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Abstract:

We study group actions on a coarse space and the induced actions on the Higson

corona from a dynamical point of view. Our main theorem states that if an action of an abelian
group on a proper metric space satisfies certain conditions, the induced action has a fixed point in
the Higson corona. As a corollary, we deduce a coarse version of Brouwer’s fixed point theorem.
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1. Introduction. A metric space X is proper
if closed, bounded set in X are compact. Let X and
Y be proper metric spaces and let f: X — Y be a
map (not necessarily continuous). We define:

(a) The map f is proper if for each bounded subset
BofY, f~}(B) is a bounded subset of X.

(b) The map f is bornologous if for every R >0
there exists S > 0 such that for each z,y € X,
d(z,y) < R implies d(f(x), f(y)) < S.

(¢) The map f is coarse if it is proper and bornolo-
gous.

Let f,9: X — Y be maps. We define that f is close to

g, denoted f =~ g, if there exists R >0 such that

d(f(x),9(z)) < R, for all x € X. We define that X

and Y be coarsely equivalent if there exist coarse

maps f: X — Y and ¢:Y — X such that go f and

f o g are close to the identity maps of X and Y, re-

spectively. A coarse space is a coarsely equivalent

class of proper metric spaces. The category of coarse
spaces consists of coarse spaces and coarse maps.

Let ¢: X — C be a bounded continuous map.
For each r > 0, we define a map V,p: X — R by

Vip(x) = sup{|p(y) — (2)| : d(z,y) <r}.
We define that ¢ is a Higson function if for each
r > 0, V,¢ vanishes at infinity. The Higson functions
on a proper metric space X form a unital C*-algebra,
denoted by Cj(X). It follows from the Gelfand-Nai-
mark theorem that there exists a unique compact
Hausdorff space hX such that C(hX) = Cy(X). The
compactification hX of X is called the Higson com-
pactification. Its boundary hX \ X is denoted by vX
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and called the Higson corona. The Higson corona is a
functor from the category of coarse spaces into the
category of compact Hausdorff spaces. Namely, a
coarse map f: X — Y induces the unique continuous
map vf:vX — vY and moreover if coarse maps
f,9: X — Y are close then vf = vg. We remark that
the Higson corona of a proper metric space is never
second countable. We refer to [3] for a general refer-
ence of coarse geometry and the Higson compac-
tification.

Let X be a proper metric space and let G be a
finitely generated semi-group acting on X. A coarse
action, defined below, of G on X induces a continu-
ous action of G on the Higson corona vX. The main
subject of this article is to study these actions from a
dynamical point of view. Details of proofs of our
main results will be published elsewhere.

2. Coarse action. Let X and G be as above.

Definition 2.1. An action of G on X is
coarse if for each element g of G, the map
V,: X — X defined by x — g - x is a coarse map.

Definition 2.2. For a point z( of X, the orbit
map ®,,: G — X is defined by g — g - zy. We define:
(a) The orbit of xy is properif so is @y, .

(b) The orbit of xg is bornologous if so is @y, .
(c) The orbit of zy is coarse if so is Dy, .

A typical example of the coarse action with
coarse orbits is the action of G on itself.

Lemma 2.3. Let G be a finitely generated
group or G =NF with a left-invariant word metric
for some generating set. The action of G on G by
the left-translation (g,h) — gh is a coarse action.
Furthermore, any orbit of h € G is coarse.

Since a coarse map induces a continuous map
between the Higson coronae, a coarse action induces
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a continuous action on the Higson corona. Our main
theorem is the following

Theorem 2.4. Assume that G =N or ZF
and G acts on X as a coarse action. Suppose that
there exists a point of X whose orbit is coarse. Then
the induced action of G has a fixed point in the Hig-
son corona vX. That is, there exists a point x of vX
such that g - x = x for any element g of G.

Example 2.5. Let G be a finitely generated
group with an element A of infinite order. Then a
group action of Z on G given by (n,g) — h"g is a
coarse action and any orbit is coarse. Thus the action
of Z has a fixed point in the Higson corona vG.
Moreover, if G is a hyperbolic group, this action ex-
tends to the Gromov boundary 9,G. Then this action
of Z has a fixed point in 9,G, since there exists a
G-equivariant map vG' — 9,G. This is a well-known
fact on the boundary of hyperbolic groups (c.f. Prop-
osition 10 and Theorem 30 in [2, Chapter 8]).

Example 2.6. The wreath product Z1Z con-
tains Z" as a subgroup for any positive integer n (see
page 135 of [3]). Thus the action of Z" on Z1Z is
coarse and the induced action of Z" has a fixed point
in v(Z17Z).

We cannot generalize Theorem 2.4 to a free
group action as follows:

Proposition 2.7. The action of the free
group Fy on vFy induced by the left-translation
Fy x Fy — F5 has no fized point. That is, there is no
point x of vFy such that g-x = z for all elements g
Of FQ.

Proof. If the induced action of F; on vF; has a
fixed point, the induced action of F, on the Gromov
boundary 9,F» also has a fixed point. However, we
can show that for any point z of J,F5, there exists
an element g of F, such that g- z # z. O

3. Coarse fixed point. Let G be a finitely
generated semi-group acting on X. We call a point x
of X, a coarse fized point if its orbit

G r={g-z:9eG}CX

is a bounded set. If G is an infinite group and x is a
coarse fixed point, then the orbit of x is not proper.
In the following two cases, the converse holds.

Proposition 3.1. Let X be a metric space
such that any bounded subset D C X is a finite set.
Suppose that N acts on X. Then a point of X whose
orbit is mot proper is a coarse fized point.

Proof. Suppose that the orbit of z; is not
proper. Then there exists a bounded set D C X such
that
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{neN:n -z, € D}

is an infinite set. Because D is a finite set, there exist
positive integers m > n such that m - xy = n - zy. For
any integer [ > m, there exist integers k£ >0 and
r=0,---,m—n—1satisfying | —n =k(m —n) +r.
Thus we have -2z =(n+7r)- xo. It follows that
N-zg C {zo,1 20,2 20, -, (m—1)-x0}. O

Proposition 3.2. Let X be a proper metric
space. Suppose that N acts on X as an isometry.
Then each point of X whose orbit is not proper is a
coarse fixed point.

Proof. We only give a sketch of a proof. Suppose
that the orbit of xj is not proper. Then there exists a
bounded subset D C X such that {neN:n-
xo € D} is an infinite set. Put K = B(D,1) NN - x.
Here B(D,1) is the 1-neighborhood of D. Since the
action is an isometry, there exist points z1,-- -, zy of
K and positive integers T1, ..., Ty such that

N
K c | B, 1),

i=1
and T} -z lies in Ufil B(x;,1) for any point x of
B(x;,1) where j runs from 1 to V.

Using this decomposition of K, we can show
that N - zy C B(zo, R) for some R > 0. O

If the orbit is not coarse, there are two possibili-
ties; that is, the orbit is not proper, or, the orbit is
not bornologous. However, if the action is an isome-
try, any orbit is bornologous.

Proposition 3.3. Let X be a proper metric
space with an isometric action of N. Then the action
is a coarse action and any orbit is bornologous.

Proof. An isometric action is coarse. For any
given point z of X, put L =d(1-x,2). Then we
have d((i+1)-x,i-z) =L for all integers i > 0.
Hence for any pair of integers m > n > 0, we have

d(®,(m), P, (n)) =d(m-z,n-x)

3

<

K3

d((it+1)-z,i-x2) = Llm —n|.

n

Thus @, is bornologous. O]
Corollary 3.4 (Coarse version of Brouwer’s
fixed point theorem). Let X be a proper metric
space and f: X — X be an isometry. Then at least
one of the following holds:
(a) The map f has a coarse fized point in X.
(b) The map vf has a fized point in vX.
Example 3.5. The Gromov boundary of the
hyperbolic plane H? is S*. Let f: H> — H? be a con-
tinuous map such that f extends to the Gromov
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boundary. Then Brouwer’s fixed point theorem says
that f:H?US' — H?2U S' has a fixed point. Let T
be a discrete group of isometries acting freely on H?
with quotient a compact surface. I' is coarsely equiv-
alent to H? and its Gromov boundary is also S*. Let
f:T' = T be an isometry. Then Corollary 3.4 says
that f:T'US! — T'US! has a coarse fixed point on
T, or, a fixed point on S.

In Corollary 3.4, the assumption that the map f
is an isometry is essential.

Remark 3.6. In [1, Section 4] we give an ex-
ample of a proper coarse space X and a coarse map
f: X — X such that the following hold:

(a) The map f has no coarse fixed point in X.
(b) The map vf has no fixed point in vX.
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