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Abstract: We present a di�erent perspective on Nagumo’s uniqueness theorem and its
various generalizations. This allows us to improve these generalizations.
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1. Introduction. Nagumo’s theorem [7] is

one of the most remarkable uniqueness results for

the solutions of the di�erential equation

x0ðtÞ ¼ fðt; xðtÞÞð1:1Þ
with initial data

xð0Þ ¼ 0;ð1:2Þ
where a > 0 and f : ½0; a� �Rn ! Rn is continuous

with fðt; 0Þ ¼ 0 for t 2 ½0; a�. It ensures that xðtÞ � 0
is the unique solution to (1.1){(1.2) if

jfðt; xÞ � fðt; yÞj � jx� yj
t

ð1:3Þ

for t 2 ð0; a� and x; y 2 Rn with jxj; jyj �M for

some M > 0. This result is more general than the
classical Lipschitz condition and the growth of the

coef�cient
1

t
as t # 0 is optimal: for any � > 1 there

exist continuous functions f satisfying (1.3) with the

right-hand side multiplied by � but for which
(1.1){(1.2) has nontrivial solutions [1]. Throughout

the last decades several generalizations appeared

(see the discussion in [1] as well as [4, 5] and refer-
ences therein). The most far-reaching generaliza-

tion [1] is that if the continuous function f : ½0; a� �
Rn ! Rn satis�es fðt; 0Þ ¼ 0 for t 2 ½0; a�, if

jfðt; xÞ � fðt; yÞj � u
0ðtÞ
uðtÞ jx� yj;ð1:4Þ

for t 2 ð0; a� and x; y 2 Rn with jxj; jyj �M for

some M > 0, where u is an absolutely continuous

function on ½0; a� with uð0Þ ¼ 0 and u0ðtÞ > 0 a.e. on
½0; a�, and if

fðt; xÞ
u0ðtÞ ! 0ð1:5Þ

as t # 0, uniformly in jxj �M, then uniqueness holds.

Appropriate choices of the function u (e.g. uðtÞ ¼ t�
with � > 1) in the conditions (1.4){(1.5) yield the
various generalizations of Nagumo’s theorem that

appeared throughout the research literature (see [1]).

The object of this note is to present Nagumo’s
theorem from a di�erent perspective. A simple

change of variables in the integral formulation of

(1.1){(1.2) will elucidate in Section 2 the somewhat
peculiar character of the Lipschitz time-variable in

(1.4) or in (1.3). Namely, (1.3) simply speci�es the

appropriate asymptotic behaviour of the solution
to the new integral equation form of (1.1){(1.2). In

Section 3 we show that our approach yields an im-

provement of the uniqueness result provided by
(1.4){(1.5).

2. Alternative formulation. In this section

we present an alternative proof of the uniqueness re-
sult in [1] for solutions to (1.1){(1.2) under the condi-

tions (1.4){(1.5). Recall that the integral equation

xðtÞ ¼
Z t

0

fðs; xðsÞÞ dsð2:1Þ

is an equivalent formulation of (1.1){(1.2) and plays

a central role in the study of the Cauchy problem for

ordinary di�erential equations [2, 6], being also use-
ful in the investigation of the asymptotic behavior

of global solutions (see the discussion in [3]). It

turns out that a di�erent integral formulation of
(1.1){(1.2) allows us to understand better the con-

nection between the conditions (1.4) and (1.5), pro-

viding us with a setting suitable for an improvement
of these conditions that will be the object of the next

section.

The change of variables

� ¼ � ln uðtÞð2:2Þ
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transforms the time variable t 2 ð0; a� into � 2
½� ln uðaÞ; 1Þ, and (2.1) into

yð�Þ ¼
Z 1
�

F ð�; yð�ÞÞ d�;ð2:3Þ

where

yð�Þ ¼ xðtÞ
and

F ð�; yÞ ¼ uðtÞ
u0ðtÞ fðt; xÞ:ð2:4Þ

Notice that by l’Hospital’s rule and (1.5), a solution

to (2.1) satis�es

lim
t#0

xðtÞ
uðtÞ ¼ 0:

Thus we seek solutions to (2.3) such that

lim
�!1

�
e� jyð�Þj

�
¼ 0:ð2:5Þ

Assuming the existence of a nontrivial solution
to (2.1) we will reach a contradiction. Indeed, assume

that there is a nontrivial solution. By (1.5) there ex-

ists some � 2 ð0;min f1; a; MgÞ such that

jfðt; xÞj � u0ðtÞð2:6Þ
for jxj; t 2 ½0; � �, and such that the nontrivial solu-

tion is de�ned on ½0; � �. In view of (2.4), the relation
(2.6) means that if we set

�0 ¼ � ln � > 0;

then

jF ð�; yÞj � uðtÞ ¼ e��ð2:7Þ
for � � �0 and jyj � �. Moreover, since fðt; 0Þ ¼ 0, we
have

jF ð�; yÞj � jyjð2:8Þ
in view of (2.4) and (1.4). By (2.7) the operator

ðTyÞð�Þ ¼
Z 1
�

F ð�; yð�Þ d�

is well-de�ned on the bounded subset

Y� ¼ fy 2 Y : kyk � �g
of the normed space Y of continuous functions

y : ½�0;1Þ ! Rn which satisfy

sup
���
fjyð�Þj e�g <1;

endowed with the norm

kyk ¼ sup
���0

fjyð�Þj e�g:

If y 2 Y� is a nontrivial solution to the integral equa-
tion (2.3), let

" ¼ sup
���0

fjyð�Þj e�g > 0:

In view of (2.5), there is �1 � �0 with

" ¼ jyð�1Þj e�1 > jyð�Þj e� for � > �1:

But then (2.8) yields

" e��1 ¼ jyð�1Þj ¼
���
Z 1
�1

F ð�; yð�ÞÞ d�
���

�
Z 1
�1

���F ð�; yð�ÞÞ
��� d�

�
Z 1
�1

jyð�Þj d�

¼
Z 1
�1

�
jyð�Þj e�

�
e�� d�

< "

Z 1
�1

e�� d� ¼ " e��1 :

The obtained contradiction shows that the trivial

solution to (2.1) is unique.
3. An improved generalization. While the

generalization of Nagumo’s theorem provided by

(1.4){(1.5) appears to be quite satisfactory with re-
spect to the growth in the t-variable as t # 0, the

approach of Section 2 can be used to show that it is

possible to weaken the requirement on the modulus
of continuity of f in the spatial variable in (1.4).

More precisely, given M > 0, de�ne the class FM of

strictly increasing functions ! : ½0;M � ! ½0;1Þ with
!ð0Þ ¼ 0 and such that

Z r

0

!ðsÞ
s

ds � r; r 2 ð0;M�:ð3:1Þ

The simplest example of such a function is !ðsÞ ¼ s.
Using the mean-value theorem in (3.1) we notice

that if ! 2 FM , then there is a sequence rn # 0 along
which !ðrnÞ � rn. It is less obvious, but nevertheless

true, that there exist functions ! 2 FM such that

!ðrnÞ > rn along a sequence rn # 0. An explicit exam-
ple will be given in Remark 3.2. Thus there are func-

tions ! 2 FM that oscillate around s 7! s in any

neighborhood of s ¼ 0. This shows that a slight im-
provement of (1.4), in terms of the modulus of con-

tinuity of f in the spatial variable, is possible.

We will now prove the following result. Given
a; M > 0, let the continuous function f : ½0; a� �
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Rn ! Rn satisfy fðt; 0Þ ¼ 0 for t 2 ½0; a�, and let
u : ½0; a� ! ½0;1Þ be an absolutely continuous func-

tion with uð0Þ ¼ 0 and u0ðtÞ > 0 a.e. on ½0; a�.
Theorem 3.1. Assume that for t 2 ð0; a� and

jxj � M we have

jfðt; xÞj � u
0ðtÞ
uðtÞ !ðjxjÞ;ð3:2Þ

where ! 2 FM , and that

fðt; xÞ
u0ðtÞ ! 0ð3:3Þ

as t # 0, uniformly in jxj � M. Then the problem

(1.1){(1.2) has only the trivial solution.

Proof. As in Section 2, a nontrivial solution

de�ned on ½0; � � with � 2 ð0;min f1; a; MgÞ chosen
so that (2.6) holds for jxj; t 2 ½0; � �, would yield a

nontrivial solution y : ½�0;1Þ ! Rn to the integral
equation (2.3), with the asymptotic behaviour (2.5).

As before, � is related to t by means of (2.2). While

(2.7) will continue to hold, instead of (2.8) we now
have

jF ð�; yÞj � !ðjyjÞ:ð3:4Þ
By our assumption,

" ¼ sup
���0

fjyð�Þj e�g > 0;

the supremum being �nite by (2.7) and (2.3). In view

of (2.5), there is �1 � �0 with

" ¼ jyð�1Þj e�1 > jyð�Þj e�ð3:5Þ
for all � > �1. Notice that by (2.2), if t1 2 ð0; � � is
such that

uðt1Þ ¼ e��1 ;

then Z 1
�1

!ð" e��Þ d� ¼
Z t1

0

!ð" uðsÞÞ u
0ðsÞ
uðsÞ ds

and the change of variables r ¼ " uðsÞ transforms the
latter integral into

Z " uðt1Þ

0

!ðrÞ
r

dr ¼
Z " e��1

0

!ðrÞ
r

dr:

Using this in combination with (3.4) and (3.5), we

infer that

" e��1 ¼ jyð�1Þj ¼
���
Z 1
�1

F ð�; yð�ÞÞ d�
���

�
Z 1
�1

���F ð�; yð�ÞÞ
��� d�

�
Z 1
�1

!ðjyð�ÞjÞ d�

¼
Z 1
�1

!
�n
jyð�Þj e�

o
e��
�
d�

<

Z 1
�1

!
�
" e��

�
d�

¼
Z " e��1

0

!ðrÞ
r

dr � " e��1 ;

the last inequality being valid by (3.1). The obtained

contradiction proves our claim. r

Remark 3.2. For M 2
�

0;
1

23�

�
the function

!ðsÞ ¼ sþ 1

2
s2 sin

1

s
� 1

3
s2ð3:6Þ

belongs to the class FM , and the function s 7!
!ðsÞ � s oscillates around 0 in any interval ½0; "�
with " > 0. Indeed, the monotonocity of ! follows

since ! 0ðsÞ > 0 for s 2 ð0;M�. As for its oscillatory
character, notice that for any n � 12 we have

!ðsnÞ ¼ sn �
1

3
s2
n for sn ¼

1

2n�
;

while

!ðrnÞ ¼ rn þ
1

6
r2
n for rn ¼

2

ð4nþ 1Þ� :

It remains to verify (3.1). Notice that for s 2 ð0;M�

we have sin
1

s
� 0 only if

1

ð2nþ 1Þ� � s �
1

2n�

for some integer n � 12. Since for any �xed
r 2 ð0;M� there is some integer N � 12 with

1

ð2N þ 1Þ� � r <
1

ð2N � 1Þ� ;

we deduce that

Z r

0

s sin
1

s
ds �

X
n�N

Z 1
2n�

1
ð2nþ1Þ�

s sin
1

s
ds

�
X
n�N

Z 1
2n�

1
ð2nþ1Þ�

s ds

¼ 1

8�2

X
n�N

4nþ 1

n2ð2nþ 1Þ2
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<
1

8�2

X
n�N

1

n3
<

1

8�2

Z 1
N�1

1

s3
ds

¼ 1

16�2ðN � 1Þ2
<

1

3�2ð2N þ 1Þ2
� 1

3
r2

which proves the validity of (3.1).
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