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The squaring operation on 4-generators of the Dickson algebra
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Abstract:

We study the squaring operation Sq" on the dual of the minimal .A-generators of

the Dickson algebra. We show that this squaring operation is isomorphic on its image. We also give
vanishing results for this operation in some cases. As a consequence, we prove that the Lannes-
Zarati homomorphism vanishes (1) on every element in any finite S¢’-family in Exty(F2, Fy) ex-
cept possibly the family initial element, and (2) on almost all known elements in the Ext group.
This verifies a part of the algebraic version of the classical conjecture on spherical classes.
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1. Statement of results. Throughout the pa-
per, the coefficient ring for homology and cohomol-
ogy is always Fo, the field of two elements. Let V;
be an s-dimensional Fs-vector space. The general
linear group GL,:= GL(V;) acts regularly on Vj
and therefore on H,(BVj). Let P(F2 ® H.(BVy)) be

GL;

the submodule of Fy ® H,(BV;) Consisting of all ele-
GL

5

ments, which are annihilated by every positive-
degree operation in the mod 2 Steenrod algebra, A.
The subject of the present paper is the squaring
operation
Sq" : P(Fy ® H.(BVy)); — P(Fy ® H.(BVy))
GL; GL,
which is defined by the first named author in [11] as
an analogue of the classical squaring operation on the
cohomology of the Steenrod algebra, Ext)(F;, F5).
The most important property of the squaring
operation is that it commutes with the classical
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squaring operation Sq” on Exzt}(Fs, F;) through the
Lannes-Zarati homomorphism

s : Exty 0 (Fy, Fy) — P(F2G® H.(BVy));,
Ly

for any s (see [12]). Therefore the investigation of
the squaring operation is useful to the study of the
Lannes-Zarati homomorphism.

The Lannes-Zarati homomorphism, defined in
[18], is the one corresponding to an associated graded
of the Hurewicz map H :7(SY) = m.(QoS°) —
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H.(QoS"). So, the following is an algebraic version
of the conjecture on spherical classes.

Conjecture 1.1 [11]. ¢, =0 in any positive
stem for s > 2.

That the conjecture is no longer valid for s = 1
and 2 is respectively an exposition of the existence
of Hopf invariant one and Kervaire invariant one
classes. (See Adams [1], Browder [3], Curtis [6] for a
discussion on spherical classes; and see Lannes-Zarati
[18], Goerss [9], Hung [11, 12] for a discussion on the
homomorphism.)

The squaring operation on P(Fy ® H,(BVjy)) is
GL,

derived from the Kameko squaring operation on
Fy ® PH,(BV;) in such a way that these two squar-
GL,

ing operations commute with each other through the
canonical homomorphism

jo: Fy ® PH.(BV,) — P(F; ® H.(BV,))
GLg GL;

induced by the identity map on V; (see [11]). The
first named author also showed in [11] that ji =
psoTrys. Here Try is the algebraic transfer, which
was defined by Singer [21] and was shown to be highly
nontrivial by Singer [21], Boardman [2], Bruner-
Ha-Hung [5], Hung [13], Ha [10], Nam [20], and the
authors [17]. Further, Hung and Nam proved in [14]
that ji =0 in positive degree for s > 2, or equiva-
lently that the Lannes-Zarati homomorphism van-
ishes on the positive stem part of the algebraic
transfer’s image for the homological degree s > 2.

A basis of the Fy-vector space P(Fy ® H,(BVy))

GL,

was determined by Singer [21] for s =1, 2‘, by Hung
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and Peterson [15] for s = 3,4, and by Giambalvo and
Peterson [8] for s = 5. It is still unknown for s > 5.
The squaring operation on P(F, ®H (BVy)) is ex-

plicitly computed in [11] for s < 4 Thlb result shows
that Sq¥ is an isomorphism for s = 1,2 and is no lon-
ger an isomorphism for s = 3, 4.

The Dickson algebra of all GLs-invariants was
determined in [7] as follows:

D, = H*(BV,)%" = Fy[zy,-- -, z,
= F2 [Q&,Oa Qs,lv ) Qs,s—l]a

where @),; denotes the Dickson invariant of degree
25 — 2F. Let d(io,il, - ,isfl) €cF, ® H*(BVS) be the
GL,

GL,
] :

element that is dual to Q‘“
the basis of Dy consisting of all monomials in the
Dickson invariants.

The following theorem, which claims that the

squaring operation is ‘‘eventually isomorphic” on
P(Fy ® H.(BVy)), is the first main result of this
GL;

-Qi‘i;l_l with respect to

paper.
Theorem 1.2.

Sq

The squaring operation

P(Fy ® H.(BV,)) — P(Fy ® H,(BV,))
GL; GL,

is an isomorphism on its image Im(Sq"). Further, if

d(ig,...,15-1) is an element in P(Fo ® H,(BVy)), then
GL,
Sq()d(im e 7is—1)
C(d(s=2,2i1 4+ 1,..., 2051 + 1), ig=5—2,
10, otherwise.

Evidently, this theorem could be applied to inves-
tigate the structure of the space P(Fy ® H,(BVj)) or
GL,

of its dual space Fy ® D;. The theorem is an analogue
A

of the result by the first name author [13, Theo-

rem 1.1] stating that S¢°:Fy @ PH,(BV,) —
G,

Fy ® PH,(BV;) is an isomorphism on the image of
GL,

(Sa°)"".
A sequence {a;]i >0} of elements in
P(F, ®H (BVy)) (or in Exty(Fg,F3)) is called an

Sq°- famlly if a; = Sq¢"(a;_1) for every i >0. It is
called finite with length s if it has exactly s non-zero
elements. Otherwise, it is called infinite.

The following is an immediate consequence of
the above theorem.
1.3. Sq°-family n

Corollary Any

[Vol. 85(A),

P(Fy @ H,(BVy)) is either infinite or finite with
GL,

length 1.

This is an analogue of the result by the first
name author [13, Corollary 1.7] stating that any
Sq'-family in Fy ®PH (BV;) is either infinite or

finite with length at most s — 2.

Let «(4) be the number of ones in the dyadic ex-
pansion of 6, and v(6) the exponent of the highest
power of 2 dividing §, with convention 2/) = 0.

Following Giambalvo and Peterson [8], the func-
tion k, is defined by setting r,(r) =7+ 2/(5=27),
For convenience, set x2(r) = r. Finally, let x(r) =
ks(k71(r)) for £ > 1. Actually, Giambalvo and Peter-
son denoted the function k4 by x,. However, the letter
x, will be used in this paper to name an another ob-
ject, so we denote it by x,. A discussion on an earlier
version of this function defined by Hung and Peterson
[15] will be given in an associate detailed paper.

The following is the second main result of the
paper.

Theorem 1.4. The squaring operation Sq¢° on
P(Fg ® H,.(BVy)) vanishes in any degree 6, which

(1) ezther satisfies v(6+ s) < [logy(s—2)]+1 for
s> 3,
(ii) or is not of the form 65 defined inductively for

s > 3 as follows:

85 =044 —1+2°1 [/{{H,‘iéﬂ e mﬁl(s—Q)—l—l],

for arbitrary non-decreasing sequence [logy(s—2)]

< <j< ... < Joq, where by = 2 — 2,

The theorem does not seem to be possibly im-
proved in the meaning that, Sq” acts non-trivially in
every degree 6, given in the theorem at least for
s=3,4 and 5. Unfortunately, the vector space

P(Fy ® H,(BV;)) is unknown for s > 5 so far.
GL,

By means of the formula in Theorem 1.4 (ii), we
find explicitly the list of all the degrees s for
5<s<7 in Lemmas 2.2-2.4. In principle, this
procedure of computing can inductively be extended
for any bigger value of s. In particular, the following is
an immediate consequence of the above theorem.

Corollary 1.5. S¢” on P(F ®H (BVy)) van-

ishes in any degree 8, which satzsﬁes one of the two

conditions:

(i) v(6+s) <[logy(s—2)]+1 for s > 3,

(il) 6+ s is not of the forms listed respectively in
Lemmas 2.2-2.4 for5 < s < 7.
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The remaining part of this paper deals with
some applications of the above results to the study
of Conjecture 1.1.

The group FExtj(Fs,Fy) was determined for
s=1,2 by Adams [1], for s =3 by Wang [23], and
for s =4 by Lin (see [19]). It is unknown for s > 4.
Based on these results, Conjecture 1.1 was proved
by the first named author in [11, 12] for s = 3, 4.

Hung and Peterson showed in [16] that ¢ = @,
is a homomorphism of algebras and it vanishes on de-
composable elements. So, in order to prove Conjec-
ture 1.1, it suffices to study the Lannes-Zarati homo-
morphism on indecomposable elements.

Our first result on the Lannes-Zarati homomor-
phism is the following consequence of Theorem 1.2.

Corollary 1.6. If {a;|i >0} is a finite Sq°-
family in Exti(Fo, Fy), then

ws(a;) =0 for i>0.

Our second result on the Lannes-Zarati homo-
morphism is the following application of Theorem
1.4 and Corollary 1.5.

Proposition 1.7. Let {a;]i >0} be an Sq°-
family in Exti(Fy,Fy). Suppose 6 = Stem(ay) satis-
fies one of the following conditions

(i) v(6+ s) < [logy(s—2)]+ 1 for s> 3;

(ii) 6 is not of the form 65 given in Theorem 1.4. In
particular, § + s is not of the forms listed respec-
tively in Lemmas 2.2-2.5 for5 < s < 7.

Then @4(a;) = 0 for any i > 0.

We note that every Sq°-family listed in the pa-
per by Tangora [22] as well as in that by Bruner [4]
satisfies either the hypothesis of Corollary 1.6 or the
one of Proposition 1.7. Therefore, if {a;|i > 0} de-
notes such a family in Ext}(Fq, Fy), then ¢ (a;) =0
for any ¢ > 0. It should be noted that the above re-
sults do not conclude whether the Lannes-Zarati
homomorphism vanishes on the initial element ay of
the Sq¢°-family in question. The following proposition
gives an answer to this problem in the case where
Stem(ap) is rather small.

Proposition 1.8. If {a;]i > 0} is an S¢°-fam-
ily in Exti(Fy,Fy) with Stem(ag) < 2571 then ¢,(a;)
=0 for any i > 0.

2. Vanishing degrees of the squaring oper-
ation in small ranks. An element in D, is called
decomposable if it is in AD,, where A denotes
the augmentation ideal of the Steenrod algebra A.
Otherwise, it is called indecomposable.

Definition 2.1 [8]. A4 monomial Q(I)=
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0@ -
ists an s-tuple J = [jo,j1,- - -
integers such that

ig = K°(0),
i =K (G0 i+ iee1) — (o i+ 1),

for1<k<s—1. Then J = [jo,51,---,Js—1) is called
the reduced form of I. The reduced form J =
[JosJ1,---,Js—1] @s said to have non-decreasing terms
if 7o < Jog1 for all £.

Using the formula in Theorem 1.4 (ii), we give in
the following lemmas some degrees, in which the
squaring operation would not vanish for 5 < s < 7.

Lemma 2.2. Let Q(I) = Q(3, 11,12, i3,14) be
an indecomposable monomial in degree & of Ds with
the non-decreasing reduced form [j1, jo2,j3,j4]. Then,
7> 2and

Q5L of D, is called reducible if there ex-
,Js—1] of non-negative

Qitl 4 9p+3 4 9js+d 4 2]'1-%—5’
Qd1+1 + 22 +3 + 2j4+67
Qi+l 4 9is+5 4 2j4+5’

J1 < g2 < Js < Ja,
J1 < J2 < J3 = Ja,
J1 < j2 =173 < s

5+5=

Lemma 2.3. Let Q(I) = Q(4, 11, 19,13, i4, i5)
be an indecomposable monomial in degree & of Dy
with the non-decreasing reduced form [ji,7j2,J3,j4,
Js)- Then, j1 > 3 and

o6+6=
NN 9IS it g 90D 2B HE Gy <o < s < a < Js,
FL QIS st g QI HT, J1 <2 <Js <ja=Js
e A o L J1< )2 <Js=Ja < Js
20+ QIS 4 95T Nn<jp=j3<ja=7Js—1
PFL 4 2B A0 g 9RO N <h=J3<ja<j—1,
Qi+l QS 95 4 IO L 9IeHT Gy < gy = iy < ja = J,
P 2HS, J1<J2=J3=Ja=Js

Lemma 2.4. Let Q(]) = Q(5, ’il, ig, ig, i4, i5, 26)
be an indecomposable monomial in degree 6 of Dy
with the non-decreasing reduced form [j1,72,73, 74,
Js5,J6)- Then, 31 > 3 and

64+7=

ity 97t3 | Qistd 4 9ditD | 95t 4 9fctT
Qirtl 4 9irt3 4 9fstd 4 et 4 9iits

Qirtl 4 9jrt3 1 9jstd 1 9J5HT | 9t ,

Qirtl 4 9jrt3 4 9jstd ,

Qi 973 | Qisth y 9iit6 | QistT 4 98

J2 <J3 <Jja<Js<Js,
J2 <Js <Ja<Js=Je,
J2 <Js <ja=Js < Je,
J2<Js=Jjs=J5=Js,
J2<J3=Jjs<Js=Js,

2 97248 4 95t 4 9JH9, J2<js=ja<js=js—1,
20t 4 97H8 4 97516 4 3 HT 4 et J2<js=ja<J5<js—1,
2 95 4 It 4 9IS, Je=J3<ja=Jjs—1<js—1,

It | 9Jsth 4 9Jit6 | 9Jst8 ,
Qirtl 4 9Jsth 1 9446 1 9546 4 9etT ,

Jo=J3<ja<js—l=js—1,
Jo=J3<js<js—1<js—1,

QI 4 97td 1 9irt5 4 95it6 | 9irt9 Jo=1J3 <js=75=1Js,
it +2]'.rF5 +2]4+5 _;'_2]'0‘45 +2j4+7 _;'_2]‘(;*87 j,_) :]5 <j,1 :J‘5 S]b — 1"
20t 4 94T 4 9249 J2=J3=J1=75=Js,
20t 2248 4 9618 J2=J3=J1=J5<Je-
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The contains of this note will be published in de-
tail elsewhere.
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