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Abstract:

We present a different perspective on Nagumo’s uniqueness theorem and its

various generalizations. This allows us to improve these generalizations.
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1. Introduction. Nagumo’s theorem [7] is
one of the most remarkable uniqueness results for
the solutions of the differential equation

(1.1) a'(t) = f(t,2())

with initial data

(1.2) z(0) =0,

where @ > 0 and f:[0,a] x R" — R" is continuous
with f(t,0) = 0 for ¢ € [0, a]. It ensures that z(t) =0
is the unique solution to (1.1)—(1.2) if

(1.3) [f(t,z) = f(ty)] < ——

for t € (0,a] and z,y € R" with |z|, |y < M for
some M > 0. This result is more general than the
classical Lipschitz condition and the growth of the

1
coefficient n as t | 0 is optimal: for any a > 1 there

exist continuous functions f satisfying (1.3) with the
right-hand side multiplied by « but for which
(1.1)—(1.2) has nontrivial solutions [1]. Throughout
the last decades several generalizations appeared
(see the discussion in [1] as well as [4, 5] and refer-
ences therein). The most far-reaching generaliza-
tion [1] is that if the continuous function f: [0,a] x
R" — R" satisfies f(¢,0) =0 for ¢ € [0, a], if

u'(t)

|f(t,2) = f(t,y)] <

for t € (0,a] and z,y € R" with |z|, |y < M for
some M > 0, where u is an absolutely continuous
function on [0, a] with u(0) = 0 and v/(¢) > 0 a.e. on
[0, a], and if

(1.5)
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ast | 0, uniformly in |z| < M, then uniqueness holds.
Appropriate choices of the function u (e.g. u(t) = t*
with o > 1) in the conditions (1.4)—(1.5) yield the
various generalizations of Nagumo’s theorem that
appeared throughout the research literature (see [1]).

The object of this note is to present Nagumo’s
theorem from a different perspective. A simple
change of variables in the integral formulation of
(1.1)—(1.2) will elucidate in Section 2 the somewhat
peculiar character of the Lipschitz time-variable in
(1.4) or in (1.3). Namely, (1.3) simply specifies the
appropriate asymptotic behaviour of the solution
to the new integral equation form of (1.1)—(1.2). In
Section 3 we show that our approach yields an im-
provement of the uniqueness result provided by
(1.4)—(1.5).

2. Alternative formulation. In this section
we present an alternative proof of the uniqueness re-
sult in [1] for solutions to (1.1)—(1.2) under the condi-
tions (1.4)—(1.5). Recall that the integral equation

t
(2.1) x(t) :/ f(s,z(s))ds
0
is an equivalent formulation of (1.1)-(1.2) and plays
a central role in the study of the Cauchy problem for
ordinary differential equations [2, 6], being also use-
ful in the investigation of the asymptotic behavior
of global solutions (see the discussion in [3]). It
turns out that a different integral formulation of
(1.1)—(1.2) allows us to understand better the con-
nection between the conditions (1.4) and (1.5), pro-
viding us with a setting suitable for an improvement
of these conditions that will be the object of the next
section.
The change of variables

(2.2) 7= —In u(t)
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transforms the time variable ¢ € (0,a] into 7 €
[—In u(a), ), and (2.1) into

(2.3) o) = | " P(e () de,
where
y(r) = x(t)
and
_ult)
(2.4) Fr.y) = 2 0.2)

Notice that by I'Hospital’s rule and (1.5), a solution
to (2.1) satisfies
_x(t)

lim —= =0
t10 u(

t)
Thus we seek solutions to (2.3) such that
lim (eT |y(7’)|> =0.

Assuming the existence of a nontrivial solution
to (2.1) we will reach a contradiction. Indeed, assume
that there is a nontrivial solution. By (1.5) there ex-
ists some é € (0, min {1, a, M}) such that

(2.6) [t 2)] < /()

for |z|, t € [0,6], and such that the nontrivial solu-
tion is defined on [0, §]. In view of (2.4), the relation
(2.6) means that if we set

(2.5)

To=—Ind> 0,
then
(2.7)

for 7 > 15 and |y| < 6. Moreover, since f(¢,0) =0, we
have

(2.8) [F(7,9)| < [yl
in view of (2.4) and (1.4). By (2.7) the operator

(ry)r) = [ " P () de

is well-defined on the bounded subset
Vi={yeY: [jy| <é}

[F(r.y)| Sut) =€

of the normed space Y of continuous functions
y : [10,00) — R" which satisfy

sup {|y(7)| e"} < oo,
T>T
endowed with the norm

[yl = sup {[|y(7)[e"}.
T2>TH
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If y € Y; is a nontrivial solution to the integral equa-
tion (2.3), let

e =sup{y(r)|e"} > 0.

T>TH

In view of (2.5), there is 71 > 7y with
e=|y(n)le™ > |y(r)|e” for 7> 1.

But then (2.8) yields

il —

ee ™ =ly(n) =

/ "R () de

1

< [ |Fene

ot

dg

< [ ol ae

Ot

= [ (o) eeae

Ot

o0
< 5/ e tde=ce ™.

Ot

The obtained contradiction shows that the trivial
solution to (2.1) is unique.

3. An improved generalization. While the
generalization of Nagumo’s theorem provided by
(1.4)—(1.5) appears to be quite satisfactory with re-
spect to the growth in the t¢-variable as ¢ | 0, the
approach of Section 2 can be used to show that it is
possible to weaken the requirement on the modulus
of continuity of f in the spatial variable in (1.4).
More precisely, given M > 0, define the class F; of
strictly increasing functions w: [0, M] — [0, 00) with
w(0) = 0 and such that

/@dsgr,
0

(3.1) :

r e (0, M].
The simplest example of such a function is w(s) = s.
Using the mean-value theorem in (3.1) we notice
that if w € F)y, then there is a sequence r,, | 0 along
which w(r,) < 7,. It is less obvious, but nevertheless
true, that there exist functions w € F); such that
w(ry,) > ry, along a sequence 1, | 0. An explicit exam-
ple will be given in Remark 3.2. Thus there are func-
tions w € F); that oscillate around s+ s in any
neighborhood of s = 0. This shows that a slight im-
provement of (1.4), in terms of the modulus of con-
tinuity of f in the spatial variable, is possible.

We will now prove the following result. Given
a, M >0, let the continuous function f:[0,a] x
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R" — R" satisfy f(¢,0) =0 for ¢t €[0,a], and let
u:[0,a] — [0,00) be an absolutely continuous func-
tion with «(0) = 0 and «'(¢) > 0 a.e. on [0, a].

Theorem 3.1. Assume that for t € (0, a] and
|z| < M we have

(3.2)

Ft @) < w(la),

where w € Fyr, and that

ft,x)
u'(t)
as t |0, uniformly in |z| < M. Then the problem
(1.1)=(1.2) has only the trivial solution.

Proof. As in Section 2, a nontrivial solution
defined on [0, 6] with é € (0,min{1, a, M}) chosen
so that (2.6) holds for |z|, ¢t € [0, 6], would yield a
nontrivial solution y : [r,00) — R" to the integral
equation (2.3), with the asymptotic behaviour (2.5).
As before, 7 is related to ¢ by means of (2.2). While
(2.7) will continue to hold, instead of (2.8) we now
have

(3.4) [F(7,y)] < w(lyl)-

By our assumption,

e = sup {[y(r)] €'} >0,

T>T)

— 0

(3.3)

the supremum being finite by (2.7) and (2.3). In view
of (2.5), there is 7y > 7y with

(3.5) e=ly(m)le™ > ly(r)[ e

for all 7> 7. Notice that by (2.2), if ; € (0,6] is
such that

u(ty) =e ™,

[t | Cuteuls) S o

and the change of variables r = e u(s) transforms the
latter integral into

then

71

eulty) w(r) ce” w(r)
2 dr = =2 ar.
I

Using this in combination with (3.4) and (3.5), we
infer that

ce =yl = | [ Plewe)a

< [ |Plewen]as

T1
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ce 1
= / ﬂ dr<ee ™,
0

the last inequality being valid by (3.1). The obtained
contradiction proves our claim. |

1
Remark 3.2. For M € (0,—) the function

23w
1 1 1
(3.6) w(s) =s+ 5 5% sin 573 s

belongs to the class Fj;, and the function s+—
w(s) — s oscillates around 0 in any interval [0,¢]
with € > 0. Indeed, the monotonocity of w follows
since w'(s) > 0 for s € (0, M]. As for its oscillatory
character, notice that for any n > 12 we have

1 1
w(sp) = 8n — 3 s2 for s, = Py
while
1, 2
n = n - f n = N
w(ry) =T —|—6rn or r an s r

It remains to verify (3.1). Notice that for s € (0, M]
1
we have sin — > 0 only if
s
1 o< 1
L S Sl
2n+ )7~ T 2nmw

for some integer n > 12. Since for any fixed
r € (0, M] there is some integer N > 12 with

eN+Lr - SEN_Dr

we deduce that

/ssm—ds<2/:
0 n>N n-+1)
<Z/2mr

n2N Y (2n41)r

s sm - ds

! dn+1
8w n>N 712(271 + 1)2
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1 1 1 1
<—-— — < - — ds
82 7;\[ nd " 8n? Jy_1 83

1 1
- 3 < 2
1672(N —1)°  3mx2(2N +1)

1
<7
—3

which proves the validity of (3.1).
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