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Abstract: We consider the Chebychev semigroup de�ned on the interval �1;þ1½ � by its

Dirichlet form

Z þ1

�1

ð1� x2Þf 02ðxÞ dx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p . We prove, via a method involving probabilistic tech-

niques, a family of inequalities which interpolate between the Sobolev and Poincar�e inequalities.
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1. Introduction. Gross’ logarithmic Sobolev
inequality [4] states that for all smooth functions f

on Rn;Z
Rn
f2 log f2d�n �

Z
Rn
f2d�n

� �
log

Z
Rn
f2d�n

� �

� 2

Z
Rn
jrf j2d�n;

where d�n denotes the normalized Gaussian measure

on Rn: �nðdxÞ ¼ ð
ffiffiffiffiffiffi
2�
p
Þ�n expð�jxj2=2Þdx: In this

Gaussian context, the Poincar�e inequality (spectral

gap inequality) is given by:
Z

Rn
f2d�n �

Z
Rn
fd�n

� �2

�
Z

Rn
jrfj2d�n:

In 1989, W. Beckner [2] derived a family of general-

ized Poincar�e inequalities that yield a sharp inter-
polation between the Poincar�e inequality and the

logarithmic Sobolev inequality:Z
Rn
f2d�n �

Z
Rn
ðetLfÞ2d�n

� ð1� e�2tÞ
Z

Rn
jrf j2d�n; for all t � 0;

where L is the Ornstein-Uhlenbeck operator: L ¼
�� x � r:

Similar researches on this kind of inequalities for

general probability measures generated by di�usions

have been done by many authors (see, for instance,
[1] and [9]).

The purpose of this note is to present a family of

integral inequalities on the unit circle S1 which pro-

vide interpolation between the Sobolev and Poincar�e
inequalities (see Theorem 3.1 below). These types of

integral inequalities are deeply related to the aspects

of the large-time behavior of parabolic PDEs (like in
[7]).

2. Preliminaries. In order to keep the paper

reasonably self-contained, we summarize in this sec-
tion the basic notions that will be used in this work.

We consider on the interval I :¼ �1;þ1½ � the Cheby-

chev operator de�ned by

L :¼ ð1� x2Þ d
2

dx2
� x d

dx
ðx 2 IÞ;

acting on the Hilbert space L2ðI; �Þ with respect to

the probability measure �ðdxÞ :¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx. The

operator L may be obtained as the projection of the

Laplacian on the unit circle S1 and � is obtained as

the projection on I of the normalized Lebesgue mea-

sure on S1. The Chebychev polynomials ðTnÞn2N are

de�ned by

TnðxÞ : ¼ cosðn arccos xÞ

¼ ð�1Þn
ffiffiffi
�
p

2n�ðnþ 1
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dn

dxn
ð1� x2Þn�

1
2

� �
;

where � is the usual gamma function:

�ðpÞ ¼
Z þ1

0

tp�1e�tdt:
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It is known that the Chebychev polynomials are
eigenvectors for the operator �L (see, for instance,

[8]):

�LðTnÞ ¼ n2Tn:

In fact, the distribution � is symmetrizing for L and

the sequence �n2; V ectðTnÞð Þn2N forms the spectral

decomposition of the minimal self-adjoint extension

of this operator on L2ðI; �Þ. With the help of an inte-

gration by parts, it is easily seen that

8f; g 2 C 2ðIÞ;
Z
ðLf Þgd� ¼

Z
fLgd� ¼ �

Z
Gðf; gÞðxÞd�ðxÞ;

ð1Þ

where G is the positive symmetric bilinear form

de�ned by:

Gðf; gÞðxÞ ¼ ð1� x2Þf 0ðxÞg0ðxÞ:

An important consequence of property ð1Þ is:

8f 2 C 2ðIÞ;
Z
Lfd� ¼ 0;

which expresses the invariance of the measure �.

By means of the above mentioned properties of the
operator L, essentially the one concerning the sym-

metry with respect to �; we deduce the existence of

a semigroup of operators ðPtÞt�0 generated by L act-

ing on L2ðI; �Þ by:

PtTn ¼ e�n
2tTn; 8n 2 N; ð2Þ

and such that:

1. Pt is a contraction in all spaces LpðI; �Þ
(1 � p � þ1);

2. Pt is symmetric:

Z
ðPtfÞgd� ¼

Z
fðPtgÞd�; 8f;

g 2 L2ðI; �Þ;
3. Pt is positive and Pt1 ¼ 1:

This semigroup is obtained as the projection of

the circular Brownian motion on a diameter. Accord-

ing to (2), Pt ¼ etL and Pt is ergodic:

Ptf tends to

Z
fd� �-almost everywhere as

t! þ1:

The commutation relation between the action of the
operator L and the derivation is given as:

d

dx
L ¼ eL d

dx

� �
� d

dx
;

where eL is the operator associated to the family of

Chebychev polynomials of second kind:

eL :¼ ð1� x2Þ d
2

dx 2
� 3x

d

dx
:

This commutation formula translates for the semi-

group ðPtÞt�0 by:

d

dx
Pt ¼ e�t ePt d

dx

� �
; ð3Þ

where ePt designates the heat semigroup generated by
eL: Notice in passing that ePt is symmetric (and so

invariant) with respect to the probability measure

e�ðdxÞ :¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

dx. The generator eL satis�es

the following dissipativity formula:Z
ð� eLfÞgd e� ¼

Z
ð1� x2Þf 0g 0d e�; ð4Þ

f; g being suf�ciently smooth on I. We emphasize

that eL may be obtained as the projection of the

Laplacian on the unit sphere S3 and e� is obtained as

the projection of the normalized Lebesgue measure

on S3:

For 1 � p < þ1; let DpðLÞ denote the domain

of the generator L of ðPtÞt�0 in LpðI; �Þ. In virtue of

the density of C 2ðIÞ in D2ðLÞ; we may extend

formula ð1Þ to D2ðLÞ.
3. The main result. Our objective in this

section is to establish a family of integral inequalities

on the unit circle S1 which provide interpolation

between the Sobolev and the Poincar�e inequalities.

For 1 � p � þ1; we adopt the notation

Lp
þ0ðI; �Þ ¼ ff 2 LpðI; �Þj 9" > 0; f � "g:

Let ’ : Rþ ! R be a strictly convex function such

that ’ð0Þ ¼ 0: We de�ne the ’-entropy functional E

of f 2 L1
þ0ðI; �Þ by

Eð’; f; tÞ ¼
Z
’ðf Þd��

Z
’ðPtf Þd�; t 2 ½0;þ1�:

The quantity Eð’; f; tÞ is always nonnegative since

Pt is invariant for the probability measure �: By the
ergodic property of the semigroup,

Eð’; f;þ1Þ :¼ Eð’; f Þ ¼
Z
’ðf Þd�� ’

Z
fd�

� �
:

When ’ðxÞ ¼ x2; Eð’; f Þ coincides with the classical

notion of variance,
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Eð’; f Þ ¼ Varðf Þ :¼
Z
f 2d��

Z
fd�

� �2

;

and when ’ðxÞ ¼ x log x;

Eð’; f Þ ¼ Entðf Þ

:¼
Z
f log fd��

Z
fd� log

Z
fd�

� �
;

the usual Kullback entropy.

In the sequel, we shall restrict ourself to the fol-

lowing class C of real functions ’ 2 C1ðRþÞ: ’ 2 C
means that ’ð0Þ ¼ 0; ’00 is strictly positive on Rþ

and

3

2
ð’ 000 Þ2 � ’00’0000 on Rþ:

A similar class to C was introduced and studied with
much pro�t by R. Latala and K. Oleszkiewicz (see

[5]). These two authors have investigated a number

of remarkable properties related to the functional
Eð�; f Þ for an arbitrary probability measure.

Having in our disposal enough machinery, we

are now ready to prove the following estimate of the
’-entropy functional E:

Theorem. 3.1. Let ’ 2 C: Then, for all func-

tions f 2 L1þ0ðI ; �Þ \D2ðLÞ and t 2 ½0;þ1�;

Eð’; f; tÞ � 1

2
ð1� e�2tÞ

Z
’00ðf ÞGðf; f Þd�: ð5Þ

Moreover, the numeric constant at the right hand

side of inequality ð5Þ is the best.

To illustrate this theorem, let us analyze some

practical applications. The most important examples

of the class C in our mind are:

’pðxÞ ¼
�x

2
p þ x

p� 2
for p 2 ½1;þ1½; p 6¼ 2

and

’2ðxÞ ¼
1

2
x log x;

which corresponds to the limiting case of ’p as

p! 2: If ’ ¼ ’p, inequality ð5Þ, written for t ¼ þ1,

describes the Sobolev inequality: for all p � 1 ðp 6¼ 2Þ
and for all functions f 2 L1þ0ðI; �Þ \D2ðLÞ;

fk k2
p � fk k2

2

p� 2
�
Z
Gðf; f Þd�; ð6Þ

where fk kp is the norm in LpðI; �Þ: Indeed,

fk k2
p� fk k2

2

p� 2
¼ Eð’p; f p;þ1Þ

� 1

2

Z
’00pðf pÞGðf p; f pÞd�

¼
Z
Gðf; f Þd�:

With ’ ¼ ’2 and t ¼ þ1, inequality ð5Þ is exactly

the Sobolev logarithmic inequality found by C. E.

Mueller and F. B. Weissler [6] (see also [3]): replacing
f (positive) by f 2; we get

Entðf 2Þ � 2

Z
Gðf; fÞd�;

8f 2 L1þ0ðI; �Þ \D2ðLÞ:
ð7Þ

Taking into account thatZ
Gðjf j; jf jÞd� �

Z
Gðf; f Þd�;

and using the fact that the set of bounded functions

in C 2ðIÞ is dense in D2ðLÞ; we can extend inequalities

ð6Þ and (7) to D2ðLÞ. This last inequality ð7Þ is
equivalent to the hypercontractive estimate for the

semigroup ðPtÞt�0 : Whenever 1 < p < q < þ1 and

t > 0 satisfy e�t �
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

q � 1

s
; then, for all functions

f 2 LpðI; �Þ;
Ptfk kq � fk kp:

In other words, Pt maps LpðI; �Þ in LqðI; �Þ (q > p)

with norm one.

Proof of Theorem 3.1. By the Fubini theo-
rem, it follows from the de�nition of Eð’; f; tÞ that

for any t > 0,

Eð’; f; tÞ ¼ �
Z

’ðPt f Þ � ’ðP0f Þð Þd�

¼ �
Z t

0

d

ds

Z
’ðPsf Þd�

� �
ds

¼
Z t

0

Z
� ðLPsfÞ’0ðPsf Þd�

� �
ds

¼
Z t

0

Z
ð1� x2ÞðPsfÞ02 ’00ðPsf Þd�

� �
ds

¼
Z t

0

e�2s

Z
ð1� x2Þð ePsf 0Þ2’00ðPsf Þd�

� �
ds:

The last two equalities follow from the dissipativity
property ð1Þ and the commutation formula ð3Þ, re-

spectively. An integration by parts over the time

variable s yields
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Eð’; f; tÞ ¼ � 1

2
e�2 t

Z
ð1� x2Þð ePtf 0Þ2’00ðPtf Þd�

þ 1

2

Z
’00ðf Þð1� x2Þf 0 2d�

þ 1

2

Z t

0

e�2s d

ds

Z
ð1�x2Þð ePsf 0Þ2’00ðPsf Þd�

� �
ds:

Since Z t

0

d

ds

Z
ð1� x2Þð ePsf 0 Þ2’00ðPsf Þd�

� �
ds

¼
Z
ð1� x2Þð ePtf 0Þ2’00ðPtf Þd�

�
Z
’00ðf Þð1� x2Þf 02d�;

we get

Eð’; f; tÞ ¼ 1

2
ð1� e�2tÞ

Z
’00ðfÞð1� x2Þf 02d�

þ 1

2

Z t

0

ðe�2s � e�2tÞ d
ds

�
Z
ð1� x2Þð ePsf 0Þ2’00ðPsf Þd�

� �
ds:

Now,

e�2s d

ds

Z
ð1� x2Þð ePsf 0 Þ2’00ðPsf Þd�

� �

¼ 2

Z
ð1� x2Þ eLðPsf Þ0 � ’00ðPsf ÞðPsf Þ0d�

þ
Z
LPsf � ð1� x2Þ’000ðPsf ÞðPsf Þ02d�:

Applying successively ð1Þ and ð4Þ; the �rst integral in
this sum is reduced to:

� 2

Z
ð1� x2Þ2ðPsfÞ002’00ðPsf Þd�

� 2

Z
ð1� x2Þ2ðPsfÞ00ðPsf Þ02’000ðPsf Þd�;

while the second integral is equal to:

� 2

Z
ð1� x2Þ2ðPsfÞ02ðPsfÞ00’000ðPsf Þd�

�
Z
ð1� x2Þ2ðPsfÞ 04 ’0000ðPsf Þd�

þ 2

Z
xð1� x2ÞðPsf Þ03’000ðPsf Þd�:

Replacing x by
� eLðxÞ

3
, and invoking again the dissi-

pativity formula ð4Þ, the last member in the preced-
ing sum becomes:

2

Z
ð1� x2Þ2ðPsf Þ02ðPsfÞ00’000ðPsf Þd�

þ 2

3

Z
ð1� x2Þ2ðPsfÞ 04’0000ðPsf Þd�:

As a consequence, after reassembling the terms, we

�nd:

Eð’; f; tÞ
1� e�2t

¼ 1

2

Z
’00ðf Þð1� x2Þf 02d�

� 1

2

Z t

0

1� e�2ðt�sÞ

1� e�2t

�
Z
ð1� x2Þ2�ðs; f; ’Þd�

� �
ds; ð8Þ

with

�ðs; f; ’Þ ¼ 2f 00 2s ’00ðfsÞ þ 2f 02s f
00
s ’
000ðfsÞ þ

1

3
f 04s ’

0000ðfsÞ

¼
ffiffiffi
2
p

f 00s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’ 00ðfsÞ

p
þ ’ 000ðfsÞffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’ 00ðfsÞ
p f 02s

" #2

þ f 04s
3’ 00ðfsÞ

’ 00ðfsÞ’0000ðfsÞ �
3

2
ð’000ðfsÞÞ2

� �
;

where we have posed fs ¼ Psf: The positivity of
�ðs; f; ’Þ then allows us to exhibit the desired in-

equality (5) from (8).

It remains to show that the numeric constant
1

2
ð1� e�2tÞ at the right hand side of inequality ð5Þ

is optimal. As usual, let us consider c 2 �0;þ1½ such

that ’00ðcÞ > 0: If f is replaced by cþ "f in ð5Þ, and

we pass to the limit as " tends to 0þ, we easily re-

cover the Poincar�e (or spectral gap) inequality with

best constant:

8t 2 ½0;þ1�;
Z
f 2d��

Z
ðPtf Þ2d�

� ð1� e�2tÞ
Z
Gðf; f Þd�;

which completes the proof. r
We close this paper by the following concluding

remarks:
1. Of course, letting t ¼ þ1, inequality ð5Þ in

Theorem 3.1 gives rise to:

Eð’; fÞ � 1

2

Z
’00ðf ÞGðf; f Þd�: ð9Þ
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Moreover, it is a simple matter to observe that (5)
provides a smooth nonincreasing interpolation for

inequality (9):

Eð’; f Þ � Eð’; f; tÞ
1� e�2t

� 1

2

Z
’00ðf ÞGðf; f Þd�:

2. By (8), we point out at once that, if
3

2
ð’000Þ2 < ’00’0000; the equality holds in ð5Þ if and

only if f is constant. In particular, inequalities

ð6Þ and ð7Þ do not admit nonconstant extremal

functions.
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