelHL
(4,k) eN?

+/ (n+ :c)fRe(s)de) =0(1),
1

which implies (5.1). The estimate for A*(7) is verified
by the same argument. O

6. Proofs of Theorems 2.5 and 2.6. Put
7= e"2(2m) Mog(1/q). If e ™27 — 40, then ¢ —
1 — 0. Suppose that Re(s) > 2. By Theorem 2.4,

D(s)(s) | 7s

— 7B, (~1/7) — G

Ay(T) =

_ F(S)C(S) —s s/ —mis/
- (2n)’ (T et — e

+0(®, 1(e ) + O sin(rs/2)
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as 7 — 0 through the sector 7/2 — 6y < arg(r) <
7/2. Here &, (e ?™/7) = O(e~/'=4) for some
co > 0 in this sector. The estimate for A¥(7) yields
the same expression in the sector 7/2 < arg(r) <
m/2 + 6p. Thus we obtain the asymptotic formula
of Theorem 2.5 as ¢ — 1 through |arg(1l — q)| < 6p.
The case s = 2 may be treated in a similar way by
use of the relation Fy(—1/7) = 72Ey(7) — 7/(47i).

Using Theorem 2.5 and (1.1), we derive the
asymptotic formula for (,(s) as in Theorem 2.6. [J

7. Proof of Theorem 2.8. Let g and h be
mutually prime integers satisfying |g| > 1 and h > 2.
Write (,(s) in the form

h—1

(7.1) G(s)=(1—9)"> Zia),
=0
n s—1) i (mh+1)(s—1)
Z(q) = -
n=l (mod h) (1 m=1 ( —q hH

Set g = e*™9/"t, |t| < 1. Tt is easy to see that

] tmh s—1)

(72)  (1-49)Z(a)=(1-q) Z — gy
=(1—q)" (1 =" "¢ (s).
For each [ satisfying 1 <[ < h — 1, observing that
th+l — (62m'g/ht)mh+l
— eQ’/rigl/htth — e?mﬂgo(l)/hg(l)tmh-%-l7

we have |1 —¢™"*!| > sin(r/ho(l)) > sin(7/h) near
t =1, where hy(l) and go(l) are relatively prime in-
tegers such that 2 < hg(l) < h. Hence, for 1 < [ <
h — 1, we have

(7'3) ZI(Q) < Sin_s(ﬂ'/h) Z (5= 1)(mh-+1)

m=1

<h (-t < h (1 -t

as t — 1 through the sector |arg(l —¢)| < 6y. Here
o(t) < Y(t) means ¢(t) = O((t)), whose related
constant is independent of h and [. Substituting
(7.3) and (7.2) into (7.1), we obtain Theorem 2.8. [J

8. Proof of Theorem 2.7. For each integer
s > 2, relation (1.1) implies

Dy(q)zs(q) = Ksxs(q).
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Here z,(q) and x,(q) are column vectors of the form

ZS(q) = T(Cq(2>7 s 7Cq(3))v
x:(q) :="(®1(q), ..., ®s-1(q)),

D,(q) is a diagonal matrix of the form

and K is a lower triangular matrix whose («, ()-
entry (1<f<a<s-—1) is n%“.
qe ?™9/" =t — 1 through the sector |arg(l —t)| <
6. By Theorem 2.8, for 2 < v < s, we have (,(v) =

(1—q)"(1—t")"¢u(v) + O(h"+1(1 — t")7"). Hence

x5(q) = K;lDS(q)zs(q)

D,(q) = diag[1!(1 — ¢q)2,...

Suppose that

= K:'Dy(q) (Dula) " Do)z, (t")
+O( (1= ™h)

= K'D(t")z,(t") + O (1

= x,(t") + O(h (1= )7,

which implies Theorem 2.7. O

Appendix. Remark on ®(q). Let ¢ = ¢*>™9/"¢
be as in Theorem 2.7. Then

log(1 —¢q) + O(1)
1—-g¢

_ th)fl)

Do(q) = —

as ¢ — 1 through the sector | arg(1l — ¢)| < 6, and

Po(q) = t"))

as t — 1 through the sector |arg(l — t)| < 6.
To derive these, we note that

@y(t") + O(h*(1 -

(1—g¢q Z logn)q" = Z(log(n +1) — logn)qg™™
n=1

n=1

i n~t+0(n?)q" = —log(1—q) + O(1)

as ¢ — 1, |g| < 1, which implies

i(log n)q" = — w +p(q)

—

n=

[Vol. 86(A),

with p(q) = O((1 — ¢)™'). Observing that

1 / o)

2mi Ya (Z - q)2
|z —q| = (1/2)|]1 — g| cos €y in the sector
|arg(1 — )| < 6o, we have

i(nlogn)q" _ log(1-¢)+0(1)

2
n=1 (1 - q)

as ¢ — 1 through this sector. Hence

) =.d(n)q
T =5 A3 i

q n=1 v=

p'(q) dz=0(1-4q) )

with -, :

0(1)

n=1
vl _ log(l1—¢)+
;nlogn+0 n))q" = -7

as ¢ — 1 through |arg(l — ¢)| < 6. The second ex-
pression is obtained by the same argument as in the
proof of Theorem 2.8.

References

[ 1 ] B. C. Berndt, Number theory in the spirit of
Ramanujan, Amer. Math. Soc., Providence, RI,
2006.

J. Chazy, Sur les équations différentielles du
troisieme ordre et d’ordre supérieur dont l'inté-
grale générale a ses points critiques fixes, Acta
Math. 34 (1911), no. 1, 317-385.

M. Kaneko, N. Kurokawa and M. Wakayama, A
variation of Euler’s approach to values of the
Riemann zeta function, Kyushu J. Math. 57
(2003), no. 1, 175-192.

S. Koyama and N. Kurokawa, Multiple Eisenstein
series and multiple cotangent functions, J.
Number Theory 128 (2008), no. 6, 1769-1774.

N. Kurokawa, Limit values of Eisenstein series
and multiple cotangent functions, J. Number
Theory 128 (2008), no. 6, 1775-1783.

M. Noumi, Fuler ni manabu, Nihonhyoronsha,
Tokyo, 2007. (in Japanese).

K. Ota, Derivatives of Dedekind sums and their
reciprocity law, J. Number Theory 98 (2003),
no. 2, 280-309.

Yu. A. Pupyrev, Linear and algebraic in depen-
dence of g-zeta values, Mat. Zametki 78 (2005),
no. 4, 608-613; translation in Math. Notes 78
(2005), no. 34, 563-568.

V. V. Zudilin, Diophantine problems for g¢-zeta
values, Mat. Zametki 72 (2002), no. 6, 936-940;
translation in Math. Notes 72 (2002), no. 5-6,
858-862.



