Generic Torelli theorem for one-parameter mirror families to weighted hypersurfaces

Dedicated to Prof. Sampei Usui on his sixtieth birthday

By Kennichiro Shirakawa
Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

(Communicated by Shigefumi Mori, M.J.A., Nov. 12, 2009)

Abstract

One-parameter mirror families to weighted hypersurfaces are already constructed and well studied. A generic Torelli theorem for quintic-mirror family is proved by Sampei Usui. In this article, we give the proof of a generic Torelli theorem for the other families after Usui's proof for quintic-mirror family.

Key words: Mirror family; logarithmic Hodge theory; Torelli theorem.

1. Our objects. We consider four types oneparameter families of Calabi-Yau hypersurfaces in complex weighted projective four-space. For $\psi \in \mathbf{P}^{1}$, they are

$$
\begin{gather*}
\left.\left\{\begin{array}{l}
\left(x_{1}, \cdots, x_{5}\right) \in \mathbf{P}^{(1,1,1,1,1)} \\
\left.\left\lvert\, \begin{array}{l}
x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5} \\
-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0
\end{array}\right.\right\}, \\
\{
\end{array}\right\} \begin{array}{l}
\left(x_{1}, \cdots, x_{5}\right) \in \mathbf{P}^{(2,1,1,1,1)} \\
2 x_{1}^{3}+x_{2}^{6}+x_{3}^{6}+x_{4}^{6}+x_{5}^{6} \\
-6 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0
\end{array}\right\}, \tag{1}\\
\left\{\begin{array}{l}
\left(x_{1}, \cdots, x_{5}\right) \in \mathbf{P}^{(4,1,1,1,1)} \\
\left.\left\lvert\, \begin{array}{l}
4 x_{1}^{2}+x_{2}^{8}+x_{3}^{8}+x_{4}^{8}+x_{5}^{8} \\
-8 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0
\end{array}\right.\right\}, \\
\left\{\begin{array}{l}
\left(x_{1}, \cdots, x_{5}\right) \in \mathbf{P}^{(5,2,1,1,1)} \\
\left.\left\lvert\, \begin{array}{l}
5 x_{1}^{2}+2 x_{2}^{5}+x_{3}^{10}+x_{4}^{10}+x_{5}^{10} \\
-10 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0
\end{array}\right.\right\} .
\end{array}\right.
\end{array} .\right. \tag{2}
\end{gather*}
$$

Let μ_{k} be the group of k-th root of $1 \in \mathbf{C}$. When we divide these hypersurfaces (1), (2), (3), (4) by $\left(\mu_{5}\right)^{3}, \mu_{3} \times\left(\mu_{6}\right)^{2},\left(\mu_{8}\right)^{3},\left(\mu_{10}\right)^{2}$, canonical singularities appear. For $\psi \in \mathbf{C} \subset \mathbf{P}^{1}$, it is known that there is a simultaneous desingularization of these singularities, and we have four families $\left(W_{\psi}^{i}\right)_{\psi \in \mathbf{P}^{1}}$ ($i=1,2,3,4$) of the mirrors to the above hypersurfaces in each case (1), (2), (3), (4).

[^0]Let

$$
\nu_{i}= \begin{cases}\mu_{5} & \text { if } i=1 \\ \mu_{6} & \text { if } i=2 \\ \mu_{8} & \text { if } i=3 \\ \mu_{10} & \text { if } i=4\end{cases}
$$

$\left(W_{\psi}^{i}\right)_{\psi}$ is parametrized by ψ. The singular fibres of $\left(W_{\psi}^{i}\right)_{\psi}$ are as follows:

- When ψ belongs to $\nu_{i} \subset \mathbf{C} \subset \mathbf{P}^{1}, W_{\psi}^{i}$ has one ordinary double point.
- W_{∞}^{i} is a normal crossing divisor in the total space.
The other fibres of $\left(W_{\psi}^{i}\right)_{\psi}$ are smooth with Hodge numbers $h^{p, q}=1$ for $p+q=3, p, q \geq 0$.

By the action of

$$
\alpha \in \nu_{i},\left(x_{1}, \cdots, x_{5}\right) \mapsto\left(x_{1}, \cdots, x_{4}, \alpha^{-1} x_{5}\right)
$$

we have the isomorphism from the fibre over ψ to the fibre over $\alpha \psi$. Let λ be

$$
\begin{cases}\psi^{5} & \text { if } i=1 \\ \psi^{6} & \text { if } i=2 \\ \psi^{8} & \text { if } i=3 \\ \psi^{10} & \text { if } i=4\end{cases}
$$

and let

These families are our objects for which we will give the proof of a generic Torelli theorem. $\left(W_{\lambda}^{1}\right)_{\lambda}$ is
so-called quintic-mirror family, and the theorem for this family is proved by Usui [U2]. (For more details of the above families, see e.g. [KT, M1, M2].)
2. Local monodromy. In this section, we review the local monodromy of $\left(W_{\lambda}^{i}\right)_{\lambda \in \mathbf{P}^{1}}(i=1,2,3,4)$. For quintic-mirror family, Candelas, de la Ossa, Green and Parks gave the matrix representation of the local monodromy for a symplectic basis in [COGP]. For the other 3 families, Klemm and Theisen gave it in $[\mathrm{KT}]$. We recall their results.

Let $\left(W_{\lambda}\right)_{\lambda}=\left(W_{\lambda}^{i}\right)_{\lambda}(i=1,2,3,4)$, and fix $b \in$ $\mathbf{P}^{1}-\{0,1, \infty\}$. Then, there is a symplectic basis of $H^{3}\left(W_{b}, \mathbf{Z}\right)$ and the matrix representations A, T, T_{∞} of local monodromies around $\lambda=0,1, \infty$ for this basis are listed as follows:

In the case of $i=1$,

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
11 & 8 & -5 & 0 \\
5 & -4 & -3 & 1 \\
20 & 15 & -9 & 0 \\
5 & -5 & -3 & 1
\end{array}\right), T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
T_{\infty}=\left(\begin{array}{cccc}
-9 & -3 & 5 & 0 \\
0 & 1 & 0 & 0 \\
-20 & -5 & 11 & 0 \\
-15 & 5 & 8 & 1
\end{array}\right) .
\end{gathered}
$$

In the case of $i=2$,

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
3 & -3 & -1 & 1 \\
3 & 6 & 1 & 0 \\
3 & -4 & -1 & 1
\end{array}\right), T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
T_{\infty}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & -3 & 1 & 0 \\
-6 & 4 & 1 & 1
\end{array}\right)
\end{gathered}
$$

In the case of $i=3$,

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
2 & -3 & -1 & 1 \\
2 & 4 & 1 & 0 \\
2 & -4 & -1 & 1
\end{array}\right), T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
T_{\infty}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 1 & 0 \\
-4 & 4 & 1 & 1
\end{array}\right)
\end{gathered}
$$

In the case of $i=4$,

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
-1 & -2 & 0 & 1 \\
0 & -1 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right), T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
T_{\infty}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 3 & 1 & 1
\end{array}\right) .
\end{gathered}
$$

We obtain these matrixes from the calculations of the local monodromies for the periods in [COGP, $\mathrm{KT}]$ and the relation between the symplectic basis of $H^{3}\left(W_{b}, \mathbf{Z}\right)$ and the periods in [M2, Appendix C]. In particular, the above A and T are the inverse matrixes of the matrixes A and T in the lists of [COGP, KT] respectively.
3. Extended classifying space and period map. In this section, we recall some facts in $[\mathrm{KU}]$ that are necessary in the present article.

Let $w=3$, and $h^{p, q}=1(p+q=3, p, q \geq 0)$. Let $H_{0}=\bigoplus_{j=1}^{4} \mathbf{Z} e_{j}, \quad\left\langle e_{3}, e_{1}\right\rangle_{0}=\left\langle e_{4}, e_{2}\right\rangle_{0}=1$, and $\mathrm{G}_{\mathrm{Z}}=\operatorname{Aut}\left(H_{0},\langle,\rangle_{0}\right)$. Let D be the corresponding classifying space of polarized Hodge structures, and \check{D} be the compact dual.

Let $\left(W_{\lambda}\right)_{\lambda}=\left(W_{\lambda}^{i}\right)_{\lambda}(i=1,2,3,4)$. Fix a point $b \in \mathbf{P}^{1}-\{0,1, \infty\}$ on the λ-plane, identify $H^{3}\left(W_{b}, \mathbf{Z}\right)$ $=H_{0}$, and let
(1) $\quad \Gamma=\operatorname{Image}\left(\pi_{1}\left(\mathbf{P}^{1}-\{0,1, \infty\}\right) \rightarrow \mathrm{G}_{\mathbf{Z}}\right)$.

This Γ is not neat. In fact, the order of the local monodromy around 0 is

$$
\left\{\begin{array}{lll}
5 & \text { if } \quad i=1 \\
6 & \text { if } \quad i=2 \\
8 & \text { if } i=3 \\
10 & \text { if } \quad i=4
\end{array}\right.
$$

When we use some results in $[\mathrm{KU}]$, we need that Γ is neat. It is known that there exists a neat subgroup of G_{Z} of finite index (cf. [B]). Therefore, we have a neat subgroup of Γ of finite index. Taking this fact into consideration, we can use their results in the present case.

Let $N_{1}=\log T, N_{\infty}=\log T_{\infty} \in \operatorname{End}\left(\mathbf{Q} \otimes H_{0}\right.$, $\left.\langle,\rangle_{0}\right)$. Here \langle,\rangle_{0} is regarded as the natural extension as Q-bilinear form. They are illustrated as follows:

$$
\begin{array}{lcccc}
0: & \bullet \bullet & \bullet & \bullet & \bullet \\
& (3,0) & (2,1) & (1,2) & (0,3)
\end{array}
$$

Let $\sigma_{1}=\mathbf{R}_{\geq 0} N_{1}, \sigma_{\infty}=\mathbf{R}_{\geq 0} N_{\infty}$ and $\Xi=$ $\left\{\operatorname{Ad}(g) \sigma \mid \sigma=\{0\}, \sigma_{1}, \sigma_{\infty}, g \in \Gamma\right\}$. Then Γ is strongly compatible with Ξ.

In $[\mathrm{KU}]$, the extended classifying space D_{Ξ} is constructed. As a set, $D_{\Xi}=\{(\sigma, Z)$: nilpotent orbit $\mid \sigma \in \Xi, Z \subset \check{D}\}$ and $D \simeq\{(\{0\}, F) \mid F \in D\} \subset D_{\Xi}$. Since Γ is compatible with Ξ, Γ acts on D_{Ξ}. Kato and Usui endowed $\Gamma \backslash D_{\Xi}$ with the structure of logarithmic ringed space in $[\mathrm{KU}]$. We denote the structure sheaf and the logarithmic structure of $\Gamma \backslash D_{\Xi}$ by $\mathcal{O}_{\Gamma \backslash D \Xi}$ and $M_{\Gamma \backslash D \Xi}$ respectively. The construction of $\mathcal{O}_{\Gamma \backslash D_{\Xi}}, M_{\Gamma \backslash D_{\Xi}}$ and the topology of $\Gamma \backslash D_{\Xi}$ for the present case is described concisely in [U2].

Next, we recall extended period map.
Let

$$
\begin{equation*}
\mathbf{P}^{1}-\{0,1, \infty\} \rightarrow \Gamma \backslash D \tag{2}
\end{equation*}
$$

be the period map. Since the canonical bundle of W_{λ}^{i} is trivial, the differential of (2) is injective everywhere. Endow \mathbf{P}^{1} with the logarithmic structure associated to the divisor $\{1, \infty\}$. Then, by $[\mathrm{KU}$, 4.3.1. (i)], (2) extends to a morphism

$$
\begin{equation*}
\varphi: \mathbf{P}^{1} \rightarrow \Gamma \backslash D_{\Xi} \tag{3}
\end{equation*}
$$

of logarithmic ringed spaces. By [KU, 3.4.4. (i)] and the nilpotent orbit theorem of Schmid, we have

$$
\begin{align*}
\varphi(0) & =(\operatorname{point} \bmod \Gamma) \in \Gamma \backslash D, \\
\varphi(1) & =\left(\sigma_{1} \text {-nilpotent orbit } \bmod \Gamma\right), \tag{4}\\
\varphi(\infty) & =\left(\sigma_{\infty} \text {-nilpotent orbit } \bmod \Gamma\right)
\end{align*}
$$

The image of the extended period map φ is an analytic curve (cf. [U1]).

Let $X=\Gamma \backslash D_{\Xi}$. Let $P_{1}=1, P_{\infty}=\infty \in \mathbf{P}^{1}$, and let $Q_{1}=\varphi\left(P_{1}\right), Q_{\infty}=\varphi\left(P_{\infty}\right) \in X$. Then, by the observation of local monodromy and holomolphic 3form basing on the descriptions in $\S 1, \S 2$ and this section, we have

$$
\begin{equation*}
\varphi^{-1}\left(Q_{\lambda}\right)=\left\{P_{\lambda}\right\} \text { for } \lambda=1, \infty \tag{5}
\end{equation*}
$$

4. Generic Torelli theorem. We use the notation in the previous sections. In this section, we give the proof of a generic Torelli theorem for $\left(W_{\lambda}^{i}\right)_{\lambda}$ $(i=2,3,4)$. The proof for $\left(W_{\lambda}^{1}\right)_{\lambda}$ is already given by Usui in [U2], and the proofs for the other 3 families are similar to that in [U2].

Theorem. For each $i=2,3,4$, the period map φ in $\S 3$ (3) is the normalization of analytic spaces over its image.

The argument by using the fs logarithmic points P_{1} and Q_{1} at the boundaries for $i=1$ in $[\mathrm{U} 2, \S 4]$ works also well for $i=2,3,4$, and gives the above theorem.

We give another proof of the above theorem by using the fs logarithmic points P_{∞} and Q_{∞} at the boundaries.

Proof. The method of the proof is similar to that for $i=1$ given in $[\mathrm{U} 2, \S 5]$. We give the full proof in each case $i=2,3,4$.

Since $\varphi^{-1}\left(Q_{\infty}\right)=\left\{P_{\infty}\right\}(\S 3,(5))$, it is enough to show the following

Claim. $\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{\infty}} \rightarrow\left(M_{\mathbf{P}^{1}} / \mathcal{O}_{\mathbf{P}^{1}}^{\times}\right)_{P_{\infty}}$ is surjective.

Let N be the logarithm of the local monodromy at $\lambda=\infty$. Let $\beta^{1}, \beta^{2}, \alpha_{1}, \alpha_{2}$ be a symplectic basis of H_{0} which gives the matrix representation of the local monodromy in $\S 2$ in each case.

Before the proof of Claim, we prepare a Lemma.
Lemma. In each case, there exists a symplectic basis $g_{3}, g_{2}, g_{1}, g_{0}$ of H_{0} for which the matrix representation of N is listed as follows:

In the case of $i=2$,

$$
\begin{aligned}
& \left(N\left(g_{3}\right), N\left(g_{2}\right), N\left(g_{1}\right), N\left(g_{0}\right)\right) \\
& \quad=\left(g_{3}, g_{2}, g_{1}, g_{0}\right)\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-3 & -9 / 2 & 0 & 0 \\
-9 / 2 & 7 / 2 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

In the case of $i=3$,

$$
\begin{aligned}
& \left(N\left(g_{3}\right), N\left(g_{2}\right), N\left(g_{1}\right), N\left(g_{0}\right)\right) \\
& \quad=\left(g_{3}, g_{2}, g_{1}, g_{0}\right)\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-2 & -3 & 0 & 0 \\
-3 & 11 / 3 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

In the case of $i=4$,

$$
\begin{aligned}
& \left(N\left(g_{3}\right), N\left(g_{2}\right), N\left(g_{1}\right), N\left(g_{0}\right)\right) \\
& \quad=\left(g_{3}, g_{2}, g_{1}, g_{0}\right)\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 / 2 & 0 & 0 \\
-1 / 2 & 17 / 6 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Proof of Lemma. The basis $g_{3}, g_{2}, g_{1}, g_{0}$ is given as follows:

$$
\left\{\begin{array}{l}
\text { In the case of } i=2,3 \\
g_{3}=\beta^{1}, g_{2}=\beta^{2}, g_{1}=\alpha_{1}, g_{0}=\alpha_{2} \\
\text { In the case of } i=4, \\
g_{3}=-\alpha_{1}, g_{2}=\beta^{2}, g_{1}=\beta^{1}, g_{0}=\alpha_{2}
\end{array}\right.
$$

Proof of Claim. Let \tilde{q} be a local coordinate on a neighborhood U of $P_{\infty}=\infty$ in \mathbf{P}^{1}, and let $z=(2 \pi i)^{-1} \log \tilde{q}$ be a branch over $U-\left\{P_{\infty}\right\}$. Then $\exp (-z N) g_{1}=g_{1}-z g_{0}$ is single-valued. Let $\omega(\tilde{q})$ be a local frame of the locally free $\mathcal{O}_{\mathbf{P}^{1}}$-module F^{3}. Write $\omega(\tilde{q})=\sum_{j=0}^{3} b_{j}(\tilde{q}) g_{j}$, and define $t=$ $b_{3}(\tilde{q}) / b_{2}(\tilde{q})$. Then

$$
\begin{aligned}
t & =\frac{\left\langle g_{1}, \omega(\tilde{q})\right\rangle_{0}}{\left\langle g_{0}, \omega(\tilde{q})\right\rangle_{0}} \\
& =\frac{\left\langle\exp (-z N) g_{1}, \omega(\tilde{q})\right\rangle_{0}+z\left\langle g_{0}, \omega(\tilde{q})\right\rangle_{0}}{\left\langle g_{0}, \omega(\tilde{q})\right\rangle_{0}} \\
& =z+(\text { single-valued holomorphic function in } \tilde{q}) .
\end{aligned}
$$

Let $q=e^{2 \pi i t}$. Then $q=u \tilde{q}$ for some $u \in \mathcal{O}_{\mathbf{P}^{1}, P_{\infty}}^{\times}$. Let V be a neighborhood of Q_{∞} in $X=\Gamma \backslash D_{\Xi}$. Endow \mathbf{C} with the logarithmic structure associated to the divi-
sor $\{0\}$. Then we have a composite morphism of fs logarithmic local ringed spaces

$$
U \rightarrow V \rightarrow \mathbf{C}, \quad \tilde{q} \mapsto q=e^{2 \pi i\left(b_{3} / b_{2}\right)}(=u \tilde{q})
$$

Hence the composite morphism $\left(M_{\mathbf{P}^{1}} / \mathcal{O}_{\mathbf{P}^{1}}^{\times}\right)_{P_{\infty}} \leftarrow$ $\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{\infty}} \leftarrow\left(M_{\mathbf{C}} / \mathcal{O}_{\mathbf{C}}^{\times}\right)_{0}$ of reduced logarithmic structures is an isomorphism. The claim follows. In fact, the morphism in the claim is an isomorphism since the rank of $\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{\infty}}$ is one in the present case.

We thus have proven the theorem in this section.

Acknowledgments. The author would like to thank Prof. Sampei Usui for a lot of helps and advices. The author would also like to thank the referee for the very helpful comments.

References

[B] A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris, 1969.
[COGP] P. Candelas et al., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21-74.
[KT] A. Klemm and S. Theisen, Considerations of onemodulus Calabi-Yau compactifications: PicardFuchs equations, Kähler potentials and mirror maps, Nuclear Phys. B 389 (1993), no. 1, 153180.
[KU] K. Kato and S. Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. of Math. Stud., 169, Princeton Univ. Press, Princeton, NJ, 2009.
[M1] D. R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, in Essays on mirror manifolds, 241-264, Int. Press, Hong Kong, 1992.
[M2] D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), no. 1, 223-247.
[U1] S. Usui, Images of extended period maps, J. Algebraic Geom. 15 (2006), no. 4, 603-621.
[U2] S. Usui, Generic Torelli theorem for quintic-mirror family, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 8, 143-146.

[^0]: 2000 Mathematics Subject Classification. Primary 14C34; Secondary $14 \mathrm{D} 07,32 \mathrm{G} 20$.

