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Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature
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Abstract: In this paper, we generalize the Cheng’s maximal diameter theorem and Bishop
volume comparison theorem to the manifold with the Bakry-Emery Ricci curvature. As their appli-

cations, we obtain some rigidity theorems on the warped product.
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1. Introduction. The classical Myers’s theo-

rem [7] states that if ðM; gÞ is a complete, connected
Riemannian manifold of dimension n ð�2Þ such that

Ric � ðn� 1Þkg > 0, then its diameter D ¼ DðMÞ is

less than or equal to �
ffiffi

k
p . In particular, M is compact.

It is natural to ask what happens if the diameter at-
tains its maximal value. In [4] S.Y. Cheng proved, i.e.

if ðM; gÞ is a complete Riemannian manifold with
Ric � ðn� 1Þkg > 0, D ¼ �

ffiffi

k
p , then ðM; gÞ is isometric

to the sphere Sn
k .

In [1], Bakry and Ledoux proved an analogue of
Myers’s theorem and also provided a new analytic

proof of Cheng’s theorem based on Sobolev inequali-

ties. Bakry and Ledoux’s result implies that if ðM; gÞ
is a complete, connected Riemannian manifold of di-

mension n (�2), assume that there is a smooth func-

tion h, m � n and k > 0, such that the Bakry-Emery
Ricci curvature gRic ¼ Ric�rrh� 1

m�nrh�rh �
ðm� 1Þkg. Then M is compact and D � �

ffiffi

k
p . This

result was also proved by Qian in [9] independently.

At the end of the paper [1], the authors asked the
rigidity question under the Bakry-Emery Ricci cur-

vature setting. In this paper, the author wants to

answer this question and prove the following rigidity
theorem. Our method is motivated by Peterson [8].

Theorem 1.1. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n ð�2Þ,
assume that the Bakry-Emery Ricci curvature gRic ¼
Ric �rrh � 1

m�nrh �rh � ðm � 1Þkg > 0, m � n,

and D ¼ �
ffiffi

k
p , then ðM ; gÞ is isometric to the sphere

S n
k ; moreover hðxÞ ¼ ðm � nÞ ln sinð

ffiffi

k
p

rÞ
ffiffi

k
p , where r is a

distance function de�ned on S n
k .

Remark 1.1. From Theorem 1.1, we can see

that when m ¼ n, h � 0 and gRic ¼ Ric, thus we re-

duce to Cheng’s maximal diameter theorem.

The rigidity theorems asserts that if a certain

geometric quality is as large as possible relative to
the pertinent lower bound on Ricci curvature, then

the metric on the manifold in question is a warped

product metric of a particular type. The notion of
the warped product manifold was introduced by

Bishop and O’Neil [2], where the authors used the

warped product metric to construct a manifold of
negative curvature.

Let B ¼ ðBl; gBÞ and F ¼ ðFk; gF Þ be two Rie-
mannian manifolds with the dimension l and k. We

denote by � and � the projections of B� F onto B

and F , respectively. For a nonnegative smooth func-
tion f de�ned on B, the warped product N ¼ B�f F
is the product N ¼ B� F furnished with the metric

tensor g de�ned by g ¼ ��gB þ f2��gF , where � de-

notes the pull back. The function f is referred to as

the warping function. In [6], J. Lott pointed out
that the Bakry-Emery Ricci curvature is in fact the

horizontal part of the Ricci curvature of some

warped product manifolds. Thus from Theorem 1.1
we obtain the following rigidity theorem on a warped

product.

Corollary 1.1. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n ð�2Þ,
assume that the Bakry-Emery Ricci curvature gRic �
ðm � 1Þkg > 0, m � n, and its diameter D ¼ �

ffiffi

k
p . If

N ¼M n�
e

h
m�n

Sm�n
k , then N ¼S n

k �� 1
ffiffi

k
p sin

ffiffi

k
p

rÞ
Sm�n

k ,

where r is a distance function de�ned on S n
k .

Now we want to discuss the rigidity theorem

about the Bishop volume comparison. So far we only
know the relative volume comparison theorem on

2000 Mathematics Subject Classi�cation. Primary 53C21, Sec-

ondary 53C20.

doi: 10.3792/pjaa.85.71

62009 The Japan Academy



manifolds with the Bakry-Emery Ricci curvature, see

[3] (also see [5] or [10]). The problem about the Bishop
volume comparison theorem remains open. We ap-

preciate Prof. Bakry for his suggestion of studying

this problem.
Let Bðp; rÞ be a ball centered p with a radius r in

the manifold M, the weighted volume of Bðp; rÞ de-

notes by volhðBðp; rÞÞ¼
R

Bðp;rÞ dvolh¼
R

Bðp;rÞ e
hdvolg

and vðm; k; rÞ denotes the volume of a ball Bðk; rÞ of
radius r in the space form Mm

k with a constant

curvature k. Suppose that SnkðrÞ ¼ sin
ffiffi

k
p

r
ffiffi

k
p , k > 0;

SnkðrÞ ¼ r; k ¼ 0; SnkðrÞ ¼ sinh
ffiffi

k
p

r
ffiffi

k
p , k < 0; then we

can prove the following Bishop volume comparison

theorem.
Theorem 1.2. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n ð�2Þ,
assume that there is a function h satisfying

lim
r!0

eh

r m�n ¼ 1 such that the Bakry-Emery Ricci

curvature gRic � ðm � 1Þkg, m � n, then

volhðBðp; rÞÞ �
!n�1

!m�1
vðm; k; rÞ

where !n�1 is the volume of the n dimensional unit

sphere; the equality holds if and only if Bðp; rÞ is iso-

metric to Bðk; rÞ; moreover hðxÞ ¼ ðm � nÞ ln SnkðrÞ,
where r is a distance function de�ned on Bðk; rÞ.

Remark 1.2. The function of volhðBðp;rÞÞ
vðm;k;rÞ is a

nonincreasing function. This is a well-known fact for

experts. However people did not know what is its lim-

its. So they could not obtain the Bishop volume com-

parison theorem. Our contribution of this paper is to

�nd a warping function, which has a singularity at

origin. Thus the initial condition of the warping func-

tion h is necessary. For example, M ¼ R2, n ¼ 2,

m ¼ 3, hðxÞ ¼ 1, then gRic ¼ 0. The function of
volhðBðp;rÞÞ

vðm;k;rÞ is always a nonincreasing function, however

its limit does not exist.

As we know that

vðm; k; rÞ ¼!m�1

Z r

0

Snm�1
k ð�Þd�;

then we obtain the following interesting result, since

we allow the number m to take any real number (not

only integer).
Corollary 1.2. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n ð� 2Þ,
assume that there is a function h satisfying

lim
r!0

ehðxÞ

rm�n ¼ 1 such that the Bakry-Emery Ricci curva-

ture gRic � ðm � 1Þkg, m � n, then

volhðBðp; rÞÞ � !n�1

Z r

0

Snm�1
k ð�Þd�:

In particular, when gRic � 0, the weighted volume has

a sharp upper bound:

volhðBðp; rÞÞ � !n�1r
m:

As same as Corollary 1.1, we can obtain the fol-

lowing rigidity theorem on the warped product.
Corollary 1.3. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n ð� 2Þ,
assume that there is a function h satisfying

lim
r!0

ehðxÞ

rm�n ¼ 1 such that the Bakry-Emery Ricci curva-

ture gRic � ðm � 1Þkg, m � n, and volhðBðp; rÞÞ ¼
!n�1

!m�1
vðm; k; rÞ. If N ¼ M n �

e
h

m�n
Sm�n

k , then N ¼
M n

k � SnkðrÞS
m�n
k , where M m

k is a space form with a

constant curvature k, r is a distance function de�ned

on M n
k .

2. Proof of Theorem 1.1 and Theorem

1.2. Firstly we introduce some lemmas. The follow-

ing weighted Laplacian comparison theorem was
proven by Qian [9] (also see [3] and [5]).

Lemma 2.1. (Qian) Let ðM ; gÞ be a complete,

connected Riemannian manifold of dimension n ð�2Þ,
assume that there is a smooth function h, m � n, such

that Bakry-Emery Ricci curvature gRic � ðm � 1Þkg,

then

LrðxÞ � ðm� 1ÞSn
0
k

Snk
; 8x 2M n cutðpÞ;

where L ¼ 4þrh 	 r, rðxÞ is a distance function

from a �x point p, cutðpÞ denotes the cut locus of the

Riemannian manifold M with respect to the point p.

The following weighted volume comparison the-

orem can be found in [9] (also see [11]). However the
limit of the relative volume comparison is a new

result.

Lemma 2.2. Let ðM ; gÞ be a complete, con-

nected Riemannian manifold of dimension n with
gRic � ðm � 1Þkg, m � n, then

r! volhðBðp; rÞÞ
vðm; k; rÞ

is a nonincreasing function; if the initial condition of

the function h satisfying lim
r!0

ehðxÞ

rm�n ¼ 1, then

lim
r!0

volhðBðp; rÞÞ
vðm; k; rÞ ¼

!n�1

!m�1
:

Secondly we want to use the above Lemmas to

prove Theorem 1.1:
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Proof. Fix p; q 2M such that dðp; qÞ ¼ �
ffiffi

k
p .

De�ne rðxÞ ¼ dðp; xÞ; erðxÞ ¼ dðq; xÞ. Firstly, we want
to claim the following fact:

rðxÞ þ erðxÞ ¼ dðp; qÞ ¼ �
ffiffiffi

k
p ; 8x 2M:ð2:1Þ

The above fact also tell us that the function r and er

is smooth on M � fp; qg. Now we suppose that (2.1)

does not hold, from the triangle inequality we know
that

dðp; xÞ þ dðq; xÞ > �
ffiffiffi

k
p :

So we can �nd " > 0 such that

dðp; xÞ þ dðq; xÞ ¼ �
ffiffiffi

k
p þ 2" ¼ dðp; qÞ þ 2":

Then the balls Bðp; r1Þ and Bðq; r2Þ and Bðx; "Þ
are pairwise disjoint, when r1 � dðp; xÞ, r2 � dðq; xÞ
and r1 þ r2 ¼ �

ffiffi

k
p . Thus by Lemma 2.2, we have that

1 ¼ volhðMÞ
volhðMÞ

� volhðBðx; "ÞÞ þ volhðBðp; r1ÞÞ þ volhðBðq; r2ÞÞ
volhðMÞ

� vðm; k; "Þ þ vðm; k; r1Þ þ vðm; k; r2Þ
vðm; k; �ffiffi

k
p Þ

¼ vðm; k; "Þ
vðm; k; �ffiffi

k
p Þ þ 1;

which is a contradiction.
Secondly, we can use (2.1) and Lemma 2.1 to

prove the following fact:

Hess r ¼ Sn
0
kðrÞ

SnkðrÞ
ds2

n�1:ð2:2Þ

In fact, from (2.1) we know that Lr ¼ �Ler. On the

other hand, from Lemma 2.1 we have that

ðm� 1ÞSn
0
kðrÞ

SnkðrÞ
� Lr ¼ �Ler � �ðm� 1ÞSn

0
kðerÞ

SnkðerÞ

¼ ðm� 1ÞSn
0
kðrÞ

SnkðrÞ
:

So we obtain that

Lr ¼ ðm� 1ÞSn
0
kðrÞ

SnkðrÞ
:ð2:3Þ

By (2.3) and the fact of @r4rþ jHess rj2 ¼
�Ricð@r; @rÞ, we see that

�ðm� 1Þk ¼ @rLrþ
1

m� 1
ðLrÞ2

¼ @r4rþ @2
r hþ

1

m� 1
ð4rþ @rhÞ2

� @r4rþ@2
r hþ

1

n�1
ð4rÞ2þ 1

m�n ð@rhÞ
2

� @r4rþ @2
r hþ jHess rj

2 þ 1

m� n ð@rhÞ
2

¼ �gRicð@r; @rÞ

� �ðm� 1Þk:

So the equalities in the above inequalities always

hold, i.e.

1

m� 1
ðLrÞ2 ¼ 1

n� 1
ð4rÞ2 þ 1

m� n ð@rhÞ
2;

jHess rj2 ¼ 1

n� 1
ð4rÞ2:

Thus we have that

4r
n� 1

¼ @rh

m� n ¼
Lr

m� 1
;ð2:4Þ

and

Hess r ¼ 4r
n� 1

gr ¼
Lr

m� 1
gr

¼ Sn
0
kðrÞ

SnkðrÞ
ds2

n�1:

ð2:5Þ

Let Xi, i ¼ 1; . . . ; n� 1, be the orthonormal eigen-
vectors of Hess r at r, then from (2.5), we have

rXi

@

@r
¼

ffiffiffi

k
p

cot
ffiffiffi

k
p

rXi:

Extend Xi in such a way that ½Xi;
@
@r
 ¼ 0 at r, thus

we can compute the sectional curvature of M.

Sec

�

Xi;
@

@r

�

¼ � < r @

@r

rXi

@

@r
;Xi >

¼ � < r@

@r

ð
ffiffiffi

k
p

cot
ffiffiffi

k
p

rÞXi;Xi >

¼ k csc2
ffiffiffi

k
p

r�
ffiffiffi

k
p

cot
ffiffiffi

k
p

r < r@
@r

Xi;Xi >

¼ k csc2
ffiffiffi

k
p

r�
ffiffiffi

k
p

cot
ffiffiffi

k
p

r < rXi

@

@r
;Xi >

¼ k csc2
ffiffiffi

k
p

r� ð
ffiffiffi

k
p

cot
ffiffiffi

k
p

rÞ2 ¼ k:

By (2.3) and (2.4), we obtain that
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hðxÞ ¼ ðm� nÞ ln sinð
ffiffiffi

k
p

rÞ
ffiffiffi

k
p þ C:

Since the function h in the Bakry-Emery Ricci curva-
ture is a translation invariant, constant C has to be

zero, i.e. hðxÞ ¼ ðm� nÞ ln sinð
ffiffi

k
p

rÞ
ffiffi

k
p : r

Finally we prove Theorem 1.2. By Lemma 2.2,

we know that volhðBðp; rÞÞ � !n�1

!m�1
vðm; k; rÞ: So we

only prove the rigidity part of Theorem 1.2.

Proof. Set dvolh ¼ ehdvolg ¼ �hðr; �Þdr ^ d�,
dvolk ¼ �kðrÞdr ^ d�, where �kðrÞ ¼ Snm�1

k ðrÞ. From
Lemma 2.1, we know that

Lr ¼ @rðln�hðr; �ÞÞ � @rðln�kðrÞÞ:ð2:6Þ

Setting F ðrÞ ¼ �hðr;�Þ
�kðrÞ

, then we compute the derivative

of F ðrÞ.

F 0ðrÞ ¼ @r�hðr; �Þ�kðrÞ � �hðr; �Þ@r�kðrÞ
�2
kðrÞ

¼ �hðr; �Þ
�kðrÞ

ð@r ln �hðr; �Þ � @r ln�kðrÞÞ:

By (2.6), we know that the function F ðrÞ is a non-

increasing function. On the other hand, by the initial

condition of the function h, let the distance function
r tend to zero, we can easily obtain that

�hðr; �Þ � �kðrÞ:ð2:7Þ
Since
Z r

0

Z

Sn�1

�hð�; �Þd� ^ d� ¼
!n�1

!m�1

Z r

0

Z

Sm�1

�kð�Þd� ^ d�

Taking the derivative of the both sides of the above

equation, then we get that
Z

Sn�1

�hðr; �Þd� ¼
!n�1

!m�1

Z

Sm�1

�kðrÞd� ¼
Z

Sn�1

�kðrÞd�

By (2.7), we know that

�hðr; �Þ ¼ �kðrÞ:
Thus

Lr ¼ ðm� 1ÞSn
0
kðrÞ

SnkðrÞ
:

With the same Proof of Theorem 1.1, we can easily
prove Theorem 1.2. r
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